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Abstract

In this study, we suggest using information criteria for nested and non-nested model selection
problems for the matrix exponential spatial specifications (MESS) under both homoskedasticity
and heteroskedasticity. To this end, we consider the deviance information criterion, the Akaike
information criterion and the Bayesian information criterion in a Bayesian setting. In the het-
eroskedastic case, we assume that the error terms have a scale mixture of normal distributions,
where the scale mixture variables are latent variables that lead to different distributions. We
demonstrate how the integrated likelihood function can be obtained analytically by integrating
out the scale mixture variables from the complete-data likelihood function, and how this inte-
grated likelihood function can be used to formulate the information criteria. We investigate the
finite sample performance of these criteria in selecting the true model in a simulation study. The
results show that these criteria perform satisfactorily and can be useful for selecting the correct
model in specification search exercises. Finally, we apply the proposed information criteria to
a spatially augmented growth model and a carbon emission model to show their usefulness for
both nested and non-nested model selection problems.
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1 Introduction

The matrix exponential spatial specification (MESS) offers a convenient way of modeling weak

cross-sectional dependence in a variable of interest through a matrix exponential term. As the

name suggests, it implies an exponential rate of decay for the cross-sectional dependence among

spatial units. An attractive property of the MESS-type models is that the matrix exponential

terms are always invertible. Therefore, the reduced forms for these models always exist, and there

are no restrictions on the parameter space of spatial parameters. Moreover, the likelihood based

estimation of these models has the computational advantage over the estimation of popular spatial

autoregressive (SAR) models since the likelihood functions of MESS-type models are free of any

Jacobian terms. See Debarsy et al. (2015), Han and Lee (2013), LeSage and Pace (2007), and Yang

et al. (2021, 2022) for further properties of the MESS-type models.

The spatial weights matrices in the MESS-type models specify spatial relationships among spa-

tial units over the relevant space. The elements of these matrices can be determined in various

ways depending on the nature of interaction among the spatial units. In the literature, the geo-

graphic information-based matrices such as such as contiguity-based (sharing a common border) or

distance-based matrices, including nearest neighbor distance-based matrices, are widely used be-

cause these types of weights matrices are “exogenous”. See Anselin (1988) and Getis and Aldstadt

(2004) for some examples of spatial weights matrices created from location information. Alterna-

tively, some notions of economic distance between spatial units can be employed to specify the

elements of the weights matrices. These types of spatial weights matrices are usually time-varying,

and can also be “endogenous”. For some examples, among others, see Behrens et al. (2012), Brueck-

ner (1998), Brueckner and Saavedra (2001), Case et al. (1993), Conley and Ligon (2002), Conley

and Topa (2002), and Parent and LeSage (2008). In some studies, it is assumed that the elements

of a weights matrix are generated through an auxiliary equation that depends on some underlying

economic variables, e.g., see Qu and Lee (2015), Han and Lee (2016), and Qu et al. (2017). In

some recent papers, regularized estimation strategies are suggested to estimate the elements of the

spatial weights matrices (Ahrens and Bhattacharjee, 2015; Lam and Souza, 2020; Merk and Otto,

2022).

In this paper, we consider model selection problems for the MESS-type models and suggest var-

ious information criteria for these problems. When using a MESS-type model, applied researchers

commonly encounter two specification problems: (i) how to choose a spatial weights matrix from a

pool of candidates, which constitutes a non-nested model selection problem, and (ii) how to choose

between nested or non-nested alternative model specifications. Often, it is the case that the model

is specified in an ad-hoc manner and there is no guidance from an underlying structural model to

address these issues. Our focus in this paper is to address these model specification problems for

the MESS-type models with both homoskedastic and heteroskedastic error terms.

In the literature, Anselin (1984a,b, 1988) consider several econometric approaches, including

the Cox test and the J-test, for the model selection exercises. The J-test is widely used for testing

a null model against a non-nested alternative model (Davidson and MacKinnon, 1981; MacKinnon
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et al., 1983). This test simply tests whether predictors from the non-nested alternative model can

be statistically significant regressors in the null-model. Kelejian (2008) and Kelejian and Piras

(2011) formally extend the J-test approach to a spatial setting and demonstrate how it can be used

to test a null spatial model that has spatial lags in the outcome variable and the error term (for

short SARAR(1,1)) against a set of alternative non-nested models. Burridge and Fingleton (2010)

show that a bootstrap version of J-test performs better than the asymptotic version suggested

in Kelejian (2008). Han and Lee (2013) use the J-test procedure and its bootstrap versions for

the non-nested model selection problem between the SAR and MESS models in two-stage least

squares and generalized method of moments frameworks. Jin and Lee (2013) consider the Cox-

type and J-type tests as well as their bootstrap versions for testing the null SARAR(1,1) model

against another SARAR(1,1) model with different spatial weights matrices. Liu and Lee (2019)

develop a non-degenerate likelihood-ratio test for model selection between the SARAR(1,1) model

and the MESS that has spatial dependence in the outcome variable and the error term (for short

MESS(1,1)).

In this paper, instead of employing a testing approach, we explore various information crite-

ria for model selection problems for the MESS-type models. More specifically, we consider the

deviance information criterion (DIC) (Spiegelhalter et al., 2002), the Akaike information crite-

rion (AIC) (Akaike, 1973), and the Bayesian information criterion (BIC) (Schwarz, 1978) for the

model selection problems. From a decision-theoretic perspective, the AIC and various forms of DIC

provide the asymptotically unbiased estimator of the expected Kullback-Leibler (KL) divergence

between the true data generating process (DGP) and a suitable plug-in predictive distribution of

hypothetically replicate data (Burnham and Anderson, 2002; Li et al., 2020). Thus, these measures

select the candidate model that yields a better predictive performance, i.e., the smaller the value of

these measures, the better the predictive performance of the candidate model. On the other hand,

the BIC is based on a large sample approximation to the log-marginal likelihood and, therefore,

selects the model that best explains the observed data.

In a Bayesian estimation framework, we consider these information criteria under both ho-

moskedastic and heteroskedastic error terms. In the case of heteroskedasticity, we assume that

the error terms follow a scale mixture of normal distributions, where the latent variables generate

different distributions with distinct variance terms. Although this latent variable representation

facilitates the estimation through the data augmentation techniques (Geweke, 1993), the readily

available conditional likelihood function (i.e., the likelihood function obtained by conditioning on

the latent variables) cannot be used to formulate the information criteria, as these functions under-

mine the theoretical requirements for the validity of criteria. See Li et al. (2020) for the theoretical

evidence, and Chan and Grant (2016a,b) and Millar (2009) for the simulation evidence. In the

latent variable models, these criteria should be formulated with the integrated likelihood function

obtained by integrating out the latent variables from the complete-data likelihood function (i.e.,

the joint likelihood functions of data and latent variables). Notably, for the MESS-type models, we

show how the integrated likelihood functions can be obtained analytically by integrating out the
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scale mixture variables from the complete-data likelihood functions.

In an extensive simulation study, we investigate the performance of the suggested information

criteria in selecting the true model. Our results show that these criteria can be useful for both

nested and non-nested model selection problems for the MESS-type models. We use two empirical

illustrations to demonstrate how to use these criteria. In the first illustration, we consider the

MESS version of the spatially augmented growth model suggested by Ertur and Koch (2007) under

both homoskedastic and heteroskedastic error terms. We use the information criteria to select a

spatial weights matrix that leads to a better fit to the sample data. In the second application, we

consider a model of carbon emissions to investigate the relationship between carbon emissions and

economic activity in the United States. Following the related literature (Aldy, 2005; Auffhammer

and Steinhauser, 2007; Burnett and Madariaga, 2017; Burnett et al., 2013; Spinoni et al., 2018),

we consider the spatial extensions of the reduced-form energy demand, and use the information

criteria to a select a suitable spatial specification. Our results show that a spatial Durbin version

of the MESS model can provide a relatively better fit to our sample data.

The rest of the paper is organized as follows. In Section 2, we provide the details of the specifi-

cations under consideration and discuss the derivation of the likelihood functions. In Section 3, we

suggest two Gibbs samplers for the estimation of our model under homoskedastic and heteroskedas-

tic error terms. In Section 4, we show how the AIC, BIC and DICs can be formulated in the context

of the MESS-type models. We also demonstrate the relationships among these information crite-

ria. In Section 5, we investigate the performance of these information criteria in selecting the true

model through an extensive simulation study. In Section 6, we show how to apply the information

criteria to a spatially augmented growth model and a carbon emission model. In Section 7, we offer

concluding remarks. Some additional simulation results are presented in a web appendix.

