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Abstract

In this paper, we propose an integrated modified harmonic mean estimator (IHME) for nested
and non-nested model selection problems in spatial panel data models with entity and time
fixed effects. We formulate the IHME based on the integrated likelihood functions obtained by
analytically integrating out the high-dimensional entity and time fixed effects from the complete
likelihood functions. To investigate the finite sample properties of the IHME, we design a
comprehensive simulation study that allows for both nested and non-nested model selection
exercises in some popular spatial panel data models. Our simulation results show that the
IHME has excellent finite sample performance and outperforms some competing estimators in
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the usefulness of the proposed IHME in a model selection exercise.
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1 Introduction

Spatial panel data models can allow for (i) spatial dependence in the dependent variable, (ii) spatial

dependence in the disturbance terms, (iii) temporal effects, (iv) spatio-temporal effects, and (v)

heterogeneity across entities and time periods, i.e., the entity and time fixed effects. There is a

growing literature on the specification and estimation of spatial panel data models, among others,

see Anselin et al. (2008), Elhorst (2014), and Lee and Yu (2010b,c). The high-dimensional entity

and time fixed effects in these models pose challenges for estimation and testing approaches.

In the case of static spatial panel data models, the likelihood estimation can be based on two

approaches: (i) a direct estimation approach and (ii) a transformation approach (Lee and Yu,

2010a,b). In the direct approach, both entity and time fixed effects are estimated along with the

other common parameters. In the transformation approach, the entity and time fixed effects are

eliminated from the model by using suitable transformation techniques. The likelihood functions of

the transformed models can be interpreted as partial likelihood functions and can yield consistent

estimators for all parameters. In the case of dynamic spatial panel data models with both entity

and time fixed effects, the (quasi) maximum likelihood estimator (MLE) can have asymptotic

bias even when both the numbers of entities and time periods are large (Lee and Yu, 2010a).

Besides the likelihood approach, other estimation approaches suggested in the literature are (i) the

instrumental variable (IV) and the generalized method of moments (GMM) approaches (Kapoor

et al., 2007; Kelejian and Prucha, 2010; Lee and Yu, 2014), (ii) the M-estimation approach (Li and

Yang, 2021; Yang, 2022; Yang et al., 2024; Yang, 2018), and (iii) the Bayesian Markov chain Monte

Carlo (MCMC) approach (Han and Lee, 2016; Han et al., 2017; LeSage, 2014; Parent and LeSage,

2011, 2012; Yang et al., 2023).

With the advancement of these estimation techniques, researchers developed various hypothesis-

testing approaches for the model selection exercises. The classical test statistics such as the Wald

statistic, the Lagrange Multiplier (LM) statistic, the GMM gradient statistic, and the C(α) statistic

can be used for testing null hypotheses about parameter restrictions in the well-specified spatial

models (Anselin, 1988; Anselin et al., 1996; Baltagi and Yang, 2012, 2013; Baltagi et al., 2003, 2014;

Bera et al., 2019; Bresson et al., 2007; Jin and Lee, 2018; Taşpınar et al., 2017; Yang, 2021b). The

non-nested testing approaches based on the J-statistic, the Cox-type statistic, and the likelihood

ratio statistic, focus on model selection exercises for cross-sectional spatial models (Anselin, 1984,

1986; Burridge, 2012; Han and Lee, 2013; Jin and Lee, 2013; Kelejian and Piras, 2016; Liu and

Lee, 2019). Similarly, various information criteria have also been considered for non-nested model

selection exercises only for cross-sectional spatial models (Yang et al., 2022; Zhang and Yu, 2018).

There are only a few studies focusing on non-nested model selection exercises, either based on a

testing approach, an information criterion approach, or a Bayesian marginal likelihood approach

for spatial panel data models (LeSage, 2014; Yang et al., 2023).

In this paper, we consider the modified harmonic mean method of Gelfand and Dey (1994) for

nested and non-nested model selection problems in static and dynamic spatial panel data models

that have high-order spatial dependence in the dependent variable and the disturbance terms. The
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modified harmonic mean method can be easily used to formulate an estimator of the marginal

likelihood functions based on the conditional likelihood function obtained by conditioning on the

high-dimensional fixed effects. However, this estimator is expected to perform poorly in model

selection exercises because the high-dimensional fixed effects cannot be estimated precisely. For

example, Chan and Grant (2015) show that the modified harmonic mean estimator based on the

conditional likelihood function of an unobserved components model has a substantial finite sam-

ple bias and tends to select the wrong model. This problem due to the presence of some high-

dimensional parameters in conditional or complete data likelihood functions is also not specific to

the modified harmonic mean estimator. Frühwirth-Schnatter and Wagner (2008) show that the

marginal likelihood method suggested by Chib (1995) can also be unreliable when it is formulated

with the complete data likelihood functions. Similarly, Chan and Grant (2016) show that the de-

viance information criterion (DIC) based on the conditional likelihood functions of some popular

stochastic volatility models also performs poorly in model selection exercises.

We propose an integrated modified harmonic mean estimator (IHME) for estimating the

marginal likelihood functions of spatial panel data models. In a Bayesian estimation setting, we

assign multivariate normal distribution priors to the entity and time fixed effects. As shown in

Yang et al. (2023), these priors allow us to formulate integrated likelihood functions by analytically

integrating out the fixed effects from the complete likelihood functions. Our suggested IHME is

based on the integrated likelihood functions that are free from the high-dimensional entity and time

fixed effects.

To investigate the finite sample properties of the IHME, we design a comprehensive simulation

setting that allows for both nested and non-nested model selection exercises involving some popular

spatial panel data models. The non-nested model selection problem entails selecting the model with

the true spatial weight matrix, while the nested model selection problem involves choosing between

static and dynamic specifications. Our simulation results indicate that the IHME has an excellent

finite sample performance and outperforms some competing estimators (e.g., the AIC and BIC) in

terms of precision. Finally, using a dataset on the US house price changes, we illustrate how to use

the proposed IHME in choosing the model that provides relatively “larger” marginal likelihood.

