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Abstract

In this paper, we provide a comprehensive review of the literature on estimation, inference, and
model selection approaches for cross-sectional matrix exponential spatial models. We first discuss
the properties of the matrix exponential specification in modeling cross-sectional dependence in
comparison to the spatial autoregressive specification. We then provide a survey of the existing es-
timation and inference methods for cross-sectional matrix exponential spatial models. We carefully
discuss summary measures for the marginal effects of regressors, detail the matrix-vector product
method for efficient computation of matrix exponential terms, and then explore model selection
approaches. Our aim is not only to summarize the main findings from the spatial econometric liter-
ature but also to make them more accessible to applied researchers. Additionally, we contribute to
the literature by presenting several new results. We propose an M-estimation approach for models
with heteroskedastic error terms and demonstrate that the resulting M-estimator is consistent and
asymptotically normally distributed. Moreover, we provide additional results for model selection
exercises. Finally, in a Monte Carlo study, we evaluate the finite sample properties of various
estimators from the literature alongside the M-estimator.
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1 Introduction and motivation

Spatial econometric models deal with estimation and inference problems that arise from (weak) cross-

sectional dependence or correlation in data marked with location stamps. The spatial autoregressive

(SAR) model has been a widely used approach for modeling spatial dependence since its inception in

Whittle (1954) and Cliff and Ord (1969, 1973). The matrix exponential spatial specification (MESS)

was introduced by LeSage and Pace (2007) as an alternative to the SAR specification, primarily due

to its computationally appealing properties in likelihood-based estimation schemes. Despite various

estimation and inference methods proposed in the econometrics literature for models using either

specification, the empirical literature is predominantly populated with papers utilizing the SAR speci-

fication. For instance, a Google Scholar search for “spatial autoregressive model” yields 13,100 results,

whereas a search for “matrix exponential spatial specification” returns only 212 results.

This highly skewed preference towards the SAR specification by applied researchers is unfortu-

nate in the sense that the MESS attains some attractive properties. First, we must emphasize that

the MESS and the SAR imply different rates of decay for cross-sectional dependence. While it is a

geometric rate in the case of SAR, the MESS implies an exponential rate of decay for spatial corre-

lation. Consequently, they also imply different reduced forms for the cross-sectional models. Second,

contrary to the SAR specification, the MESS does not require any restrictions on the parameter space

of the spatial autoregressive parameters as the reduced form of the MESS always exists. In particular,

the MESS always yields a positive definite covariance matrix for the outcome variable. Third, in

the likelihood-based estimation, the log-likelihood function of a SAR specification includes Jacobian

determinant terms that can be difficult to compute when the number of cross-sections is large. The

MESS log-likelihood function, on the other hand, does not involve such Jacobian terms.

In this paper, our aim is to provide a complete comprehensive review of the econometric lit-

erature on the estimation, inference, and model selection methods for the cross-sectional MESS-type

models.1 More specifically, we aim to present the existing results from the literature in a more

accessible way so that they can be utilized easily in empirical applications by applied researchers.

Furthermore, we extend the existing literature in some important respects. Firstly, we propose a new

estimation and inference methodology for the cross-sectional MESS-type models with an unknown form

of heteroskedasticity. Second, for the model selection problems involving cross-sectional MESS-type

models, we consider a new method for computing the marginal likelihoods of the competing models

in a Bayesian framework. In a Monte Carlo study, we also assess the finite sample properties of some

existing estimators from the literature along with our proposed method. The simulation results show

that the suggested M-estimator performs satisfactorily in finite samples.