2 Model Specifications and the Likelihood Functions

The MESS-type models account for weak cross-sectional/spatial dependence using matrix expo-

nential terms. The MESS(1,1) is given by

eλWY = Xβ + U, eρMU = V, (2.1)

where Y = (y1, . . . , yn) is the n × 1 vector of an outcome variable, X is the n × k matrix of

exogenous variables with the associated parameter vector β, U = (u1, . . . , un)
′

is the n × 1 vector

of regression error terms, and V = (v1, . . . , vn)
′

is the n × 1 vector of idiosyncratic error terms.

The cross-sectional dependence in (2.1) is modeled through the matrix exponential terms eλW and

eρM , where W and M are the n × n spatial weights matrices, and λ and ρ are the scalar spatial

parameters. The n × n weights matrices W and M specify the relative weight of links between

cross-sectional units and they have zero diagonal elements.

The matrix exponential terms eλW and eρM in (2.1) are defined as eλW =
∑∞

i=0(λW )i/i! and

eρM =
∑∞

i=0(ρM)i/i!, and are always invertible with the inverses e−λW and e−ρM (Chiu et al.,
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1996). Thus, the reduced form of (2.1) always exists and is given by Y = e−λWXβ+ e−λW e−ρMV .

This is in contrast to the spatial autoregressive type (SAR-type) models, because the reduced form

for the SAR-type models exists under certain restrictions imposed on the parameter space of the

spatial parameters.1

We consider both homoskedastic and heteroskedastic idiosyncratic error tems. In the ho-

moskedastic case, we assume that V ∼ N(0, σ2In), where σ2 is the unknown variance term and

In is the n× n identity matrix. Then, (2.1) implies Y ∼ N
(
e−λWXβ, σ2e−λW e−ρMe−ρM

′
e−λW

′)
.

Thus, the log-likelihood function of the model can be expressed as

ln p(Y |θ) = −n
2

ln(2π)− n

2
lnσ2 − 1

2σ2

(
eλWY −Xβ

)′
eρM

′
eρM (eλWY −Xβ), (2.2)

where θ = (λ, ρ, β
′
, σ2)

′
. Note that the log-likelihood function does not involve any log-Jacobian

terms since ln
(
|eλW |

)
= ln

(
eλtr(W )

)
= ln(1) = 0, and ln

(
|eρM |

)
= ln

(
eρtr(M)

)
= ln(1) = 0, where

| · | and tr(·) denote the determinant and the trace operators, respectively.

In the heteroskedastic case, following Geweke (1993), we assume a scale mixture of Gaussian

distributions for the elements of V : vi|ηi ∼ N(0, ηiσ
2), where ηi’s are independent scale mixture

variables. We assume that these scale mixture components are independently identically distributed

with ηi ∼ IG(ν/2, ν/2) for i = 1, . . . , n, where IG denotes the inverse gamma distribution and ν is

an unknown scalar parameter. Under this setting, the marginal distribution of vi can be obtained

in the following way:2

p(vi) =

∫ ∞
0

p(vi, ηi)dηi =

∫ ∞
0

(2πηiσ
2)−1/2e

− v2i
2ηiσ

2 × (ν/2)ν/2

Γ(ν/2)
η
−(ν/2+1)
i e−ν/2ηidηi

=
(ν/2)ν/2√

2πσ2Γ(ν/2)

∫ ∞
0

η
−( ν+1

2
+1)

i e
− ν

2ηi

(
1+

v2i
νσ2

)
dηi. (2.3)

The integrand in the last equation is the kernel of IG(α1, α2), where α1 = (ν + 1)/2 and α2 =

ν
(
1 + v2

i /νσ
2
)
/2. Thus,

p(vi) =
(ν/2)ν/2√

2πσ2Γ(ν/2)
Γ((ν + 1)/2)

(ν
2

)−(ν+1)/2
(

1 +
v2
i

νσ2

)−(ν+1)/2

=
Γ((ν + 1)/2)√
νπσ2Γ(ν/2)

(
1 +

v2
i

νσ2

)−(ν+1)/2

, (2.4)

which is the density of tν(0, σ2), where tν(0, σ2) is the t distribution with location 0, scale parameter

σ2, and ν degrees of freedom.

Let η = (η1, . . . , ηn)
′

and θ = (λ, ρ, β
′
, σ2, ν)

′
. In the heteroskedastic case, the scale mixture of

1See Elhorst (2014), Kelejian and Prucha (2010), Lee (2004), and LeSage and Pace (2009) on the parameter space
of spatial parameters. For example, the reduced form of the SAR model Y = λWY + Xβ + U exists under the
assumption that %(λW ) < 1, where %(·) denotes the spectral radius, and is given as Y = S−1(λ)Xβ + S−1(λ)U ,
where S(λ) = (In − λW ), and In is the n× n identity matrix.

2To denote the relevant density functions, we use p(·) and omit X in the conditional sets for the sake of simplicity.
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Gaussian distributions representation allows us to consider three types of likelihood functions: (i)

the conditional likelihood function denoted by p(Y |θ, η), (ii) the complete-data likelihood function

denoted by p(Y, η|θ), and (iii) the integrated (or observed) likelihood function denoted by p(Y |θ) =∫
p(Y, η|θ)dη. The log-conditional likelihood function is readily available and given by

ln p(Y |θ, η) = −n
2

ln(2π)− n

2
lnσ2 − 1

2

n∑
i=1

ln ηi (2.5)

− 1

2σ2

(
eλWY −Xβ

)′
eρM

′
H−1(η)eρM

(
eλWY −Xβ

)
,

where H(η) = Diag (η1, . . . , ηn) is the n × n diagonal matrix with the ith diagonal element ηi.

As shown in Algorithm 2 of Section 3, this conditional likelihood function facilitates the MCMC

estimation of our model through a data augmentation scheme.

The log-integrated likelihood function can be obtained by analytically integrating out the scale

mixture variables η from the complete-data likelihood function, i.e., p(Y |θ) =
∫
p(Y, η|θ)dη =∫

p(Y |η, θ)p(η|θ)dη. The following proposition gives the analytical expression for this function.

Proposition 1. Let Y (δ) = eρM
(
eλWY −Xβ

)
, where δ = (λ, ρ, β

′
)
′
. Then,

ln p(Y |θ) = −n
2

ln(2π)− n

2
lnσ2 +

nν

2
ln(ν/2)

+ n ln Γ

(
ν + 1

2

)
− n ln Γ(ν/2)− ν + 1

2

n∑
i=1

ln

(
ν

2
+
y2
i (δ)

2σ2

)
,

where yi(δ) is the ith element of Y (δ).

Proof. See Appendix A.

In Section 4, we will show that this integrated likelihood function is essential for the formulation

of the information criteria for the heteroskedastic model.

3 A Bayesian Estimation Approach

In this section, we suggest Gibbs samplers for the Bayesian estimation of (2.1) under both ho-

moskedasticity and heteroskedasticity. We assume the following prior distributions: λ ∼ N(µλ, Vλ),

ρ ∼ N(µρ, Vρ), β ∼ N(µβ, Vβ), σ2 ∼ IG(a, b), and ν ∼ Uniform(2, ν), where IG denotes the inverse-

gamma distribution and Uniform(a, b) denotes the uniform distribution over (a, b). As shown in

(2.4), the marginal distribution of vi is a t distribution with mean zero, scale parameter σ2 and ν

degrees of freedom, i.e., vi ∼ tν(0, σ2). Thus, by choosing ν ∼ Uniform(2, ν) for ν, we ensure that

the variance of vi exists. We set ν = 50 so that the t distribution can approximate the normal

distribution well-enough. In our simulation, we consider the following values for the remaining

hyperparameters: µβ = 0, Vβ = 10Ik, µλ = µρ = 0, Vλ = Vρ = 10, a = 0.01 and b = 0.01.
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Under these prior distributions, the posterior distribution of parameters in the homoskedastic

case is given by

p(θ|Y ) ∝ p(Y |θ)p(θ) = p(Y |θ)p(β)p(σ2)p(λ)p(ρ), (3.1)

where p(θ) is the joint prior distribution of θ. To generate random draws from p(θ|Y ), we suggest

the Gibbs sampler presented in Algorithm 1.