The rest of this paper is organized as follows. In Section 2, we present the models under

consideration and briefly discuss some conditions for their stability. In Section 3, we introduce two

modified harmonic mean estimators for our models based on two likelihood functions. In Section 4,

we consider two extensions of our base specifications and show how our analysis should be adjusted

accordingly. In Section 5, we investigate the performance of the proposed modified harmonic mean

estimators in an extensive simulation study. In Section 6, we illustrate the methodology with an

empirical illustration on the US house price changes. In Section 7, we present our concluding

remarks. Some technical results are relegated to an appendix.
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2 Model Specifications

In our analysis, we consider both the static and the dynamic spatial panel data specifications. Let

Yt = (y1t, y2t, . . . , ynt)
′

denote the n× 1 vector of observations on an outcome variable, and let Xt

denote the n× k matrix of observations on k non-stochastic time-varying explanatory variables at

time t. Then, a high order static spatial panel data model can be specified as

Yt =

p1∑
r1=1

λr1Wr1Yt +Xtβ + Cn + αtln + Ut, Ut =

p2∑
r2=1

ρr2Mr2Ut + Vt, (2.1)

for t = 1, . . . , T , where β is the k × 1 vector of coefficients for the explanatory variables in Xt,

Cn = (c1, c2, . . . , cn)
′

denotes the n× 1 vector of entity fixed effects, αtln denotes time fixed effect

at period t, ln is the n × 1 vector of ones, Ut = (u1t, u2t, . . . unt)
′

is the n × 1 vector of regression

disturbance term, and Vt = (v1t, v2t, . . . , vnt)
′

is the n × 1 vector of innovation terms. The high

order spatial lag terms are
∑p1

r1=1Wr1Yt and
∑p2

r2=1Mr2Ut, where Wr1 and Mr2 are the n × n

non-stochastic spatial weights matrices that have zero diagonal elements for r1 = 1, 2, . . . , p1 and

r2 = 1, 2, . . . , p2. The scalar spatial parameters are denoted by λr1 and ρr2 for r1 = 1, 2, . . . , p1 and

r2 = 1, 2, . . . , p2. We assume that vit’s are independent and identically distributed normal random

variables with mean zero and variance σ2 across i and t.

The dynamic spatial panel data model additionally includes the temporal and spatio-temporal

lags of the outcome variable:

Yt =

p1∑
r1=1

λr1Wr1Yt + γYt−1 +

p1∑
r1=1

ηr1Wr1Yt−1 +Xtβ + Cn + αtln + Ut,

Ut =

p2∑
r2=1

ρr2Mr2Ut + Vt, (2.2)

for t = 1, . . . , T , where the scalar parameter γ measures the persistence in the outcome variable,

i.e., the temporal effect, and the scalar parameters ηr1 ’s of spatial time lag terms capture the

dynamic diffusion effects, i.e., the spatiotemporal effects. Both in (2.1) and (2.2), we have ci+αt =

(ci + κ) + (αt− κ) for arbitrary κ. Thus, the entity and time fixed effects are not identified jointly,

and a normalization-type constraint must be imposed to achieve identification. For this purpose,

we may require that C
′
nln = 0, or we may simply set α1 = 0.

Let λ = (λ1, λ2, . . . , λp1)
′
, ρ = (ρ1, ρ2, . . . , ρp2)

′
, S(λ) = In −

∑p1
r1=1 λr1Wr1 and R(ρ) = In −∑p2

r2=1 ρr2Mr2 , where In is the n × n identity matrix. Since the spatial autoregressive models

represent equilibrium relationships, we require that S(λ) and R(ρ) are invertible for all λ and ρ

values in their respective parameter space. These matrices will be invertible if the spectral radii

of
∑p1

r1=1 λr1Wr1 and
∑p2

r2=1 ρr2Mr2 are inside the unit circle. Moreover, when all spatial weights

matrices are row-normalized, these matrices are invertible under the following sufficient conditions:
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∑p1
r1=1 |λr1 | < 1 and

∑p2
r2=1 |ρr2 | < 1.1 The stability conditions for the dynamic specification

can be investigated from its reduced form. Let A(λ, γ, η) = S−1(λ)(γIn +
∑p1

r1=1 ηr1Wr1), where

η = (η1, η2, . . . , ηp1)
′
. Then, we have

Yt = A(λ, γ, η)Yt−1 + S−1(λ)
(
Xtβ + Cn + αtln +R−1(ρ)Vt

)
. (2.3)

If all eigenvalues of A(λ, γ, η) lie inside the unit circle, then Yt in (2.3) is stable (Hamilton,

1994, Proposition 10.1). When all spatial weights matrices are row normalized, the spectral

radius theorem yields the following sufficient conditions for stability:
∑p2

r2=1 |ρr2 | < 1 and∑p1
r1=1 |λr1 |+

∑p1
r1=1 |ηr1 |+ |γ| < 1.

To complete the discussion on model specifications, we assume the following independent prior

distributions:

λr1 ∼ U(−1, 1), ηr1 ∼ U(−1, 1), r1 = 1, 2, . . . , p1, ρr2 ∼ U(−1, 1), r2 = 1, 2, . . . , p2,

γ ∼ U(−1, 1), β ∼ N(µβ, Vβ), σ2 ∼ IG(a0, b0), Cn ∼ N(µc, Vc),

αt ∼ N(µα, Vα), t = 1, . . . , T,

where U(−1, 1) denotes the uniform distribution over the interval (−1, 1), N(µd, Vd) denotes the

normal distribution with mean µd and variance Vd for d ∈ {β, c, α}, and IG(a0, b0) denotes the

inverse gamma distribution with shape parameter a0 and scale parameter b0. The uniform prior

distributions are subject to the stability conditions mentioned in the preceding paragraph.

Since we choose to work with the conjugate priors for the common parameters β, σ2, Cn and

αt, we have closed-forms for the conditional posterior distributions of these parameters, and thus

we can directly sample these parameters through a Gibbs sampler. However, in both models, the

conditional posterior distributions of the spatial parameters (and the autoregressive parameter) do

not take known forms. Therefore, we suggest using the adaptive Metropolis (AM) algorithm to

generate draws for these parameters (Roberts and Rosenthal, 2009). We leave the details of the

estimation algorithms to Section C in the Appendix.

3 Modified Harmonic Mean Method

Let θi be the parameter vector in model Mi, p(Y |θi,Mi) be the likelihood function of model Mi,

p(θi|Mi) be the prior distribution of θi under Mi, and p(θi|Y,Mi) be the posterior distribution under

Mi. Then, the Bayes factor in favor of Mi against model Mj is given by BFij = p(Y |Mi)/p(Y |Mj),

where p(Y |Ml) =
∫
p(y|θl,Ml)p(θl|Ml)dθl is the marginal likelihood function of model Ml for l ∈

{i, j}, i.e., the Bayesian evidence for Ml. The result BFij > 1 will indicate that the observed data

are more likely under Mi than Mj .

The marginal likelihood functions do not have closed-forms for our spatial models because the

1See Han and Lee (2016) and Yang et al. (2023) on the parameter space of spatial parameters in both static and
dynamic panel data models.
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spatial parameters cannot be integrated out analytically from the likelihood functions. Therefore,

the computation of the marginal likelihood functions will require numerical evaluation of high-

dimensional integrals, which can be computationally demanding. Instead, we consider the modified

harmonic mean methodology of Gelfand and Dey (1994) to estimate the marginal likelihood func-

tions. Hereafter, we drop the dependency on the model indicator Ml for simplicity.