1We focus on cross-sectional MESS models because there are a few papers on panel data MESS models in the literature.
See, e.g., LeSage and Chih (2018), Zhang et al. (2019), Yang (2022) and Yang et al. (2024).
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Various estimation methods for the MESS models have been considered in the literature (LeSage

and Pace, 2007; Debarsy et al., 2015; Yang et al., 2021, 2024). LeSage and Pace (2007) consider

both the maximum likelihood and Bayesian estimation approaches. Debarsy et al. (2015) formally

investigate the large sample properties of the quasi-maximum likelihood estimator (QMLE) and the

generalized method of moments estimator (GMME). Although both estimators have the standard

large sample properties, the GMME can be more efficient than the QMLE when the innovations are

non-normal or heteroskedastic. Debarsy et al. (2015) showed that, unlike the SAR-type models, in

the presence of an unknown form of heteroskedasticity, the QMLE of the MESS model can remain

consistent if the spatial weights matrices used in the model are commutative. In this paper, we extend

on their results by introducing an M-estimation methodology that is robust to heteroskedasticity when

the spatial weights matrices do not commute. We also formally establish the large sample properties

of the resulting M-estimator.

We provide Bayesian estimation algorithms for the MESS models in the case of both homoskedas-

tic and heteroskedastic error terms (LeSage and Pace, 2007; Yang et al., 2021; Doğan et al., 2023).

In the case of heteroskedasticity, we assume that the error terms follow a scale mixture of normal

distributions, where the latent scale variables generate distributions with different variances. The la-

tent variable representation facilitates the estimation through data augmentation techniques. In both

homoskedastic and heteroskedastic models, the conditional posterior distributions of parameters take

known forms, except for those of the spatial parameters. The posterior draws for the spatial parame-

ters can be generated either by using the random-walk or the independence-chain Metropolis-Hastings

algorithms (Lesage, 1997; LeSage and Parent, 2007; LeSage and Pace, 2009; Yang et al., 2021). We

also consider the estimation of the MESS with endogenous and Durbin’s regressors. Jin and Lee (2018)

show that the popular nonlinear two stage least squares (N2SLS) estimator, although consistent, may

suffer from slow rates of convergence, and may attain nonstandard asymptotic distributions when the

true value of a subset of model parameters is zero. We highlight how an adaptive group lasso estimator

can provide a solution to these problems.

One prominent issue for the estimation of MESS-type model relates to the computation of the

matrix exponential terms. Although there are various methods suggested in the literature, there is no

single method that outperforms the rest in all cases (Moler and Van Loan, 2003). As such, we visit

the computation of the matrix exponential terms and exhibit how the matrix-vector product approach

originally suggested by LeSage and Pace (2007) can be utilized for quick computation of these terms.

A further issue for the MESS models relates to the interpretation of the coefficient estimates for

the explanatory variables. In spatial models, the interpretation of the coefficient estimates for the

explanatory variables becomes more complicated due to the cross-sectional interactions. To this end,

we review the existing results on the estimation and inference results for the impact measures for the
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MESS-type models (LeSage and Pace, 2009; Jin and Lee, 2018; Arbia et al., 2020).

When modeling spatial dependence, researchers may encounter specification problems related to

choosing a spatial weights matrix from a pool of candidates or choosing between nested or non-nested

alternative model specifications. Often, modeling is done in an ad hoc manner and there is no guidance

from an underlying structural model to address these issues. To this end, we provide a complete review

of the literature on testing based, criterion based and marginal likelihood-based approaches for model

selection problems involving MESS-type models (LeSage and Pace, 2009; Han and Lee, 2013b; Liu and

Lee, 2019; Yang et al., 2022; Doğan et al., 2023). In this regard, we also visit the Bayesian approaches

and consider the modified harmonic mean method of Gelfand and Dey (1994) for the computation of

the marginal likelihoods of competing models.

The rest of this paper is organized as follows. Section 2 reviews several cross-sectional MESS-

type models. This section also introduces the main properties of a matrix exponential term. Section 3

details the matrix-vector product approach for the efficient computation of matrix exponential terms.

Sections 4–8 discuss various estimation and inference techniques for the MESS-type models. Section

9 presents the impact measures for the MESS-type models and illustrates the inference methods for

the impact measures. Section 10 considers various kinds of model selection approaches involving the

MESS-type models. Section 11 presents results of a Monte Carlo study, focusing on the M-estimation of

the MESS-type models. Section 12 ends our review with some concluding remarks for future research.

Some technical results are relegated to an appendix.