Algorithm 1 (Estimation of (2.1) under homoskedasticity).

1. Sampling step for β:

β|Y, λ, ρ, σ2 ∼ N(β̂,Kβ), (3.2)

where Kβ = (V −1
β + σ−2X

′
eρM

′
eρMX)−1 and β̂ = Kβ(σ−2X

′
eρM

′
eρMeλWY + V −1

β µβ).

2. Sampling step for σ2:

σ2|Y, λ, ρ, β ∼ IG(σ̂2,Kσ2), (3.3)

where σ̂2 = a+ n
2 and Kσ2 = b+ 1

2(eλWY −Xβ)
′
eρM

′
eρM (eλWY −Xβ).

3. Sampling step for λ:

p(λ|Y, β, ρ, σ2) (3.4)

∝ exp

(
−1

2

(
σ−2(eλW y −Xβ)

′
eρM

′
eρM (eλWY −Xβ) + V −1

λ (λ2 − 2µλλ)
))

,

which is a non-standard distribution. We use the random-walk Metropolis-Hastings algorithm

suggested in LeSage and Pace (2009). We generate a candidate value λnew is according to

λnew = λold + cλ ×N(0, 1), (3.5)

where cλ is a tuning parameter.3 Then, we accept the candidate value λnew with probability

P(λnew, λold) = min

(
1,
p(λnew|Y, β, σ2, ρ)

p(λold|Y, β, σ2, ρ)

)
. (3.6)

4. Sampling step for ρ:

p(ρ|Y, β, λ, σ2) (3.7)

∝ exp

(
−1

2

(
σ−2(eλW y −Xβ)

′
eρM

′
eρM (eλWY −Xβ) + V −1

ρ (ρ2 − 2µρρ)
))

.

3The tuning parameter is determined during the estimation such that the acceptance rate falls between 40% and
60%.
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We use the random-walk Metropolis-Hastings algorithm described in Step 3 to generate random

draws from p(ρ|Y, β, λ, σ2).

In Algorithm 1, the conditional posterior distributions of β and σ2 are obtained respectively

from p(β|Y, λ, ρ, σ2) ∝ p(Y |θ)p(β) and p(σ2|Y, λ, ρ, β) ∝ p(Y |θ)p(σ2), where p(Y |θ) is the likelihood

function, p(β) and p(σ2) are the prior distributions. Then, using an analogous analysis to that of the

standard Bayesian analysis for a linear regression model, we obtain β|Y, λ, ρ, σ2, η ∼ N(β̂,Kβ) and

σ2|Y, λ, ρ, β, η ∼ IG(σ̂2,Kσ2). On the other hand, the conditional posterior distributions of spatial

parameters take unknown forms as shown in Steps 3 and 4 of Algorithm 1. We use the random

walk Metropolis-Hastings algorithm suggested LeSage and Pace (2009) to generate random draws

for these parameters.

In the heteroskedastic case, the posterior distribution of parameters takes the following form:

p(θ, η|Y ) ∝ p(Y |θ, η)p(θ, η) = p(Y |θ, η)p(β)p(σ2)p(λ)p(ρ)p(η|ν)p(ν), (3.8)

where p(Y |θ, η) is the conditional likelihood function and p(θ, η) is the joint prior distribution of

θ and η. Algorithm 2 presents a Gibbs sampler that can be used to generate random draws from

p(θ, η|Y ).

Algorithm 2 (Estimation of (2.1) under heteroskedasticity).

1. Sampling step for β:

β|Y, λ, ρ, σ2, η ∼ N(β̂,Kβ), (3.9)

where Kβ = (V −1
β +σ−2X

′
eρM

′
H−1(η)eρMX)−1 and β̂ = Kβ(σ−2X

′
eρM

′
H−1(η)eρMeλWY +

V −1
β µβ).

2. Sampling step for σ2:

σ2|Y, λ, ρ, β, η ∼ IG(σ̂2,Kσ2), (3.10)

where σ̂2 = a+ n
2 and Kσ2 = b+ 1

2(eλWY −Xβ)
′
eρM

′
H−1(η)eρM (eλWY −Xβ).

3. Sampling step for λ:

p(λ|Y, β, ρ, σ2, η) (3.11)

∝ exp

(
−1

2

(
σ−2(eλW y −Xβ)

′
eρM

′
H−1(η)eρM (eλWY −Xβ) + V −1

λ (λ2 − 2µλλ)
))

,

which is a non-standard distribution. We use the random-walk Metropolis-Hastings algorithm

described in Step 3 of Algorithm 1 to sample this parameter.
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4. Sampling step for ρ:

p(ρ|Y, β, λ, σ2, η) (3.12)

∝ exp

(
−1

2

(
σ−2(eλW y −Xβ)

′
eρM

′
eρM (eλWY −Xβ) + V −1

ρ (ρ2 − 2µρρ)
))

.

We use the random-walk Metropolis-Hastings algorithm described in Step 3 of Algorithm 1 to

generate random draws from p(ρ|Y, β, λ, σ2, η).

5. Sampling step for η:

ηi|Y, λ, ρ, β, σ2, ν ∼ IG

(
ν + 1

2
,
ν

2
+
y2
i (δ)

2σ2

)
for i = 1, 2, . . . , n, (3.13)

where yi(δ) is the ith element of Y (δ).

6. Sampling step for ν:

p(ν|η) ∝ (ν/2)nν/2

Γn(ν/2)

(
n∏
i=1

ηi

)−( ν
2

+1)

exp

(
−

n∑
i=1

ν

2ηi

)
, (3.14)

which is a non-standard density function. We use a Griddy-Gibbs sampler to sample this

parameter.

In Algorithm 2, the conditional posterior distributions of β and σ2 are obtained respectively

from p(β|Y, λ, ρ, σ2, η) ∝ p(Y |θ, η)p(β) and p(σ2|Y, λ, ρ, β, η) ∝ p(Y |θ, η)p(σ2), where p(Y |θ, η) is

the conditional likelihood function. An analysis analogous to the one used in the case of Algorithm 1

yields the conditional posterior distributions of these parameters. As in the homoskedastic case,

the conditional posterior distributions of spatial parameters take unknown forms as shown in Steps

3 and 4. We resort the random walk Metropolis-Hastings algorithm suggested LeSage and Pace

(2009) to generate random draws for these parameters. In Algorithm 2, we have additional blocks

for η and ν. Since the elements of η are i.i.d, we have

p(η|Y, λ, ρ, β, σ2, ν) ∝ p(Y |θ, η)p(η|ν)

∝
n∏
i=1

η
−( ν+1

2
+1)

i exp

(
− 1

ηi

(
ν

2
+
y2
i (δ)

2σ2

))
,

which suggests that ηi|Y, λ, ρ, β, σ2, ν ∼ IG
(
ν+1

2 , ν2 +
y2i (δ)

2σ2

)
for i = 1, 2, . . . , n. Finally, the condi-

tional posterior distribution of ν is p(ν|Y, λ, ρ, β, η) = p(ν|η) ∝ p(η|ν)p(ν), which does not take a

known form. Since this parameter has a support over (2, v), we use the simulation method called

the Gridy-Gibbs sampler (Ritter and Tanner, 1992) to generate draws from p(ν|η).
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4 Information Criteria for Model Selection

The information criteria can be considered as measures of predictive accuracy, and are typically

defined based on the deviance term −2 ln p(Y |θ) (Gelman et al., 2003). The popular information

criterion AIC is defined by

AIC = −2 ln p(Y |θ̂) + 2P, (4.1)

where θ̂ is the maximum likelihood estimator (MLE) of θ and P is the dimension of θ. Using

a decision-theoretic perspective, we can show that the AIC chooses the model whose predictive

distribution is close to the true DGP. Let g(Y ) be the DGP, and Yrep = (y1,rep, . . . , yn,rep)
′

be

the n × 1 vector of replicate data generated from g(Y ) independently from the observed data

Y . Consider the Kullback-Leibler (KL) divergence between g(Yrep) and the generic predictive

distribution p(Yrep|Y ):