Let h denote a probability density function whose support is contained in the support of the

posterior distribution p(θ|Y ). Then, the modified harmonic mean method follows from the following

relationship:

E

(
h(θ)

p(Y |θ)p(θ)
∣∣Y ) =

∫
h(θ)

p(Y |θ)p(θ)
p(θ|Y )dθ =

∫
h(θ)

p(Y |θ)p(θ)
p(Y |θ)p(θ)
p(Y )

dθ

=
1

p(Y )

∫
h(θ)dθ =

1

p(Y )
, (3.1)

where the first equality follows from taking expectation with respect to p(θ|Y ), the second equality

from p(θ|Y ) = p(Y |θ)p(θ)
p(Y ) , and the last equality from the fact that h is a proper density function over

the support of the posterior distribution. The result in (3.1) indicates that the marginal likelihood

function p(Y ) can be expressed as

p(Y ) =

(
E

(
h(θ)

p(Y |θ)p(θ)
∣∣Y ))−1

. (3.2)

Let {θ1, θ2, . . . , θR} be a sequence of posterior draws generated from p(θ|Y ). Using these posterior

draws, we can formulate the following estimator of p(Y ):

p̂(Y ) =

(
1

R

R∑
r=1

h(θr)

p(Y |θr)p(θr)

)−1

. (3.3)

If the ratio h(θ)/ (p(Y |θ)p(θ)) is bounded above over the support of posterior distribution, then

this estimator is a simulation consistent estimator when R goes to infinity (Geweke, 1999, p.

46). To guarantee this boundedness condition, following Geweke (1999), we consider a truncated

multivariate normal density for h. Define the truncation set ∆ as

∆ = {θ ∈ Rp : (θ − θ̂)′Σ̂
−1

(θ − θ̂) < χ2
α,p}, (3.4)

where θ̂ is the posterior mean of θ, Σ̂ is the posterior covariance of θ, χ2
α,p is the (1−α) quantile of

the χ2
p distribution, and χ2

p denotes the chi-squared distribution with p degrees of freedom.2 Then,

h takes the following form:

h(θ) = (1− α)−1(2π)−p/2
∣∣∣Σ̂∣∣∣−1/2

exp

(
−1

2
(θ − θ̂)′Σ̂

−1
(θ − θ̂)

)
× 1∆(θ), (3.5)

2To determine ∆, we set α = 0.05 in our simulation study.
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where |·| denotes the matrix determinant and 1∆(θ) is the indicator function taking value 1 if θ ∈ ∆

and 0 otherwise.

The modified harmonic mean estimator in (3.3) is formulated with the likelihood function

p(Y |θ). However, for our spatial panel data models, there are alternative likelihood functions that

can be utilized in formulating the modified harmonic mean estimator. In our specifications, the

latent high-dimensional variables are Cn and α, where α = (α1, . . . , αT )
′
. Let δ = (β

′
, σ2)

′
, and

ζ = (λ
′
, ρ
′
)
′

be the (p1 +p2)×1 vector of spatial parameters in the case of the static model in (2.1).

Let ζ = (λ
′
, ρ
′
, γ, η

′
)
′

be the (2p1 + p2 + 1) × 1 vector of parameters in the case of the dynamic

model in (2.2).

In formulating the modified harmonic mean estimator, we may first consider the condi-

tional likelihood function p(Y |δ, ζ, Cn, α) (conditional on Cn and α). Let Y = (Y
′

1 , . . . , Y
′
T )
′
,

X = (X
′
1, . . . , X

′
T )
′

and Y s = (IT ⊗ S(λ))Y − Xβ. Then, the conditional likelihood function

of the static model is given by

p(Y |δ, ζ, Cn, α) = (2π)−nT/2(σ2)−nT/2 |S(λ)|T |R(ρ)|T

× exp

(
−1

2
(Y s − lT ⊗ Cn − α⊗ ln)

′
(IT ⊗ Ω(ω)) (Y s − lT ⊗ Cn − α⊗ ln)

)
, (3.6)

where Ω(ω) = R
′
(ρ)R(ρ)/σ2 and ω = (ρ

′
, σ2)

′
.

To determine the conditional likelihood function of the dynamic model, we assume that Y0

is exogenously given. Let Y−1 = (Y
′

0 , . . . , Y
′
T−1)

′
, D(γ, η) = γIn +

∑p1
r1=1 ηr1Wr1 and Y d =

(IT ⊗ S(λ))Y − (IT ⊗D(γ, η))Y−1−Xβ. Then, the conditional likelihood function of the dynamic

model is given by

p(Y |δ, ζ, Cn, α) = (2π)−nT/2(σ2)−nT/2 |S(λ)|T |R(ρ)|T

× exp

(
−1

2

(
Y d − lT ⊗ Cn − α⊗ ln

)′
(IT ⊗ Ω(ω))

(
Y d − lT ⊗ Cn − α⊗ ln

))
. (3.7)

Using these conditional likelihood functions, we can formulate the conditional modified harmonic

mean estimator (CHME) as

p̂C(Y ) =

(
1

R

R∑
r=1

h(δr, ζr, Crn, α
r)

p(Y |δr, ζr, Crn, αr)p(δr, ζr, Crn, αr)

)−1

. (3.8)

Alternatively, in formulating the modified harmonic mean estimator, we may consider the integrated

likelihood function p(Y |δ, ζ) by analytically integrating out the high-dimensional Cn and α from

the complete likelihood function p(Y,Cn, α|δ, ζ) = p(Y |δ, ζ, Cn, α)p(Cn)p(α):

p(Y |δ, ζ) =

∫
p(Y,Cn, α|δ, ζ) dCndα =

∫
p(Y |δ, ζ, Cn, α)p(Cn)p(α) dCndα, (3.9)

where p(Cn) and p(α) are the prior distributions of Cn and α, respectively. Since the prior distri-
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butions p(Cn) and p(α) are multivariate normal distributions, it is analytically possible to derive

p(Y |δ, ζ) from (3.9) (Yang et al., 2023). To that end, let Bn = (In, ln), B = IT ⊗Bn, µf = (µ
′
c, µα)

′
,

µF = lT ⊗ µf , and VF = IT ⊗ Vf , where Vf = blkdiag(Vc, Vα) is the block diagonal matrix formed

by Vc and Vα. Then, the integrated likelihood function of the static specification in (2.1) can be

derived from (3.9) as

p(Y |δ, ζ) = (2π)−nT/2(σ2)−nT/2 |S(λ)|T |R(ρ)|T |VF |−1/2 |KF |−1/2 (3.10)

× exp

(
−1

2

(
Y s′ (IT ⊗ Ω(ω))Y s + µ

′
FV
−1
F µF − k

′
FK

−1
F kF

))
,

where KF = B
′
(IT ⊗ Ω(ω))B + V −1

F and kF = B
′
(IT ⊗ Ω(ω))Y s + V −1

F µF . Similarly, the inte-

grated likelihood function of the dynamic specification in (2.2) can be determined as

p(Y |δ, ζ) = (2π)−nT/2(σ2)−nT/2 |S(λ)|T |R(ρ)|T |VF |−1/2 |KF |−1/2 (3.11)

× exp

(
−1

2

(
Y d′ (IT ⊗ Ω(ω))Y d + µ

′
FV
−1
F µF − k

′
FK

−1
F kF

))
,

where KF = B
′
(IT ⊗ Ω(ω))B + V −1

F and kF = B
′
(IT ⊗ Ω(ω))Y d + V −1

F µF .