2 Model Specification

We consider the following first-order matrix exponential spatial model (for short MESS(1, 1))

eλ0WY = Xβ0 + U, eρ0MU = V, (2.1)

where Y = (y1, . . . , yn)
′
is the n×1 vector of observations on a dependent variable, X is the n×k matrix

of non-stochastic exogenous variables with the associated parameter vector β0, U = (u1, . . . , un)
′

is

the n×1 vector of regression error terms, and V = (v1, . . . , vn)
′
is the n×1 vector of idiosyncratic error

terms. We follow the literature to assume that the elements of X are non-stochastic for simplicity

(Kelejian and Prucha, 1998; Lee, 2004). Alternatively, the elements of X can be assumed to be

stochastic with a finite moment of certain order. The matrix exponential term eλ0W is defined by

eλ0W =
∑∞

i=0
λi0Wi

i! , where W is an n× n spatial weights matrix with zero diagonal elements and λ0

is a scalar spatial parameter. The matrix exponential eρ0M is defined in a similar way, where M is

another n× n spatial weights matrix and ρ0 is a scalar spatial parameter.

The MESS(1,1) in (2.1) can be considered as the matrix exponential counterpart of the spatial
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autoregressive model with spatial autoregressive disturbances (SARAR(1,1)),

(In − α0W)Y = Xβ0 + U, (In − τ0M)U = V, (2.2)

where α0 and τ0 are scalar spatial autoregressive parameters. The MESS(1,1) specification is obtained

from (2.2) by replacing (In − α0W) and (In − τ0M) with eλ0W and eρ0M, respectively. The matrix

exponential terms satisfy the following properties (LeSage and Pace, 2007):

1. ecA is non-singular, where A is an n× n matrix and c is a scalar constant,

2. (ecA)−1 = e−cA,

3.
∣∣ecA∣∣ = ec tr(A), where | · | is the determinant operator and tr(·) is the trace operator,

4. eAeB = eA+B, where A and B are two n × n matrices satisfying the commutative property

AB = BA.

Because of these properties, the spatial models formulated with the matrix exponential terms have

some advantages over the spatial models formulated with the spatial autoregressive processes. The

first and second properties ensure that the reduced form of matrix exponential models always exists

and does not require any restrictions for the spatial parameters. In the context of (2.1), the reduced

form can be expressed as

Y = e−λ0WXβ0 + e−λ0We−ρ0MV. (2.3)

This reduced form suggests an exponential pattern of decay for the influence of high-order neigh-

boring characteristics while the reduced form of a SAR process gives a geometric decay for the influence

of high-order neighboring characteristics. We note that analogous to time series literature, fractionally

differenced and fractionally integrated processes can also be considered for allowing possible slowly de-

caying rates for high-order neighborhood characteristics (LeSage and Pace, 2009; Otto and Sibbertsen,

2023).

The third property implies that
∣∣eλW

∣∣ = eλtr(W) = 1 because W has zero diagonal elements.

This property ensures that the log-likelihood functions of matrix exponential models are free of any

Jacobian terms that need to be computed many times during estimation (see Section 4 for the details).

On the other hand, the likelihood functions of spatial autoregressive models are not free of Jacobian

terms. For example, the likelihood function of the SARAR(1,1) model involves |In−τM| and |In−αW|,

which must be computed in each iteration during estimation.

The MESS(1,1) specification nests two alternative specifications, namely, the MESS(1,0) and

MESS(0,1), which can be obtained by setting λ0 = 0 and ρ0 = 0, respectively. A spatial Durbin
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extension can be obtained by including the spatial lags of the explanatory variables as regressors:

eλ0WY = Xβ0 + WXδ0 + U, eρ0MU = V, (2.4)

where WX denotes the spatial lag of X and δ0 is the corresponding vector of coefficients.

In the MESS(1,1) model, spatial interactions in the outcome variable arise only trough W, and

in the disturbance terms only through M. In some cases, spatial dependence may arise from different

sources, requiring different matrix exponential terms formulated with different spatial weights matrices.