KL (g(Yrep), p(Yrep|Y )) = EYrep
(

ln
g(Yrep)

p(Yrep|Y )

)
=

∫ (
ln

g(Yrep)

p(Yrep|Y )

)
g(Yrep)dYrep

=

∫
ln g(Yrep)g(Yrep)dYrep −

∫
ln p(Yrep|Y )g(Yrep)dYrep

= c−
∫

ln p(Yrep|Y )g(Yrep)dYrep, (4.2)

where the expectation EYrep is with respect to g(Yrep), and c =
∫

ln g(Yrep)g(Yrep)dYrep, which

is constant across candidate models. In (4.2), if we replace the generic predictive distribution

p(Yrep|Y ) with the plug-in predictive distribution p(Yrep|θ̂), then it can be shown that (Burnham

and Anderson, 2002; Li et al., 2020)

EY
(

2×KL
(
g(Yrep), p(Yrep|θ̂)

))
= 2c+ EY

(∫
−2 ln p(Yrep|θ̂)g(Yrep)dYrep

)
= 2c+ EY

(
−2 ln p(Yrep|θ̂) + 2P

)
+ o(1)

= 2c+ EY (AIC) + o(1), (4.3)

where the expectation EY is with respect to g(Y ). Thus, the AIC measure is an asymptotically

unbiased estimator of EY
(

2×KL
(
g(Yrep), p(Yrep|θ̂)

))
− 2c. This theoretical result indicates that

a model with a smaller AIC value will perform better in terms of predictive performance.

Next, we consider the DIC measure suggested by Spiegelhalter et al. (2002). The Bayesian

deviance term, as defined in Spiegelhalter et al. (2002), is given by D(θ) = −2 ln p(Y |θ)+2 ln f(Y ),

where f(Y ) is a standardizing term that depends solely on the data. Following Berg et al. (2004),

we set f(Y ) = 1 for the model comparison exercises. Then, the DIC suggested by Spiegelhalter

et al. (2002) is defined by

DIC = D(θ) + PD, (4.4)
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where D(θ) = −2E (ln p(Y |θ)|Y ) = −2
∫

ln p(Y |θ)p(θ|Y )dθ is the posterior mean deviance and

serves as a Bayesian measure of model fit. The second term PD is the difference between the

posterior mean deviance and the deviance at the estimated parameters,

PD = D(θ)−D(θ) = −2E (ln p(Y |θ)|Y ) + 2 ln p(Y |θ), (4.5)

where θ is the posterior mean.4 PD is used as a measure of the effective number of parameters in

the model, i.e. it is a measure of model complexity. Thus, the DIC measure is given by

DIC = D(θ) + PD = −4E (ln p(Y |θ)|Y ) + 2 ln p(Y |θ). (4.6)

We can express the DIC measure in (4.4) in the following alternative way:

DIC = D(θ) + 2PD, (4.7)

which resembles to the AIC defined in (4.1). Under some regularity conditions, Li et al. (2020) show

that if we replace the generic predictive distribution p(Yrep|Y ) in (4.2) with the plug-in predictive

distribution p(Yrep|θ), the following result is obtained:

EY
(
2×KL

(
g(Yrep), p(Yrep|θ)

))
= 2c+ EY

(∫
−2 ln p(Yrep|θ)g(Yrep)dYrep

)
= 2c+ EY

(
−2 ln p(Yrep|θ) + 2PD

)
+ o(1)

= 2c+ EY (DIC) + o(1). (4.8)

That is, the DIC is asymptotically an unbiased estimator of EY
(
2×KL

(
g(Yrep), p(Yrep|θ)

))
− 2c.

Thus, as in the case of AIC, a model with a smaller DIC value will perform better in terms of

predictive performance. Therefore, the DIC is usually considered as a Bayesian counterpart of the

AIC.

Using the form given in (4.7), Li et al. (2020) suggest the following version of the DIC,

DICL = D(θ) + 2PL = D(θ) + 2tr
(
J(θ)V (θ)

)
, (4.9)

where PL = tr
(
J(θ)V (θ)

)
, J(θ) = −∂2 ln p(Y |θ)

∂θ∂θ′
, and V (θ) is the posterior covariance of θ given

by V (θ) = E
(

(θ − θ)(θ − θ)′ |Y
)

. Under some regularity conditions, Li et al. (2020) show that

DICL = AIC + op(1) and PL = P + op(1).

Finally, we consider the Bayesian information criterion. This criterion is derived from a large

sample approximation to the log-marginal likelihood function of the candidate model. The marginal

likelihood function of model Mk can be expressed as p(Y |Mk) =
∫

Θk
p(Y |θk,Mk)p(θk|Mk)dθk, where

4Celeux et al. (2006) suggest PD = −2E (ln p(Y |θ)|Y ) + 2 ln p(Y |θ̃), where θ̃ is the joint maximum a posterior
(MAP) estimator . The MAP estimate can be approximated by the posterior draws of θ that yield the largest value
for p(Y |θ)p(θ), where p(θ) denotes the prior density of θ.
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θk is the Pk × 1 parameter vector in the model Mk. The Laplace approximation can be used to

approximate p(Y |Mk) in the following way (Schwarz, 1978):

ln p(Y |Mk) = ln p(Y |θ̂k,Mk) + ln p(θ̂k|Mk) +
Pkπ

2
− Pk lnn

2
− 1

2
|Jk(θ̂k)|+Op(1/n), (4.10)

where θ̂k is the MLE of θk, and Jk(θ̂k) = − 1
n
∂2 ln p(Y |θ̂k,Mk)

∂θk∂θ
′
k

. Under a non-informative prior distri-

bution and ignoring all Op(1) terms in (4.10), Schwarz (1978) define the BIC for Mk as

BICk = −2 ln p(Y |θ̂k,Mk) + Pk lnn. (4.11)

The Laplace approximation in (4.10) can also be used to show that the difference between the BIC’s

of two models is asymptotically equivalent to the log Bayes factor (Kass and Raftery, 1995). That

is, for any ε > 0, we have

lim
n→∞

P

(∣∣∣∣BICk − BICl

ln BFkl
− 1

∣∣∣∣ > ε

)
= 0, (4.12)

where BFkl = p(Y |Mk)/p(Y |Ml) is the Bayes factor of Mk against Ml. Thus, the BIC is also a

consistent model selection criterion like the Bayes factor, i.e., both BIC and BF select the true

model with probability approaching one when n→∞.

Remark 1. The asymptotic results in this section require that (i) a Bernstein-von Mises type theo-

rem holds for the posterior distribution, i.e., the posterior distribution p(θ|Y ) converges to a normal

distribution whose mean is the MLE θ̂ and covariance is the inverse of the second derivative of the

negative log-likelihood function, (ii) the MLE has the standard large sample properties, namely, con-

sistency and asymptotic normality. Han et al. (2021) show that a Bernstein-von Mises type theorem

as in Chernozhukov and Hong (2003) holds for the posterior distribution of a homoskedastic SAR

model under certain conditions. Using a similar approach, we conjuncture that a Bernstein-von

Mises type theorem will also hold for our MESS model under certain conditions. As for the second

condition, Debarsy et al. (2015) and Liu and Lee (2019) show that the MLE of our MESS model

has the standard large sample properties. However, it is known that these two conditions usually do

not hold for the latent variables in the latent variable models (Gelman et al., 2003; Li et al., 2020).

In particular, the latent variable representation we assumed for the heteroskedastic case undermines

these conditions for the latent scale mixture variables. Therefore, the AIC and DIC measures based

on the conditional likelihood functions will be biased estimators of the corresponding expected KL

measures. These measures should be formulated based on the integrated likelihood function given in

Proposition 1.

Remark 2. The computation of the AIC and BIC requires the MLE θ̂ of θ, while that of the DIC’s

require the MCMC draws of θ from the posterior distribution p(θ|Y ). Instead of using the MLE in

the case of AIC and BIC, we can approximate p(Y |θ̂) by the maximum of the likelihood function

evaluated at the posterior draws, i.e., p(Y |θ̂) ≈ max
{
p(Y |θ1), . . . , p(Y |θR)

}
, where {θr}Rr=1 is a
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sequence of posterior draws. The first term E (ln p(Y |θ)|Y ) in the DIC measures can be estimated

by averaging the log-integrated likelihood function given in Proposition 1 over the posterior draws of

θ, i.e., E (ln p(Y |θ)|Y ) ≈ 1
R

∑R
r=1 ln p(Y |θr). The second term ln p(Y |θ) in DIC is simply obtained

by evaluating the log-integrated likelihood function at the posterior mean θ. Finally, in the case of

DICL, we need to compute tr
(
J(θ)V (θ)

)
, where J(θ) is approximated by the numerical hessian and

V (θ) is the covariance of the posterior draws.5 As a result, in our simulation study, we use the

MCMC algorithms given in Section 3 to compute all information criteria.