Using the integrated likelihood functions in (3.10) and (3.11), we suggest the following integrated

modified harmonic mean estimator (IHME):

p̂I(Y ) =

(
1

R

R∑
r=1

h(δr, ζr)

p(Y |δr, ζr)p(δr, ζr)

)−1

. (3.12)

Comparing the IHME with the CHME, we see that the computation of the CHME requires the

posterior draws of the high-dimensional fixed effects Cn and α, while that of the IHME does not.

Because these high dimensional parameters may not be estimated precisely, we expect that the

CHME will be imprecise relative to the IHME (Chan and Grant, 2015, 2016; Frühwirth-Schnatter

and Wagner, 2008).

Remark 1. The marginal likelihood method suggested by Chib (1995) can also be used in our setting

for nested and non-nested model selection exercises. This method is based on the following identity:

ln p̂(Y ) = ln p(Y |δ̂, ζ̂, Ĉn, α̂) + ln p(δ̂, ζ̂, Ĉn, α̂)− ln p(δ̂, ζ̂, Ĉn, α̂|Y ), (3.13)

where â can be the posterior mean of a for a ∈ {δ, ζ, Cn, α}. If all conditional posterior distributions

take known forms, then we can estimate the last term ln p(δ̂, ζ̂, Ĉn, α̂|Y ) by following Chib (1995).

However, since the conditional posterior distribution of ζ takes an unknown form in our case, we

need to resort to Chib and Jeliazkov (2001) instead of Chib (1995). As shown in Frühwirth-Schnatter

and Wagner (2008), the marginal likelihood estimator based on (3.13) can be unreliable because the

high-dimensional fixed effects Cn and α can not be estimated precisely. Since the integrated log-

likelihood function ln p(Y |δ̂, ζ̂) is analytically available in our setting, we should use the following
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identity to formulate an estimator:

ln p̂(Y ) = ln p(Y |δ̂, ζ̂) + ln p(δ̂, ζ̂)− ln p(δ̂, ζ̂|Y ), (3.14)

The first two terms can be computed with the posterior draws. The last term is unknown and can

be expressed as:

ln p(δ̂, ζ̂|Y ) = ln p(ζ̂|Y ) + log(β̂|ζ̂, Y ) + ln p(σ̂2|ζ̂, β̂, Y ). (3.15)

To estimate ln p(δ̂, ζ̂|Y ), we first need to adjust the estimation algorithms in Section C of Appendix

by using the integrated likelihood functions. The last term ln p(σ̂2|ζ̂, β̂, Y ) take a known form and

can be estimated from the output of the adjusted algorithms. However, the first two terms, ln p(ζ̂|Y )

and ln(β̂|ζ̂, Y ), can be estimated by following Chib and Jeliazkov (2001) and will require additional

appropriate reduced Gibbs sampler runs.

In our simulation, we also consider BIC and AIC formulated from the integrated likelihood

function p(Y |θ), where θ = (δ
′
, ζ
′
)
′
. The BIC is derived from a large sample approximation to the

log-marginal likelihood function of the candidate model. The marginal likelihood function of model

Mk can be expressed as p(Y |Mk) =
∫

Θk
p(Y |θk,Mk)p(θk|Mk)dθk, where θk is the Pk × 1 parameter

vector in the model Mk. The Laplace approximation to p(Y |Mk) gives (Schwarz, 1978):

ln p(Y |Mk) = ln p(Y |θ̂k,Mk) + ln p(θ̂k|Mk) +
Pkπ

2
− Pk lnN

2
− 1

2
|Jk(θ̂k)|+Op(1/N), (3.16)

where θ̂k is the MLE of θk, Jk(θ̂k) = − 1
n
∂2 ln p(Y |θ̂k,Mk)

∂θk∂θ
′
k

, and N = nT . Under a non-informative

prior distribution and ignoring all Op(1) terms in (3.16), Schwarz (1978) define the BIC for Mk as

BICk = −2 ln p(Y |θ̂k,Mk) + Pk lnN. (3.17)

The Laplace approximation in (3.16) can also be used to show that the difference between the BIC’s

of two models is asymptotically equivalent to the log Bayes factor (Kass and Raftery, 1995). That

is, for any ε > 0, we have

lim
N→∞

P

(∣∣∣∣BICk − BICl

ln BFkl
− 1

∣∣∣∣ > ε

)
= 0, (3.18)

where BFkl = p(Y |Mk)/p(Y |Ml) is the Bayes factor of Mk against Ml. Thus, the BIC is also a

consistent model selection criterion like the Bayes factor, i.e., both BIC and BF select the true

model with probability approaching one when N →∞. Since the IHME is a simulation consistent

estimator of the marginal likelihood function, this result indicates that the IHME and BIC will

perform similarly when the sample size is large.

On the other hand, using a decision-theoretic approach, we can show that the AIC chooses

the model whose predictive distribution is close to the true DGP. Let g(Y ) be the DGP, and
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Yrep = (y1,rep, . . . , yN,rep)
′

be the N × 1 vector of replicate data generated from g(Y ) independently

from the observed data Y . Consider the Kullback-Leibler (KL) divergence between g(Yrep) and the

generic predictive distribution p(Yrep|Y ):

KL (g(Yrep), p(Yrep|Y )) = EYrep

(
ln

g(Yrep)

p(Yrep|Y )

)
== c−

∫
ln p(Yrep|Y )g(Yrep)dYrep, (3.19)

where the expectation EYrep is with respect to g(Yrep), and c =
∫

ln g(Yrep)g(Yrep)dYrep, which

is constant across candidate models. In (3.19), if we replace the generic predictive distribution

p(Yrep|Y ) with the plug-in predictive distribution p(Yrep|θ̂), then it can be shown that (Burnham

and Anderson, 2002; Li et al., 2020)

EY

(
2×KL

(
g(Yrep), p(Yrep|θ̂)

))
= 2c+ EY

(∫
−2 ln p(Yrep|θ̂)g(Yrep)dYrep

)
= 2c+ EY

(
−2 ln p(Yrep|θ̂) + 2P

)
+ o(1)

= 2c+ EY (AIC) + o(1), (3.20)

where the expectation EY is with respect to g(Y ). Thus, the AIC measure is an asymptotically

unbiased estimator of EY

(
2×KL

(
g(Yrep), p(Yrep|θ̂)

))
− 2c. This theoretical result indicates that

a model with a smaller AIC value will perform better in terms of predictive performance.