Let {Wi}pi=1 and {Mj}qj=1 be two sequences of spatial weights matrices. Then, following LeSage and

Pace (2009) and Debarsy et al. (2015), a high-order version including the matrix exponential terms

formulated with {Wi}pi=1 and {Mj}qj=1 can be specified as

e
∑p
i=1 λi0WiY = Xβ0 + U, e

∑q
j=1 ρj0MjU = V, (2.5)

where {λi0}pi=1 and {ρj0}qj=1 are sequences of spatial parameters. This model can be called the

MESS(p, q) model. We can alternatively define the high-order version in the following way:

(
p∏
i=1

eλi0Wi

)
Y = Xβ0 + U,

 q∏
j=1

eρj0Mj

U = V. (2.6)

This version may not coincide with (2.5) because the fourth property mentioned above states that

eAeB = eA+B holds when A and B are commutative, i.e., AB = BA.

Finally, we specify the distribution of the elements of V. We can consider both homoskedastic

and heteroskedastic error terms as specified in the following assumptions.

Assumption 1. vi’s are independent and identically distributed (i.i.d.) across i with mean zero and

variance σ2
0, and E |vi|4+% <∞ for some % > 0.

Assumption 2. vi’s are independently distributed over i with E (vi) = 0 and Var (vi) = σ2
i , and

E |vi|4+% <∞ for some % > 0.

Both assumptions require that the first 4 + % moments of the error terms exist and are finite,

which is required by the central limit theorem (CLT) considered by Kelejian and Prucha (2001, 2010)

for the linear and quadratic forms of V (see Lemma 4 in the Appendix).

3 Computation of matrix exponential terms

A prominent issue in the estimation of MESS-type models is the computation of matrix exponential

terms. To this end, there are several methods suggested in the literature such as the Taylor series

6



approximation, Padé approximation, ordinary differential equation methods, polynomial methods,

matrix decomposition methods, splitting methods and Krylov space methods. Popular software such

as Python, R, MATLAB and Mathematica provide functions that can be used to compute the matrix

exponential of a given matrix. For example, MATLAB (function expm), Mathematica (function Ma-

trixExp) and Python (function scipy.linalg.expm) utilize a scaling and squaring method combined

with a Padé approximation for the computation of matrix exponential terms.

Moler and Van Loan (1978, 2003) assess the effectiveness of nineteen methods according to the

following attributes: (i) generality, (ii) reliability, (iii) stability, (iv) accuracy, (v) efficiency, (vi) storage

requirements, (vii) ease of use, and (viii) simplicity. They conclude that though “none (of the methods

in their paper) are completely satisfactory,” a scaling and squaring method with either the rational

Padé or Taylor approximants can be the most effective one to compute the matrix exponential terms.

As pointed out by Moler and Van Loan (1978, 2003), all methods suggested in the literature

are dubious in the sense that a sole method may not be entirely reliable for all applications. For

example, in the context of MESS-type models, the scaling and squaring method combined with the

Padé approximation as implemented in MATLAB through expm function can be highly costly in terms

of computation time (Yang et al., 2021). Our ensuing analysis on the estimation of the MESS(1,1)

model indicates that we need to compute terms such as eλWeρMY and eρMX. Because the matrix

exponential terms show up as premultiplying a conformable vector, i.e., the matrix-vector product

structure, instead of trying to approximate eλW and eρM, approximations to eλWeρMY and eρMX

can be computed (LeSage and Pace, 2007). In fact, the matrix-vector product approximation can

reduce the computation time significantly.

In the following, we show how to approximate the matrix-vector product terms eλWeρMY and

eρMX. Let Diag(a1, . . . , an) be the n× n diagonal matrix with the ith diagonal element ai. We first

consider eλWeρMY. We can truncate the matrix exponential terms at the (q+ 1)th order and express

eλWeρMY as

eρMeλWY ≈
q∑
i=0

ρiMi

i!

q∑
j=0

λjWj

j!
Y

=

q∑
i=1

i−1∑
j=0

ρiλjMiWj

i!j!
Y +

q∑
i=1

i−1∑
j=0

ρjλiMjWi

i!j!
Y +

q∑
i=0

ρiλiMiWi

(i!)2
Y

= Y1D1κ1(λ, ρ) + Y2D2κ2(λ, ρ) + Y3D3κ3(λ, ρ), (3.1)
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where