5 Monte Carlo Simulations

5.1 Design

In this section, we use our suggested estimation algorithms given in Section 3 to investigate the

finite sample performance of the information criteria stated in Section 4. To this end, we are

interested in the performance of the AIC in (4.1), the DIC in (4.6), the DICL in (4.9) and the BIC

in (4.11). We consider the following well-known DGPs:

M1 : eλWY = Xβ + V,

M2 : Y = Xβ + U, eρWU = V,

M3 : eλWY = Xβ + U, eρWU = V,

M4 : eλWY = Xβ +WX1ψ + V.

We set X = (ln, X1) and (β1, β2, ψ)
′

= (−0.5, 1, 1)
′
, where ln is the n × 1 vector of ones and

X1 ∼ N(0, In). For the spatial parameters, we consider (λ, ρ)
′

= (−1.2,−0.4)
′
. In the ho-

moskedastic case, we set V ∼ N(0, σ2In), where σ2 = 1. In the case of heteroskedasticity, we

set V ∼ N (0,Diag(γ1, . . . , γn)), where γi = exp(0.1 + 0.35X1i) and X1i is the ith element of X1.

For the spatial weights matrix W , we consider the rook and queen contiguity cases. We will denote

them by Wr and Wq, respectively. For the sample size, we use n = {100, 225}.
The length of the MCMC chain is set to 6000 draws, and the first 2000 draws are discarded

as burn-ins. For readers interested in the computational complexity of the MESS-type model, we

refer to Yang et al. (2021), who extensively study the computational time of the QML, GMM, and

Bayesian estimation of the model. In this paper, the authors consider a fast estimation algorithm

called the matrix-vector-product (mvp) method and find that its computational time is significantly

lower than that of the default method utilized in a popular software (MATLAB). In various com-

binations of parameter values and sample sizes, they demonstrate that the computation time for

the three estimators decreases by 95% to 99% compared to that of the default expm function in

MATLAB.

In the first experiment, we consider the performance of information criteria in terms of selecting

the correct spatial weights matrix under homoskedasticity. To that end, we use Wr to generate 300

5We use the hessian function provided in the Spatial Econometrics Toolbox to compute J(θ).
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samples according to each DGP specified above. Then, we estimate each model with both Wr and

Wq using the Algorithm 1 given in Section 3 for all samples. Using the estimation results, we then

compute the corresponding information criteria for all samples.

In the second experiment, our objective is to evaluate the performance of the information criteria

in distinguishing M3 from the other models under homoskedasticity. For this purpose, we employ

Wr to generate 300 samples according to M3. Next, we use each sample to estimate each model

using Wr and calculate the associated information criteria.

In the third experiment, our focus is on evaluating the performance of the information criteria in

terms of selecting the true spatial weights matrix under heteroskedasticity. We use Wq to generate

300 samples according to each DGP and estimate each model with both Wr and Wq using Algorithm

2 in Section 3. Subsequently, we compute the information criteria for all samples.

In the final experiment, we generate 300 samples using Wq according to M3 under heteroskedas-

ticity. Here, our interest lies in examining the performance of the information criteria in distinguish-

ing M3 from the other DGPs under heteroskedasticity. For all samples, we estimate each model

with Wq using Algorithm 2 given in Section 3. We then compute the corresponding information

criteria for all samples.

5.2 Simulation Results

To present the simulation results in a meaningful concise manner, we resort to histogram plots as

suggested by Chan and Grant (2016b). More specifically, for each experiment, for a given criterion,

say the DIC, we subtract the DIC value of the true DGP from the DIC value of the false DGP.

We then display these differences as histogram plots over the 300 samples. If the criterion under

consideration perform satisfactorily, we expect majority of these differences to be positive over

300 samples, and we should observe most of the mass on the positive half line in the histogram

plots. Each histogram provides the percentage of positive differences. For example, the notation

“> 0 : 95%” in a histogram indicates that 95 percent of differences are positive.6

We start with the results from the first experiment. Figure 1 presents the histogram plots

for the four information criteria when n = 100 and the DGP is M1. Recall again that in the first

experiment we are interested in the performance of the information criteria in terms of selecting the

true spatial weights matrix Wr under homoskedasticity. We observe that all differences are positive

for the AIC, DIC, DICL, and BIC. Therefore, all four information criteria choose the correct spatial

weights matrix in all of the 300 samples. Figure 2 presents the histogram plots when n = 225 and

the DGP is M1. We again observe that all four information criteria select the correct spatial weights

matrix in all of the 300 samples. Figure 3 displays the histogram plots for the four information

criteria when n = 100 and the DGP is M2. All four information criteria select the correct spatial

weights matrix in about 85% of the 300 samples. However, the performances of all criteria increase

when the sample size becomes n = 225 as shown in Figure 12 of the web appendix. Figure 4

6We will present the results for some selected cases in each experiment. The results for the rest of the cases provide
similar results and are provided in the web appendix.
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presents the histogram plots for the four information criteria when n = 100 and the DGP is M3.

We observe that that the differences are all positive, which implies that all four information criteria

choose the correct spatial weights matrix in all of the 300 samples. Finally, Figure 5 presents the

histogram plots for the four information criteria when n = 100 and the DGP is M4. Once again,

we observe that all four information criteria select the correct spatial weights matrix in all of the

300 samples.

Next, we present some results from the second experiment. Recall again that we are interested

in the performance of the information criteria in terms of selecting the true DGP M3 against the

other DGPs under homoskedasticity. Figure 6 presents the histogram plots for the four information

criteria in selecting M3 against M1 when n = 225. We observe that all four information criteria

choose M3 over M1 in most of the samples. Specifically, the percentage of positive differences

is 94.3% for AIC, 93.7% for DIC, 93.7% for DICL, and 73.7% for BIC. Although BIC performs

slightly worse than the other information criteria in this case, it is expected that this performance

difference will diminish as the sample size increases. Figure 7 presents the histogram plots for the

four information criteria in selecting M3 against M2 when n = 225. We observe that the differences

are all positive, indicating that all four information criteria choose the correct DGP M3 against M2

in all of the 300 samples.

Moving on to the third experiment, our focus is on the performance of the information criteria in

selecting the true spatial weights matrix under heteroskedasticity. Figure 8 presents the histogram

plots for the four information criteria in terms of selecting the true spatial weights matrix Wq when

the DGP is M1 and n = 100. We observe that all differences are positive for the AIC, DIC, DICL

and BIC. Therefore, all four information criteria select the correct spatial weights matrix Wq in

all of the 300 samples. Figure 9 presents the histogram plots for the four information criteria in

terms of selecting the true spatial weights matrix Wq when the DGP is M3 and n = 100. Again, we

observe that all four information criteria select the correct spatial weights matrix Wq in all samples.

Lastly, we present the results from the fourth experiment, focusing on the performance of the

information criteria in selecting the true DGP M3 against the other DGPs under heteroskedasticity.

Figure 10 presents the histogram plots for the four information criteria in selecting M3 against M1

when n = 225. We observe that all four information criteria choose M3 over M1 in the majority of

samples. Specifically, the percentage of positive differences is 99.7% for AIC, DIC and DICL, and

95% for BIC. Figure 11 presents the histogram plots for the four information criteria in selecting

M3 against M2 when n = 225. We observe that that the differences are all positive, indicating that

all four information criteria choose the correct DGP M3 against M2 in all of the 300 samples.
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Figure 1: First experiment: Histogram plots for the information criteria of M1 with Wq minus the
information criteria of M1 with Wr under homoskedasticity, n = 100.

Figure 2: First experiment: Histogram plots for the information criteria of M1 with Wq minus the
information criteria of M1 with Wr under homoskedasticity, n = 225.
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Figure 3: First experiment: Histogram plots for the information criteria of M2 with Wq minus the
information criteria of M2 with Wr under homoskedasticity, n = 100.