4 Some Extensions

In this section, we explore two extensions of our model specifications and demonstrate how the

IHME should be adjusted accordingly. In the first extension, we consider the following spatial

Durbin versions:

Yt =

p1∑
r1=1

λr1Wr1Yt +Xtβ +

p1∑
r1=1

Wr1Xtφr1 + Cn + αtln + Ut, (4.1)

Yt =

p1∑
r1=1

λr1Wr1Yt + γYt−1 +

p1∑
r1=1

ηr1Wr1Yt−1 +Xtβ +

p1∑
r1=1

Wr1Xtφr1 + Cn + αtln + Ut,

(4.2)

where
∑p1

r1=1Wr1Xt denotes the spatial lag terms of Xt and {φr1}
p1
r1=1 is the sequence of associ-

ated parameter vectors. These specifications suggest that the outcome variable of a spatial entity

may also depend on the characteristics (exogenous variables) of other spatial entities. This does

not present any challenges for our estimation approach in Section 2 or the modified harmonic

mean method in Section 3, as we can always define a new set of regressors by combining Xt and∑p1
r1=1Wr1Xt, and reformulate the models in terms of this new set.

In the second extension, we consider the time-varying spatial weights matrices versions of our

10



specifications:

Yt =

p1∑
r1=1

λr1Wr1tYt +Xtβ + Cn + αtln + Ut, (4.3)

Yt =

p1∑
r1=1

λr1Wr1tYt + γYt−1 +

p1∑
r1=1

ηr1Wr1,t−1Yt−1 +Xtβ + Cn + αtln + Ut, (4.4)

where Ut =
∑p2

r2=1 ρr2Mr2tUt+Vt. In these specifications, {Wr1t}
p1
r1=1 and {Mr2t}

p2
r2=1 are sequences

of time-varying spatial weights matrices for t = 1, 2, . . . , T . Let St(λ) = In −
∑p1

r1=1 λr1Wr1t,

Rt(ρ) = In −
∑p2

r2=1 ρr2Mr2t, S(λ) = Diag (S1(λ), . . . , ST (λ)), and R(ρ) = Diag (R1(ρ), . . . , RT (ρ)).

In terms of these new notations, the conditional likelihood function of the static model can be

stated as

p(Y |δ, ζ, Cn, α) = (2π)−nT/2(σ2)−nT/2 |S(λ)| |R(ρ)|

× exp

(
−1

2
(Y s − lT ⊗ Cn − α⊗ ln)

′
Ω(ω)(Y s − lT ⊗ Cn − α⊗ ln)

)
, (4.5)

where Y s = S(λ)Y − Xβ and Ω(ω) = R
′
(ρ)R(ρ)/σ2. The corresponding integrated likelihood

function can be determined as

p(Y |δ, ζ) = (2π)−nT/2(σ2)−nT/2 |S(λ)| |R(ρ)| |VF |−1/2 |KF |−1/2 (4.6)

× exp

(
−1

2

(
Y s′Ω(ω)Y s + µ

′
FV
−1
F µF − k

′
FK

−1
F kF

))
,

where KF = B
′
Ω(ω)B + V −1

F and kF = B
′
Ω(ω)Y s + V −1

F µF .

To determine the conditional likelihood function of the dynamic model, let Dt(γ, η) = γIn +∑p1
r1=1 ηr1Wr1t, D(γ, η) = Diag (D1(γ, η), . . . , DT (γ, η)) and Y d = S(λ)Y −D(γ, η)Y−1−Xβ. Then,

the conditional likelihood function can be derived as

p(Y |δ, ζ, Cn, α) = (2π)−nT/2(σ2)−nT/2 |S(λ)| |R(ρ)|

× exp

(
−1

2

(
Y d − lT ⊗ Cn − α⊗ ln

)′
Ω(ω)

(
Y d − lT ⊗ Cn − α⊗ ln

))
. (4.7)

We can use this conditional function to determine the integrated likelihood function of the dynamic

specification as

p(Y |δ, ζ) = (2π)−nT/2(σ2)−nT/2 |S(λ)| |R(ρ)| |VF |−1/2 |KF |−1/2 (4.8)

× exp

(
−1

2

(
Y d′Ω(ω)Y d + µ

′
FV
−1
F µF − k

′
FK

−1
F kF

))
,

where KF = B
′
Ω(ω)B + V −1

F and kF = B
′
Ω(ω)Y d + V −1

F µF . The conditional and integrated

likelihood functions presented in this section then can be used to easily compute the CHME and
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the IHME derived in Section 3.

5 Simulations

In this section, we examine the performance of the IHME and the CHME in a simulation study.

To this end, we are interested in the performance of these estimators in two scenarios: (i) a spatial

weights matrix selection problem, and (ii) a model selection problem between the static specifi-

cation versus the dynamic specification. The first scenario provides examples of the non-nested

model selection while the second provides examples of the nested model selection. We consider the

following specifications for the data generating processes (DGPs):

M1 : Yt = λ1W1Yt +Xtβ + Cn + αtln + Ut, Ut = ρ1M1Ut + Vt,

M2 : Yt = λ1W1Yt + λ2W2Yt +Xtβ + Cn + αtln + Ut, Ut = ρ1M1Ut + Vt,

M3 : Yt = λ1W1Yt + γYt−1 + η1W1Yt−1 +Xtβ + Cn + αtln + Ut, Ut = ρ1M1Ut + Vt,

M4 : Yt = λ1W1Yt + λ2W2Yt + γYt−1 + η1W1Yt−1 + η2W2Yt−1 +Xtβ + Cn + αtln + Ut,

Ut = ρ1M1Ut + Vt,

for t = 1, 2, . . . , T . We consider two explanatory variables Xt = (X1t, X2t), whose elements X1it’s

and X2it’s are drawn independently from N(0, 2). For the parameters, we consider the following

true values: λ1 = 0.3, λ2 = 0.1, γ = 0.3, η1 = −0.1, η2 = −0.1, ρ1 = 0.3, β1 = β2 = 1, and

σ2 = 1. The time fixed effects are drawn independently from the standard normal distribution.

The entity fixed effects are generated as follows: Cn = 0.3X1 + 0.3X2 + ε, where X1 and X2 are

the time-averages of X1t and X2t respectively, and εi’s are drawn independently from N(0, 0.05).

For the spatial weights matrices, we consider rook and queen contiguity cases, and set the sample

size to (n, T ) = (40, 20). We set the length of the MCMC chain to 5000 draws and discard the first

2000 draws as burn-ins.3

Besides the IHME and the CHME, we also consider the performance of the AIC and BIC in our

simulation. The AIC is defined by AIC = −2 ln p(Y |θ̃) + 2P , and the BIC by BIC = −2 ln p(Y |θ̃) +

P ln(NT ), where θ̃ is the maximum likelihood estimator (MLE) of θ. In computing these measures,

we approximate p(Y |θ̃) by taking the maximum of likelihood function over the posterior draws,

i.e., p(Y |θ̃) ≈ max{p(Y |θ1), p(Y |θ2), . . . , p(Y |θR)}. These measures are also formulated with the

integrated likelihood functions given in (3.10) and (3.11).