Y1 =
[
MY,M2Y,M2WY,M3Y,M3WY,M3W2Y, . . . ,MqY,MqWY, . . . ,MqWq−1Y

]
,

Y2 =
[
WY,W2Y,MW2Y,W3Y,MW3Y,M2W3Y, . . . ,WqY,MWqY, . . . ,Mq−1WqY

]
,

Y3 =
[
Y,MWY,M2W2Y, . . . ,MqWqY

]
,

D1 = D2 = Diag

(
1

0!1!
,

1

0!2!
,

1

1!2!
, . . . ,

1

0!q!
, . . . ,

1

(q − 1)!q!

)
,

D3 = Diag

(
1

(0!)2
,

1

(1!)2
,

1

(2!)2
, . . . ,

1

(q!)2

)
,

κ1(λ, ρ) =
[
ρ, ρ2, ρ2λ, ρ3, ρ3λ, ρ3λ2, . . . , ρq, ρqλ, . . . , ρqλq−1

]′
,

κ2(λ, ρ) =
[
λ, λ2, λ2ρ, λ3, λ3ρ, λ3ρ2, . . . , λq, λqρ, . . . , λqρq−1

]′
,

κ3(λ, ρ) =
[
1, ρλ, ρ2λ2, ρ3λ3, . . . , ρqλq

]′
.

The result in (3.1) expresses eρMeλWY in terms of Yj and Dj for j ∈ {1, 2, 3}. These terms can be

computed once, and then supplied as inputs for the objective function in an optimization solver.

Let X = [X1,X2, . . . ,Xk], where Xi is the ith column of X. Then, we can express eρMX as

eρMX =
[
eρMX1, e

ρMX2, . . . , e
ρMXk

]
≈ XD4κ4(ρ), (3.2)

where

X = [X1,MX1, . . . ,M
qX1,X2,MX2, . . . ,M

qX2, . . . ,Xk,MXk, . . . , MqXk] ,

D4 = Ik ⊗Diag

(
1

0!
,

1

1!
,

1

2!
, . . . ,

1

q!

)
,

κ4(ρ) = Ik ⊗
[
1, ρ, ρ2, . . . , ρq

]′
.

The approximation in (3.2) indicates that the computation of eρMX also requires only the matrix-

vector product operations. We can compute X and D4 only one time and then pass these terms as

the inputs of the objective function in an optimization solver.

In an extensive Monte Carlo simulation study, Yang et al. (2021) compared the computation

time required by the matrix-vector product method with the expm function of MATLAB. For the

QMLE, they demonstrated that the matrix-vector product method reduced computation time by 98%

to 99% compared to the expm function. In the case of GMME, the computation time decreased by

95% to 97%. In the context of the Bayesian estimator, the computation time was reduced by at least

99%.
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4 Maximum likelihood estimation approach

The maximum likelihood (ML) estimation of the MESS model has been considered for both the

homoskedastic case (LeSage and Pace, 2007, 2009; Debarsy et al., 2015) and the heteroskedastic case

(Debarsy et al., 2015). In this section, we first introduce the estimation approach for the homoskedastic

case and then for the heteroskedastic case.

4.1 Estimation under homoskedasticity

In this section, we will consider the quasi maximum likelihood estimation of the MESS(1,1) model

with homoskedastic disturbances as maintained in Assumption 1. Let θ = (γ
′
, σ2)

′
, γ = (β

′
, ζ
′
)
′

and ζ = (λ, ρ)
′
. Also let θ0 = (γ

′
0, σ

2
0)
′

denote the true values of the parameters. Then, the quasi

log-likelihood function for the MESS(1,1) is given by

lnL(θ) = −n
2

ln(2πσ2) + ln
∣∣∣eλW

∣∣∣+ ln
∣∣eρM∣∣− 1

2σ2
(eλWY −Xβ)

′
eρM

′
eρM(eλWY −Xβ).