Figure 4: First experiment: Histogram plots for the information criteria of M3 with Wq minus the
information criteria of M3 with Wr under homoskedasticity, n = 100.
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Figure 5: First experiment: Histogram plots for the information criteria of M4 with Wq minus the
information criteria of M4 with Wr under homoskedasticity, n = 100.

Figure 6: Second experiment: Histogram plots for the information criteria of M1 with Wr minus
the information criteria of M3 with Wr under homoskedasticity, n = 225.
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Figure 7: Second experiment: Histogram plots for the information criteria of M2 with Wr minus
the information criteria of M3 with Wr under homoskedasticity, n = 225.

Figure 8: Third experiment: Histogram plots for the information criteria of M1 with Wr minus the
information criteria of M1 with Wq under heteroskedasticity, n = 100.
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Figure 9: Third experiment: Histogram plots for the information criteria of M3 with Wr minus the
information criteria of M3 with Wq under heteroskedasticity, n = 100.

Figure 10: Fourth experiment: Histogram plots for the information criteria of M1 with Wq minus
the information criteria of M3 with Wq under heteroskedasticity, n = 225.
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Figure 11: Fourth experiment: Histogram plots for the information criteria of M2 with Wq minus
the information criteria of M3 with Wq under heteroskedasticity, n = 225.
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6 Empirical Applications

6.1 A Spatial Growth Model

In this section, we show how the information criteria can be useful in model selection exercises. To

this end, we consider the MESS-type counterpart of the spatial Durbin model considered in Ertur

and Koch (2007) under both homoskedasticity and heteroskedasticity. Ertur and Koch (2007)

(EK) incorporate technological interdependence into a neo-classical Solow growth model to explore

the impact of technology spillover effects on economic growth. Their structural model yields a

spatial Durbin model for the empirical analysis, and their findings indicate evidence for statistically

significant spatial externalities. The empirical model suggested by EK takes the following form:

Y = λWY +Xβ + ε, (6.1)

where Y is the logarithm of the n × 1 vector of the output per-worker, X is the n × 5 matrix

containing the following variables: (i) the log of fraction of savings ln(s), (ii) the exogenous growth

rate of labor variable ln(p+ 0.05ln) with ln being a n× 1 vector of ones, (iii) the spatial lag terms

W ln(s) and W ln(p+ 0.05ln) and (iv) an intercept term, and ε is the n× 1 vector of error terms.7

We assume that the sum of the annual rate of depreciation of physical capital and the balanced

growth rate of capital-output ratio is set to 0.05, which is a common assumption in the economic

growth literature (Islam, 1995; Mankiw et al., 1992). EK consider two spatial weights matrices (i)

W1 = (w1ij) and (ii) W2 = (w2ij), whose elements are specified as

w1ij =

0 if i = j,

d−2
ij if i 6= j,

w2ij =

0 if i = j,

e−2 dij if i 6= j,
(6.2)

where dij is the great-circle distance between country capitals. Both weights matrices are row

normalized. In our context, we consider the MESS version of (6.1), which can be written as

eλWY = Xβ + ν, (6.3)

where ν is the n× 1 vector of error terms.

7In (6.1), we take the element-wise logarithm of vectors.
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Table 1: List of countries
Angola Argentina Australia Austria Burundi
Belgium Benin Burkina Faso Bangladesh Bolivia
Brazil Botswana Central African Republic CAF Canada Congo, Republic of
Switzerland Chile Cote d‘Ivoire Cameroon Colombia
Costa Rica Denmark Dominican Republic Ecuador Egypt
Spain Ethiopia Finland France United Kingdom
Ghana Greece Guatemala Hong Kong Honduras
Indonesia India Ireland Israel Italy
Jamaica Jordan Japan Kenya Korea, Republic of
Sri Lanka Morocco Madagascar Mexico Mali
Mozambique Mauritania Mauritius Malawi Malaysia
Niger Nigeria Nicaragua Netherlands Norway
Nepal New Zealand Pakistan Panama Peru
Philippines Papua New Guinea Portugal Paraguay Rwanda
Senegal Singapore Sierra Leone El Salvador Sweden
Syria Chad Togo Thailand Trinidad & Tobago
Tunisia Turkey Tanzania Uganda Uruguay
USA Venezuela South Africa Congo, Dem. Rep. Zambia
Zimbabwe

Table 2: Descriptive Statistics

Variable Obs Mean SD Min Max

log of output per worker (Y ) 91 9.193 1.225 6.484 10.934
fraction of savings (s) 91 0.154 0.083 0.019 0.411
growth rate of labor (p) 91 0.022 0.009 0.003 0.043

Our sample data consist of the same data set used by EK. The data set is a cross-sectional data

set on 91 countries for the year 1995. The list of countries is presented in Table 1, and the sample

statistics for our variables are provided in Table 2. Using our estimation algorithms in Section 3,

we estimate (6.3) with both W1 and W2 under both homoskedasticity and heteroskedasticity. The

estimation results are reported in Table 3. In this table, we provide the mean and the standard

deviation of the posterior draws. All four information criteria are reported in the bottom panel.

In columns (1) and (2) of Table 3, we also reproduce EK’s results for easy reference and compute

the AIC and BIC. In columns (3) and (4), we present the estimation results for (6.3) under ho-

moskedasticity. We observe that the estimates for ln s and ln(n + 0.05ln) are close to those from

EK. However, while EK report statistically significant negative estimates for W ln s, in columns (3)

and (4), although the estimates are close, they are no longer statistically significant. The coefficient

for W ln(n + 0.05ln) is estimated imprecisely similar to EK.

For the spatial parameter λ, we observe in columns (3) and (4) that estimates are negative

around −0.85 and statistically significant. Note that these estimates are not directly comparable

to the estimates of λ in columns (1) and (2). However, Debarsy et al. (2015) propose a relation

between the spatial parameters of the SAR and MESS models, when the spatial weights matrix is

row normalized: λSAR = 1 − eλMESS . Here, we observe that λSAR = 0.740 and λMESS = −0.857
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for W1, and λSAR = 0.658 and λMESS = −0.822 for W2. These coefficients have opposite signs,

and approximately satisfy the relation λSAR = 1− eλMESS . For the information criteria, we can see

that AIC and BIC have smaller values for W1, which implies W1 is preferred over W2 for the SAR

model. For the MESS model, AIC, DIC, DICL and BIC have smaller values for W1, which also

implies that W1 is preferred over W2.

Columns (5) and (6) present the estimation results under heteroskedasticity. The findings are

in general very similar to those from the homoskedastic specifications in columns (3) and (4). One

important difference occurs in the estimate of λ in column (6), which is smaller in magnitude. The

estimates of ν indicate no significant deviations from the normality of the error terms. For the

information criteria, we again observe that DIC, DICL, AIC and BIC have smaller values for W1,

which implies that W1 is preferred over W2. Across columns (3) through (6), the lowest values for

all information criteria are observed in column (5).
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Table 3: Estimation results and information criteria for the spatial growth model

SAR MESS

Homoskedasticity Homoskedasticity Heteroskedasticity

(1) W1 (2) W2 (3) W1 (4) W2 (5) W1 (6) W2

Constant 0.988 0.530 1.288 0.806 1.139 1.807
(0.602) (0.778) (1.781) (1.799) (1.788) (1.800)

ln(s) 0.825∗∗∗ 0.792∗∗∗ 0.949∗∗∗ 0.893∗∗∗ 0.957∗∗∗ 0.873∗∗∗

(0.000) (0.000) (0.116) (0.121) (0.116) (0.117)
ln(p+ 0.05ln) −1.498∗∗∗ −1.451∗∗∗ −1.662∗∗∗ −1.614∗∗∗ −1.673∗∗∗ −1.556∗∗

(0.008) (0.009) (0.628) (0.619) (0.629) (0.609)
W ln(s) −0.322∗∗∗ −0.372∗∗∗ −0.292 −0.332∗ −0.338 −0.062

(0.079) (0.024) (0.223) (0.192) (0.223) (0.198)
W ln(p+ 0.05ln) 0.571 0.137 0.149 −0.050 0.189 −0.345

(0.501) (0.863) (0.842) (0.788) (0.844) (0.787)
λ 0.740∗∗∗ 0.658∗∗∗ −0.857∗∗∗ −0.822∗∗∗ −0.894∗∗∗ −0.581∗∗∗