For the weights matrix selection problem (the non-nested model selection problem), we consider

the following experiment. For a given DGP (out of M1 through M4), we generate 200 samples using

the queen contiguity-based weights matrices. Thus, in this experiment, the correct model is the

one with the queen contiguity-based weights matrices while the misspecified model is the one with

the rook contiguity-based weights matrices. We then use each sample data to estimate the correct

3See Appendix D for the details on the spatial weights matrices and Appendix B on the elicitation of the hyper-
parameters.
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and the misspecified models. Finally, we use the estimation output of each model to estimate the

selection criteria, namely, the IHME, the CHME, the AIC and the BIC.

For the static versus dynamic specification problem (the nested model selection problem), we

consider four experiments. The goal of each experiment is to see whether the selection criteria

can distinguish the true DGP from the misspecified model. In the first experiment, we investigate

the performance of the selection criteria in distinguishing M1 from M3. We generate 200 samples

according to M1 by using the rook contiguity-based weights matrices. We then use each sample

to estimate M1 and M3 and all selection measures. In the second experiment, we repeat the first

experiment for M2 and M4, where the true DGP is M2 with the spatial weights matrices generated

according to the queen contiguity case. In the third experiment, the true model is M3 with the

spatial weights matrices generated according to the queen contiguity case, and the misspecified

model is M1. Finally, in the fourth experiment, the true model is M4 with the spatial weights

matrices generated according to the rook contiguity case, and the misspecified model is M2.

We resort to histogram plots to concisely summarize the simulation results (Chan and Grant,

2016). For the IHME and CHME, we subtract the logarithm of the estimated marginal likelihood

function under the misspecified model from the logarithm of the estimated marginal likelihood

function under the true model. For the AIC and BIC, we subtract the estimates of these measures

under the true model from the estimates obtained under the misspecified model. The differences for

200 samples are then presented in histograms for each experiment. If a selection criterion performs

well, then the majority of its differences should be positive over 200 samples. We also provide

two summary statistics in the legend of histograms: (i) “Pos” shows the percentage of positive

differences, and (ii) “Sd” shows the standard deviation of differences.

Figures 1 through 4 present the results of the weights matrix selection problem. In general, the

IHME presents an excellent performance in choosing the correct model. For example, in Figure 1,

the percentages of the positive differences (Pos) are 100% for all measures. However, the standard

deviation of differences (Sd) for the IHME is 0.962, which is much smaller than that of the CHME

(10.09), AIC (1.946), and BIC (1.946), indicating that the IHME is the most precise among the four

competing selection measures. Similar remarks apply to the results for M2 and M4 in Figures 2

and 4. For the case M3 in Figure 3, the IHME, AIC, and BIC still perform satisfactorily. However,

the percentage of positive differences for the CHME is zero, indicating that the CHME selects the

true weights matrix in none of the 200 samples.

Figures 5 through 8 present the results of the nested model selection problem. In Figure 5, all

four measures select the true model and the IHME has the smallest standard deviation. In Figure

6, similar to the first experiment, all measures have positive differences and the standard deviation

for the IHME is the smallest. In Figure 7, the CHME selects the true model in none of the samples,

but the IHME, AIC and BIC select the true model in all samples. The IHME is again the most

precise estimator. Finally, in Figure 8, all four selection measures perform well in selecting the true

model. The IHME again reports a smaller standard deviation (10.083) than that of the CHME

(15.987).
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Figure 1: Selecting the true weight matrix in M1.

Figure 2: Selecting the true weight matrix in M2.
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Figure 3: Selecting the true weight matrix in M3.

Figure 4: Selecting the true weight matrix in M4.
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Figure 5: Comparing M1 with M3 when the true model is M1.

Figure 6: Comparing M2 with M4 when the true model is M2.
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Figure 7: Comparing M3 with M1 when the true model is M3.

Figure 8: Comparing M4 with M2 when the true model is M4.
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6 An Empirical Illustration

In this section, we provide an empirical illustration using a dataset on house price changes in

the US to flesh out the usefulness of the proposed IHME. The dataset includes observations on

average house prices, population, and income, for 377 Metropolitan Statistical Areas (MSAs) over

the period 1975Q1-2014Q4. This dataset was introduced by Bailey et al. (2016) and later extended

by Yang (2021a), Aquaro et al. (2021) and Bao and Zhou (2023).

Bailey et al. (2016) introduce a two-step approach for the analysis of spatiotemporal data,

where data are defactored in the first step to account for strong cross-sectional dependence and the

defactored data are modeled as a spatial dynamic model in the second step. Their specification

allows for cross-sectional heterogeneity in spatial, temporal and spatio-temporal spillover dynamics.

Their findings indicate evidence for significant positive and negative spillover effects in house price

changes in the US, with larger positive spillover effects in magnitude than the negative spillover

effects. Aquaro et al. (2021) explores cross-sectional heterogeneity in spatial spillover dynamics

in the house price changes using a heterogeneous SAR model for the house price changes in the

US. They find evidence for significant heterogeneity in the spatiotemporal dynamics of the house

price changes. Yang (2021a) introduces a one-step estimation approach for a static panel data

model that allows for strong cross-sectional dependence through common factors as well as weak

cross-sectional dependence through spatial lag terms. Her findings indicate that regional common

shocks contribute to the strong spatial dependence in house price changes in the US and that the

strength of weak spatial dependence might be overestimated if strong dependence is not accounted

for.

Bao and Zhou (2023) consider a spatial dynamic panel data model with cross-sectional hetero-

geneity in spatial and temporal spillover dynamics. For the spatial weights matrix specification,

they consider two cases, a single convexly combined weights matrix from row-normalized weights

matrices, and a high-order specification that treats weights matrices as different channels for spatial

spillovers. They introduce Bayesian estimation methods for these models, and show that the spec-

ifications with both geographical and non-geographical spatial weights matrices are preferred over

the specifications with geographical spatial weights matrices only. Yang et al. (2023) propose the

observed-data deviance information criterion (DIC) based on the integrated likelihood functions for

the static and dynamic spatial panel data models. They find that the dynamic specification for the

house price changes is preferred over the static specification, and the spatial weights matrix with a

radius threshold of 125 miles is preferred over the ones with 75 and 100 miles.