Since ln
∣∣eλW

∣∣ = ln(eλtr(W)) = ln 1 = 0 and ln
∣∣eρM∣∣ = ln(eρtr(M)) = ln 1 = 0, the two Jacobian terms

disappear in the quasi log-likelihood function. Thus, the quasi log-likelihood function simplifies to

lnL(θ) = −n
2

ln(2πσ2)− 1

2σ2
(eλWY −Xβ)

′
eρM

′
eρM(eλWY −Xβ). (4.1)

We can concentrate out σ2 from the quasi log-likelihood function to obtain the concentrated quasi

log-likelihood function only involving γ. From the first order condition with respect to σ2, the quasi

maximum likelihood estimator of σ2 is given by

σ̂2(γ) =
1

n
(eλWY −Xβ)

′
eρM

′
eρM(eλWY −Xβ). (4.2)

Substituting (4.2) into (4.1), we obtain the concentrated quasi log-likelihood function as

lnL(γ) = −n
2

ln(2π + 1)− n

2
ln σ̂2(γ). (4.3)

Then, the QMLE γ̂ of γ0 is defined as

γ̂ = arg max
γ

lnL(γ),

which is equivalent to

γ̂ = arg min
γ

Q(γ), (4.4)
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where Q(γ) = (eλWY−Xβ)
′
eρM

′
eρM(eλWY−Xβ). Substituting γ̂ into (4.2), we obtain the QMLE

of σ2 as σ̂2 = σ̂2(γ̂).

The large sample properties of the QMLE γ̂ can be established under some regularity conditions.

For consistency, the necessary conditions are identifiable uniqueness of γ0 and the uniform stochastic

convergence of the quasi maximum likelihood function to its population counterpart (White, 1994,

Theorem 3.4). For asymptotic normality of γ̂, the CLT for linear and quadratic forms can be utilized

(Kelejian and Prucha, 2001, 2010). The low level assumptions guaranteeing the large sample properties

of γ̂ are (i) the existence of moments of error terms up to 4 + % moment, (ii) a manageable degree of

spatial correlation, (iii) a compact parameter space for ζ, (iv) the non-singularity of certain matrices

in large samples, and (v) certain restrictions to guarantee identification of γ0 in large samples. A

complete formal list of these low level assumptions is provided in Debarsy et al. (2015).

The score functions with respect to the elements of γ are given by

∂Q(γ)

∂γ
=


β : −2X

′
eρ0M

′
V(γ),

λ : 2V
′
(γ)eρMWeλWY,

ρ : 2V
′
(γ)MV(γ),

(4.5)

where V(γ) = eρM(eλWY−Xβ). Define B = Var
(

1√
n
∂Q(γ0)
∂γ

)
and A = E

(
− 1
n
∂2Q(γ0)
∂γ∂γ′

)
. To introduce

the closed-forms of A and B, let µ3 = E(v3
i ), µ4 = E(v4

i ), W = eρ0MWe−ρ0M, Hs = H + H
′

for any

square matrix H and vecD(H) be a vector containing the diagonal elements of H. Then, using (4.5)

and Lemma 2 in Appendix A, we obtain

A = − 1

n


2
(
eρ0MX

)′ (
eρ0MX

)
∗ ∗

−2
(
Weρ0MXβ0

)′
eρ0MX Aλλ ∗

0 σ2
0tr (WsMs) σ2

0tr (MsMs)

 ,

B = 2σ2
0A +

1

n


0 ∗ ∗

−2µ3 (vecD (Ws))′ eρ0MX 0 ∗

0 0 Bρρ

 ,

where the elements are defined as Aλλ = σ2
0tr (WsWs) + 2

(
Weρ0MXβ0

)′ (
Weρ0MXβ0

)
and Bρρ =(

µ4 − 3σ4
0

)
vec′D (Ws) vecD (Ws) + 4µ3

(
Weρ0MXβ0

)′
vecD (Ws). The asymptotic distribution of γ̂

can be derived by applying the mean value theorem to ∂Q(γ̂)
∂γ around γ0. By the mean value theorem,

we can write
√
n(γ̂ − γ0) = −

(
1
n
∂2Q(γ̄)

∂γ∂γ′

)−1
1√
n
∂Q(γ0)
∂γ , where γ̄ lies between γ̂ and γ0 elementwise.