(0.000) (0.000) (0.115) (0.102) (0.113) (0.105)
σ2 0.334∗∗∗ 0.349∗∗∗ 0.333∗∗∗ 0.355∗∗∗

(0.052) (0.054) (0.052) (0.056)
ν 24.724∗∗ 27.615∗∗

(12.462) (12.311)

AIC 161.06 173.49 164.87 169.07 156.93 163.45
DIC 163.12 167.23 155.26 161.71
DICL 167.15 171.07 164.11 166.62
BIC 156.08 168.51 182.44 186.65 177.02 183.54

Significance levels: ∗: 10%, ∗∗: 5%, and ∗∗∗: 1%.
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6.2 A Carbon Emission Model

In this section, we consider a model of carbon emissions to investigate the relationship between

carbon emissions and economic activity in the United States. In the literature, the state-level

emissions are measured from the state-level energy use, and therefore the estimation equations

considered in the literature are usually derived from a reduced-form energy demand model that links

energy consumption to energy prices and aggregate economic activity (Aldy, 2005; Auffhammer and

Steinhauser, 2007; Burnett and Madariaga, 2017; Burnett et al., 2013; Spinoni et al., 2018). In this

empirical application, we consider the spatial extensions of the reduced-form energy demand, and

use the information criteria to a select a suitable spatial specification.

We use state level data from the United States on emissions, economic activity, and some

observed characteristics of the states. Our final data set consists of observations on 48 contiguous

U.S. States from 1997 to 2019, excluding Alaska, Hawaii, and the District of Columbia. Therefore,

in our sample, we have n = 48 and T = 23, which yields 1104 observations in total. The data

on CO2 emissions are obtained from the U.S. Department of Energy, and they are calculated by

multiplying a state’s coal, natural gas and petroleum consumption by their respective thermal

conversion factors. Consequently, our CO2 emissions variable does not represent actual emissions,

but are estimates of actual emissions. It is measured in units of metric tonnes per person and is

available from 1970 onwards at the annual frequency.

The economic activity in a given state and a given year is proxied by the real GDP data from

the Bureau of Economic Analysis (BEA). Although GDP data are available from 1963 to current

by state, we do not consider the years prior to 1997 due to the fact that there is a discontinuity

because of a switch from SIC industry definitions to NAICS industry definitions. The BEA strongly

cautions against appending GDP data for before-the-break and after-the-break periods. The real

GDP values are in millions of chained 2012 dollars. The energy price data are obtained from the

U.S. Energy Information Administration. These are state-level annual average prices of petroleum

products, and average coal, natural gas, and electricity prices over all sectors. They are measured

dollars per British thermal unit (Btu), and are available from 1970 onward at the annual frequency.

Annual state population figures are available from the U.S. Census Bureau, and they represent

resident population (including armed forces) in thousands.

An important covariate for explaining CO2 emissions is residential energy consumption. It has

been documented in the literature that cooling degree days (cdd) and heating degree days (hdd) are

highly correlated with the residential energy consumption (Burnett et al., 2013; Quayle and Diaz,

1980; Spinoni et al., 2018). The cdd and hdd are measures to reflect demand for energy to heat or

cool houses and businesses. A mean daily temperature 65◦ Fahrenheit is the base for both heating

and cooling degree day calculations. The cdd and hdd are summations of deviations from the base,

and can be considered as a measure of accumulated cold and accumulated heat, respectively. The

data on cdd and hdd are obtained from the Climate Analysis Center within the National Oceanic

and Atmospheric Administration. Table 4 presents the summary statistics for our dataset.

Our main estimation specifications are the following four MESS specifications, which are the
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Table 4: Descriptive statistics

Statistic Obs. Mean St. Dev. Min Pctl(25) Pctl(75) Max

Population (thousands) 1,104 6,253.747 6,738.524 489 1,857 7,220.2 39,438
GDP (millions of chained 2012 $) 1,104 314,977.2 381,015.5 20,072 85,916.5 395,561.2 2,800,505
CO2 (metric tonnes per person) 1,104 114.897 110.114 5.453 50.156 142.990 684.690
Coal price ($ per Btu) 1,104 2.025 0.912 0.010 1.380 2.580 6.110
Electricity price ($ per Btu) 1,104 25.709 8.397 11.430 19.298 29.275 54.680
Petroleum price ($ per Btu) 1,104 17.306 6.700 4.770 10.505 21.745 30.070
Natural gas price ($ per Btu) 1,104 7.085 2.232 2.420 5.390 8.567 14.000
cdd (deviations in Fahrenheit) 1,104 1,177.951 803.638 118 566.5 1,604 4,125
hdd (deviations in Fahrenheit) 1,104 1,959.505 791.857 34 1,384 2,555.5 4,087

same as the specifications considered in Section 5:

M1 : (IT ⊗ eλW )Y = Xβ + V,

M2 : Y = Xβ + U, (IT ⊗ eρW )U = V,

M3 : (IT ⊗ eλW )Y = Xβ + U, (IT ⊗ eρW )U = V,

M4 : (IT ⊗ eλW )Y = Xβ + (IT ⊗W )X1ψ + V.

where Y is the logarithm of CO2 emissions, IT is the T×T identity matrix, ⊗ denotes the Kronecker

product, and X contains the following explanatory variables: (i) the logarithm of coal price, (ii) the

logarithm electricity price, (iii) the logarithm of natural gas price, (iv) the logarithm of petroleum

price, (v) the logarithm of cdd, (vi) the logarithm of hdd, (vii) the logarithm of GDP per capita,

and (viii) the square of the logarithm of GDP per capita. The spatial weights matrix W is specified

based on the contiguity scheme such that its (i, j)th element is set to 1 if states i and j share a

common border, otherwise to 0. The weights matrix created in this way is then row normalized.

We estimate each of the four specifications under homoskedastic and heteroskedastic assump-

tions. The estimated posterior means and standard deviations for each parameter are given in

Table 5. There are two important observations.8 First, all information criteria prefer the het-

eroskedastic models over the homoskedastic models. For example, comparing column (5) with (1),

the AIC, DIC, DICL and BIC for the heteroskedastic models are 2299.75, 2305.48, 2002.73 and

2359.83 respectively, which are correspondingly smaller than those for the homoskedastic model,

which are 2448.89, 2462.85, 2497.09 and 2503.97 respectively. This result is confirmed by the es-

timates of ν, which are around 2 for all heteroskedastic models. The second observation is that,

among both homoskedastic and heteroskedastic models, all information criteria suggest the spa-

tial Durbin version of the MESS model M4, except the DICL in the heteroskedastic case. This

8Though our data are spatiotemporal, we did not consider the time lag, the spatiotemporal lag, the unobserved
spatial fixed effects, and the time fixed effects in M1-M4, because our focus is on cross-sectional MESS models. We
report the Durbin-Watson (DW) and the Moran’s I statistics in the table as well. These statistics are computed by
using the residuals obtained from the non-spatial linear models. Both statistics suggest the extension of the non-
spatial models to the spatial models. Although a spatiotemporal model may be more suitable for this application, we
did not explore such a model in this paper as it is beyond the scope of our paper.
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observation is not surprising because most of the spatial Durbin terms are statistically significant

as can be seen from the fourth and eight columns. In column (8), the AIC, DIC and BIC for M4

are 2040.07, 2038.87 and 2140.21 respectively, which are smaller than those of M1, M2 and M3.