Following this strand of literature on the US house price changes, we use our proposed IHME

in model selection problem between the static and the dynamic spatial panel data specifications,

denoted by E-M1 and E-M3, respectively. We also consider the Durbin counterparts of these

specifications, denoted by E-M1D and E-M3D, respectively. Thus, our model selection exercise is
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based on the following four specifications:

E-M1 : Yt = λWYt +Xtβ + Cn + αtln + Ut,

E-M1D : Yt = λWYt +Xtβ1 +WXtβ2 + Cn + αtln + Ut,

E-M3 : Yt = λWYt + γYt−1 + ηWYt−1 +Xtβ + Cn + αtln + Ut,

E-M3D : Yt = λWYt + γYt−1 + ηWYt−1 +Xtβ1 +WXtβ2 + Cn + αtln + Ut,

where Yt is the percent quarterly rate of change of real house price at period t, and Xt contains

the percent quarterly rate of change of population (gpop) and the percent quarterly rate of change

in real capita income (ginc) at period t. All specifications include entity and time fixed effects. To

keep the discussion concise, we consider a spatial weights matrix that treats two MSAs as neighbors

if these MSAs are located within a threshold distance of 125 miles (Yang et al., 2023).4

We use Algorithms 1 and 2 in Appendix C to estimate these models. In the estimation, the

number of draws is set to 10,000, with the initial 5,000 draws discarded as burn-ins. The trace plots

shown in Appendix E indicate that our suggested Gibbs sampler does not have any convergence

issues. In Table 1, we provide estimated posterior means and standard deviations. We make the

following two important observations. First, from the values of the IHME, the CHME, the AIC

and the BIC in the last panel, the dynamic models E-M3 and E-M3D are preferred over the static

models E-M1 and E-M1D, respectively. This is consistent with the observation that the estimate of

γ capturing the dynamic effect is 0.664, and the estimate of η capturing the spatio-temporal effect

is −0.567. They are large in magnitude and statistically significant. As for the selection between

E-M3 and E-M3D, comparing the values of the four criteria, we observe that the IHME prefers

the Durbin version E-M3D, while the other three criteria prefer E-M3. Note that the coefficient

estimate for the Durbin term W × gpop is statistically significant at 5% level. Thus, we conclude

that there is statistical evidence in favor of the dynamic Durbin specification (E-M3D) over other

specifications.

Second, note that the estimate of λ is 0.748 in E-M1 and 0.796 in E-M3D, and they are statis-

tically significant. Hence, there is evidence of strong contemporaneous spatial dependence in house

price changes. The coefficient estimates of the exogenous variables gpop and ginc are 0.350 and

0.111 in E-M1, and 0.349 and 0.117 in E-M1D, respectively. The corresponding estimates are nearly

the same for these two models. This is consistent with the observation that the coefficient estimates

of the Durbin terms, W × gpop and W × ginc, although significant, are relatively small, 0.043 and

−0.021, respectively. However, when the temporal and spatio-temporal lags are incorporated into

the model, the magnitude of the coefficient estimates for the exogenous variables gpop and ginc

decline significantly. For example, in the case of E-M3, they become 0.142 and 0.051, respectively.

This is consistent with the fact that the estimates for γ capturing the dynamic effect and η cap-

turing the spatio-temporal effect are both large in magnitude and statistically significant. Overall,

our coefficient estimates are consistent with those provided in Yang (2021a) and Yang et al. (2023).

4More specifically, the distance is the geodesic distance using the Haversine formula.
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Table 1: Estimation results for the house price changes in the US

E-M1 E-M1D E-M3 E-M3D

gpop 0.350*** 0.349*** 0.142*** 0.140***
(.009) (.009) (.007) (.007)

ginc 0.111*** 0.117*** 0.051*** 0.053***
(.004) (.004) (.003) (.003)

W × gpop 0.043** 0.030**
(.018) (.013)

W × ginc −0.021*** −0.006
(.006) (.005)

λ 0.748*** 0.748*** 0.796*** 0.796***
(.002) (.003) (.002) (.002)

γ 0.664*** 0.664***
(.003) (.003)

η −0.567*** −0.567***
(.004) (.004)

σ2 0.891*** 0.891*** 0.473*** 0.473***
(.005) (.005) (.003) (.003)

IHME −133399.87 −133421.21 −131113.01 −131104.50
CHME −94105.47 −94685.20 −74656.74 −76149.53
AIC 268366.93 268365.66 263685.73 263697.66
BIC 270490.35 270496.94 265813.08 265832.87

Significance levels: ∗: 10%, ∗∗: 5%, and ∗∗∗: 1%.
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7 Conclusion

In this paper, we proposed the IHME for the nested and non-nested model selection exercises for

spatial panel data models that have high-order spatial dependence in the dependent variable and

the disturbance terms. This estimator is based on the integrated likelihood functions obtained by

analytically integrating out the high-dimensional fixed effects from the complete likelihood func-

tions. We showed that the CHME formulated with the conditional likelihood function can perform

poorly because the high-dimensional fixed effects cannot be estimated precisely. The results from

our simulation exercises showed that the IHME had an excellent performance and outperformed

the competing estimators in terms of precision. In an empirical illustration on the US house price

changes, we showed how the IHME can be utilized in model selection exercises for choosing the

model that yields relatively larger marginal likelihood. In future studies, our approach can be

considered for static and dynamic spatial panel data models that have interactive fixed effects.
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Appendix

A Abbreviations

In this section, we provide frequently used abbreviations in the main text.

MLE Maximum Likelihood Estimator

LM Lagrange Multiplier

IV Instrumental Variable

GMM Generalized Method of Moments

AM Adaptive Metropolis

IHME Integrated Modified Harmonic Mean Estimator

CHME Conditional Modified Harmonic Mean Estimator

DGP Data-Generating Process

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

DIC Deviance Information Criterion

BFij Bayes Factor of Mi against Mj

B Prior Distributions

In this section, we specify the prior distributions (Han and Lee, 2016; Han et al., 2017; Yang et al.,

2023). Recall that:

λr1 ∼ U(−1, 1), ηr1 ∼ U(−1, 1), r1 = 1, 2, . . . , p1, ρr2 ∼ U(−1, 1), r2 = 1, 2, . . . , p2,

γ ∼ U(−1, 1), β ∼ N(µβ, Vβ), σ2 ∼ IG(a0, b0),

Cn ∼ N(µc, Vc), αt ∼ N(µα, Vα), t = 1, . . . , T.

In our simulation study, we choose the following values for the hyper-parameters: µβ = 0k×1,

Vβ = 10Ik, a0 = 0.01 and b0 = 0.01, µc = 0n×1, Vc = 10In, µα = 0 and Vα = 10.

C Estimation Algorithms

In this section, we provide estimation algorithms for our main specifications. In the case of the

static model, let δ = (β
′
, σ2)

′
, and ζ = (λ

′
, ρ
′
)
′

be the (p1 + p2)× 1 vector of spatial parameters. In

the case of the dynamic model, let ζ = (λ
′
, ρ
′
, γ, η

′
)
′

be the (2p1 + p2 + 1)× 1 vector of parameters.

Algorithm 1 (Estimation Algorithm for the static model in (2.1)).

1. Sampling step for Cn: Let Y c
t = S(λ)Yt −Xtβ − αtln for t = 1, 2, . . . , T . Then,

Cn|Y, δ, ζ, α ∼ N(µ̂c, V̂ c), (C.1)
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where V̂ c =
(
V −1
c + TΩ(ω)

)−1
, µ̂c = V̂ c

(
V −1
c µc + Ω(ω)

∑T
t=1 Y

c
t

)
, and Ω(ω) =

R
′
(ρ)R(ρ)/σ2.

2. Sampling step for α: Let Y α
t = S(λ)Yt −Xtβ − Cn for t = 1, 2, . . . , T . Then,

αt|Y, δ, ζ, Cn, α−t ∼ N(µ̂αt
, V̂ αt), t = 2, . . . , T,

where V̂ αt =
(
V −1
α + l

′
nΩ(ω)ln

)−1
, µ̂αt

= V̂ αt

(
V −1
α µα + l

′
nΩ(ω)Y α

t

)
, and Ω(ω) =

R
′
(ρ)R(ρ)/σ2.

3. Sampling step for β: Let Y β
t = S(λ)Yt − Cn − αtln for t = 1, 2, . . . , T . Then,

β|Y, %, σ2, ζ, Cn, α ∼ N(µ̂β, V̂ β),

where V̂ β =
(
V −1
β +

∑T
t=1X

′
tΩ(ω)Xt

)−1
, µ̂β = V̂ β

(
V −1
β µβ +

∑T
t=1X

′
tΩ(ω)Y β

t

)
, and

Ω(ω) = R
′
(ρ)R(ρ)/σ2.

4. Sampling step for σ2:

σ2|Y, β, %, ζ, Cn, α ∼ IG (a, b) , (C.2)

where a = a0 + nT/2, b = b0 + 1
2

∑T
t=1

(
Y β
t −Xtβ

)′ (
σ2Ω(ω)

) (
Y β
t −Xtβ

)
, and Ω(ω) =

R
′
(ρ)R(ρ)/σ2.

5. Sampling step for ζ: Use Algorithm 3 to sample ζ.

Algorithm 2 (Estimation Algorithm for the dynamic model in (2.2)).

1. Sampling step for Cn: Let Y c
t = S(λ)Yt−D(γ, η)Yt−1−Xtβ −αtln for t = 1, 2, . . . , T . Then,

Cn|Y, δ, ζ, α ∼ N(µ̂c, V̂ c), (C.3)

where V̂ c =
(
V −1
c + TΩ(ω)

)−1
, µ̂c = V̂ c

(
V −1
c µc + Ω(ω)

∑T
t=1 Y

c
t

)
, and Ω(ω) =

R
′
(ρ)R(ρ)/σ2.

2. Sampling step for α: Let Y α
t = S(λ)Yt −D(γ, η)Yt−1 −Xtβ − Cn for t = 1, 2, . . . , T . Then,

αt|Y, δ, ζ, Cn, α−t ∼ N(µ̂α, V̂ α), t = 2, . . . , T,

where V̂ α =
(
V −1
α + l

′
nΩ(ω)ln

)−1
, µ̂α = V̂ α

(
V −1
α µα + l

′
nΩ(ω)Y α

t

)
, and Ω(ω) =

R
′
(ρ)R(ρ)/σ2.
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3. Sampling step for β: Let Y β
t = S(λ)Yt −D(γ, η)Yt−1 − Cn − αtln for t = 1, 2, . . . , T . Then,

β|Y, σ2, ζ, Cn, α ∼ N(µ̂β, V̂ β),

where V̂ β =
(
V −1
β +

∑T
t=1X

′
tΩ(ω)Xt

)−1
, µ̂β = V̂ β

(
V −1
β µβ +

∑T
t=1X

′
tΩ(ω)Y β

t

)
, and

Ω(ω) = R
′
(ρ)R(ρ)/σ2.

4. Sampling step for σ2:

σ2|Y, β, ζ, Cn, α ∼ IG (a, b) , (C.4)

where a = a0 + nT/2, b = b0 + 1
2

∑T
t=1

(
Y β
t −Xtβ

)′ (
σ2Ω(ω)

) (
Y β
t −Xtβ

)
, and Ω(ω) =

R
′
(ρ)R(ρ)/σ2.

5. Sampling step for ζ: Use Algorithm 3 to sample ζ.

Algorithm 3 (The AM Algorithm for ζ). Let a(g) be the posterior draw generated at the gth

iteration, where a ∈ {ζ, δ, Cn, α}. Then, the AM algorithm consists of the following steps.

1. Draw a candidate ζ̃ as follows: At the iteration g for g = 1, 2, . . . , G,

(a) if g ≤ 2p, propose ζ̃ ∼ N
(
ζ(g−1), (0.1)2

p × Ip
)

, where p = p1 + p2 for the static specifica-

tion and p = 2p1 + p2 + 1 for the dynamic specification,

(b) if g > 2p, propose ζ̃ ∼ 0.95 × N
(
ζ(g−1), κ (2.38)2

p × Cov
(
ζ(0), . . . , ζ(g−1)

))
+ 0.05 ×

N
(
ζ(g−1), (0.1)2

p × Ip
)

.

2. Check whether ζ̃ satisfies the stability conditions in Section 2. If not, draw a new candidate

ζ̃ until it meets the stability conditions.

3. Set the acceptance probability to

Pr(ζ(g−1), ζ̃) = min

(
p(Y |ζ̃, δ(g−1), C

(g−1)
n , α(g−1))

p(Y |ζ(g−1), δ(g−1), C
(g−1)
n , α(g−1))

, 1

)
.

Then, return ζ̃ with probability Pr(ζ(g−1), ζ̃); otherwise return ζ(g−1).

D Spatial Weights Matrices

In this section, we describe how we create the spatial weight matrices based on the rook and queen

contiguity used in the Monte Carlo simulation. We first generate a vector containing a random

permutation of the integers from 1 to n without repeating elements. Then, we reshape this vector

into an k ×m rectangular lattice, where m = n/k. In the case of rook contiguity, we set wij = 1 if

the j-th observation is adjacent (left/right/above or below) to the i-th observation on the lattice.
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In the case of queen contiguity, we set wij = 1 if the j-th observation is adjacent to or shares a

border with the i-th observation. We set k = 10, and row-normalize all spatial weights matrices.

E Trace Plots for the Empirical Illustration

In this section, we provide the trace plots of the four models in the empirical illustration to investi-

gate the convergence properties of the our samplers. Figure E.1 contains the trace plots for E-M1,

Figure E.2 for E-M1D, Figure E.3 for E-M3 and Figure E.4 for E-M3D. These trace plots indicate

that there are no converge issues.
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Figure E.1: Trace plots for E-M1 in the empirical illustration
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Figure E.2: Trace plots for E-M1D in the empirical illustration
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Figure E.3: Trace plots for E-M3 in the empirical illustration
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Figure E.4: Trace plots for E-M3D in the empirical illustration
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