The only exception is DICL, which is slightly bigger than that of M1. Overall, the spatial Durbin

version (M4) seems to provide a better fit for our sample data.
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Table 5: Estimation results for the carbon emission model
Homoskedasticity Heteroskedasticity

(1) M1 (2) M2 (3) M3 (4) M4 (5) M1 (6) M2 (7) M3 (8) M4

Constant −6.927∗∗∗ −5.823∗∗ 2.968 −3.769 −6.118∗∗ −1.966 0.985 −4.265
(2.644) (2.624) (2.697) (2.913) (2.578) (2.506) (2.431) (2.863)

log(coal p) 0.231∗∗∗ 0.204∗∗∗ 0.108∗∗∗ 0.160∗∗∗ 0.314∗∗∗ 0.234∗∗∗ 0.184∗∗∗ 0.210∗∗∗

(.027) (.024) (.016) (.024) (.018) (.016) (.016) (.021)
log(elec p) −0.776∗∗∗ −0.402∗∗∗ 0.266∗∗ 0.819∗∗∗ −0.755∗∗∗ 0.037 0.251∗∗ 0.539∗∗∗

(.096) (.154) (.116) (.153) (.072) (.110) (.102) (.168)
log(natug p) 0.054 0.179 0.321∗∗∗ 0.385∗∗∗ 0.218∗∗∗ 0.571∗∗∗ 0.483∗∗∗ 0.572∗∗∗

(.080) (.120) (.108) (.146) (.056) (.087) (.084) (.116)
log(petro p) −0.105 −0.386∗∗∗ −1.413∗∗∗ −2.949∗∗∗ −0.262∗∗∗ −0.795∗∗∗ −0.961∗∗∗ −2.151∗∗∗

(.067) (.123) (.226) (.354) (.052) (.100) (.124) (.312)
log(cdd) 0.047 −0.100 −0.272∗∗∗ −0.346∗∗∗ 0.010 −0.104∗∗ −0.077∗ −0.067

(.056) (.070) (.056) (.066) (.041) (.046) (.044) (.058)
log(hdd) −0.585∗∗∗ −0.719∗∗∗ −0.485∗∗∗ −0.398∗∗∗ −0.331∗∗∗ −0.362∗∗∗ −0.311∗∗∗ −0.297∗∗∗

(.067) (.075) (.064) (.078) (.042) (.044) (.042) (.055)
log(gdp pc) 6.980∗∗∗ 7.664∗∗∗ 8.555∗∗∗ 4.596∗∗ 5.161∗∗∗ 3.874∗∗∗ 3.889∗∗∗ 0.708

(1.401) (1.405) (1.339) (1.913) (1.352) (1.313) (1.236) (1.830)
(log(gdp pc))2 −0.705∗∗∗ −0.768∗∗∗ −0.951∗∗∗ −0.445∗ −0.436∗∗ −0.270 −0.310∗ 0.127

(.181) (.182) (.174) (.246) (.177) (.171) (.161) (.238)
W log(coal p) −0.058 0.161∗∗∗

(.056) (.060)
W log(elec p) −1.040∗∗∗ −0.796∗∗∗

(.188) (.192)
W log(natug p) −0.257 −0.338∗∗∗

(.160) (.124)
W log(petro p) 3.010∗∗∗ 1.937∗∗∗

(.362) (.324)
W log(cdd) 1.004∗∗∗ 0.589∗∗∗

(.106) (.103)
W log(hdd) 0.689∗∗∗ 0.804∗∗∗

(.138) (.111)
W log(gdp pc) −3.446 −0.264

(2.061) (1.990)
W (log(gdp pc))2 0.151 −0.247

(.266) (.257)
λ −0.411∗∗∗ 1.166∗∗∗ −0.457∗∗∗ −0.663∗∗∗ 0.501∗∗∗ −0.670∗∗∗

(.041) (.097) (.039) (.040) (.078) (.050)
ρ −0.637∗∗∗ −1.950∗∗∗ −0.953∗∗∗ −1.413∗∗∗

(.067) (.100) (.039) (.081)
σ2 0.540∗∗∗ 0.536∗∗∗ 0.509∗∗∗ 0.390∗∗∗ 0.167∗∗∗ 0.143∗∗∗ 0.138∗∗∗ 0.139∗∗∗

(.023) (.023) (.021) (.017) (.012) (.010) (.010) (.010)
ν 2.005∗∗∗ 2.005∗∗∗ 2.005∗∗∗ 2.005∗∗∗

(.003) (.003) (.003) (.003)
Moran’s I 7.78 7.78 7.78 9.52 7.78 7.78 7.78 9.52
DW 1.74 1.74 1.74 1.81 1.74 1.74 1.74 1.81

AIC 2448.89 2443.39 2400.10 2109.78 2299.75 2214.79 2187.12 2040.07
DIC 2462.85 2452.87 2396.81 2108.64 2305.48 2212.58 2181.24 2038.87
DICL 2497.09 2456.67 2396.49 2110.82 2002.73 2209.99 2180.39 2013.00
BIC 2503.97 2498.46 2460.18 2204.91 2359.83 2274.87 2252.21 2140.21

Significance levels: ∗: 10%, ∗∗: 5%, and ∗∗∗: 1%.
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7 Conclusion

In this paper, we focused on the problems related to model specification in the MESS-type models.

Specifically, we addressed the challenges of selecting a spatial weights matrix from a set of candidates

and choosing between nested (or non-nested) alternative specifications. To resolve these specifi-

cation problems in a Bayesian setting, we proposed using the DIC, AIC and BIC measures. Our

approach has the advantage of being based on the integrated likelihood function, which is obtained

analytically by integrating out the latent variables from the complete data likelihood function, in

the heteroskedastic case. Our simulation results demonstrate that all information criteria perform

well in finite samples. In two empirical applications, we demonstrated how to apply the proposed

information criteria to a spatial growth model and a carbon emission model. In future studies, our

approach can be extended to more general MESS-type models, such as a panel data MESS model

with both entity and time fixed effects, or a panel data MESS model with interactive fixed effects.
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Appendix

A Proof of Proposition 1

Let Y (δ) = eρM
(
eλWY −Xβ

)
, and yi(δ) be the ith element of Y (δ). We use some properties of

the inverse-gamma distribution to determine p(Y |θ) =
∫
p(Y, η|θ)dη.

p(Y |θ) =

∫
p(Y, η|θ)dη =

∫
p(Y |η, θ)p(η|θ)dη

=

∫
(2π)−n/2(σ2)−n/2|H(η)|−1/2 exp

(
− 1

2σ2
Y
′
(δ)H−1(η)Y (δ)

)
×

n∏
i=1

(ν/2)ν/2

Γ(ν/2)
η
−( ν

2
+1)

i exp

(
− ν

2ηi

)
dη

=

∫
(2π)−n/2(σ2)−n/2

(
n∏
i=1

η
−1/2
i

)
exp

(
− 1

2σ2

n∑
i=1

y2
i (δ)

ηi

)

× (ν/2)nν/2

Γn(ν/2)

(
n∏
i=1

η
−( ν

2
+1)

i

)
exp

(
n∑
i=1

− ν

2ηi

)
dη

= (2π)−n/2(σ2)−n/2 × (ν/2)nν/2

Γn(ν/2)

×
∫ ( n∏

i=1

η
−( ν+1

2
+1)

i

)
exp

(
n∑
i=1

− 1

ηi

(
ν

2
+
y2
i (δ)

2σ2

))
dη

= (2π)−n/2(σ2)−n/2 × (ν/2)nν/2

Γn(ν/2)

×
n∏
i=1

∫ (
η
−( ν+1

2
+1)

i

)
exp

(
− 1

ηi

(
ν

2
+
y2
i (δ)

2σ2

))
dηi. (A.1)

Note that if z ∼ IG(α, β), then
∫ βα

Γ(α)z
−(α+1) exp(−β

z )dz = 1. Thus, we have∫
z−(α+1) exp(−β

z )dz = β−αΓ(α). Then, setting α = ν+1
2 and βi =

(
ν
2 +

y2i (δ)

2σ2

)
in (A.1), we

obtain

n∏
i=1

∫ (
η
−( ν+1

2
+1)

i

)
exp

(
− 1

ηi

(
ν

2
+
y2
i (δ)

2σ2

))
dη = Γn(

ν + 1

2
)
n∏
i=1

(
ν

2
+
y2
i (δ)

2σ2

)−( ν+1
2

)

. (A.2)

Using (A.2) in (A.1), we obtain

p(Y |θ) = (2π)−n/2(σ2)−n/2
(ν/2)nν/2Γn(ν+1

2 )

Γn(ν/2)
×

n∏
i=1

(
ν

2
+
y2
i (δ)

2σ2

)−( ν+1
2

)

.
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Thus, the log-integrated likelihood function is

ln p(Y |θ) = −n
2

ln(2π)− n

2
lnσ2 +

nν

2
ln(ν/2)

+ n ln Γ(
ν + 1

2
)− n ln Γ(ν/2)− ν + 1

2

n∑
i=1

ln

(
ν

2
+
y2
i (δ)

2σ2

)
.
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