Then, the desired result follows by showing that 1
n
∂2Q(γ̄)

∂γ∂γ′
− 1

n E
(
∂2Q(γ0)

∂γ∂γ′

)
= op(1) and the asymptotic
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normality of 1√
n
∂Q(γ0)
∂γ by Lemma 4 in Appendix A. Thus, it follows that

√
n(γ̂ − γ0)

d−→ N
(
0, lim

n→∞
A−1BA−1

)
. (4.6)

Note that there are two cases that yield B = 2σ2
0A. The first case arises when W and M

commute. Under the commutative property, we have W = W and vecD(Ws) = 0, suggesting that

B = 2σ2
0A. The second case occurs when the disturbance terms are normally distributed. Under the

normality, we have µ4 = 3σ4
0 and µ3 = 0, yielding again B = 2σ2

0A. In either case, the result in (4.6)

reduces to
√
n(γ̂ − γ0)

d−→ N(0, limn→∞ 2σ2
0A−1).

Finally, for inference, the plug-in estimators of A and B can be utilized. To that end, σ2
0 can

be consistently estimated by evaluating (4.2) at γ̂, and µ3 and µ4 can be consistently estimated by

their sample analogs using the residuals V(γ̂). Thus, the standard error of γ̂ can be obtained as the

square root of the diagonal elements of 1
nA−1(γ̂)B(γ̂)A−1(γ̂), where A(γ̂) and B(γ̂) are the plug-in

estimators of A and B, respectively.

4.2 Estimation under heteroskedasticity

In this subsection, we consider the quasi-maximum likelihood estimation of the MESS(1,1) under

the assumption of heteroskedastic error terms. Let Σ be the variance covariance matrix of the error

terms, i.e., Σ = Diag(σ2
1, . . . , σ

2
n), the diagonal matrix formed by σ2

i ’s. The score functions of the

quasi likelihood function evaluated at γ0 are given by

∂Q(γ0)

∂γ
=


β : −2X

′
eρ0M

′
V,

λ : 2V
′
eρ0MW

(
Xβ0 + e−ρ0MV

)
,

ρ : 2V
′
MV.

The expectation of the score functions with respect to β and ρ at γ0 are zero by Lemma 2 in Appendix

A. However, the expectation of the score function with respect to λ at γ0 is tr(WΣ). By Lemma 1

in Appendix A, the order of this term is O(n) under the assumption that W and M are bounded in

matrix column sum and row sum norms. Hence, the QMLE γ̂ may not be consistent. However, when

W and M commute, we have W = W, yielding tr(WΣ) = 0. Hence, when W and M commute,

the QMLE of MESS(1,1) may remain consistent under the assumption of heteroskedastic disturbance

terms.

The consistency and asymptotic normality of the QMLE γ̂ can be proved similarly to the

homoskedastic case. Let D = E
(
− 1
n
∂2Q(γ0)
∂γ∂γ′

)
and F = Var

(
1√
n
∂Q(γ0)
∂γ

)
. Using Lemma 2 in Appendix

11



A, we obtain

D = − 2

n


(
eρ0MX

)′ (
eρ0MX

)
∗ ∗

−
(
Weρ0MXβ0

)′
eρ0MX Dλλ ∗

0 tr (MsWΣ) tr (MsMΣ)

 ,

F =
2

n


2
(
eρ0MX

)′
Σ
(
eρ0MX

)
∗ ∗

−2
(
ΣWeρ0MXβ0

)′
eρ0MX Fλλ ∗

0 tr (ΣMsΣWs) tr (ΣMsΣMs)

 ,

where

Dλλ = tr (WsWΣ) +
(
Weρ0MXβ0

)′ (
Weρ0MXβ0

)
,

Fλλ = tr (ΣWsΣWs) + 2
(
Weρ0MXβ0

)′
Σ
(
Weρ0MXβ0

)
.

Then, it can be shown that

√
n(γ̂ − γ0)

d−→ N
(
0, lim

n→∞
D−1FD−1

)
. (4.7)

For inference, the standard error of γ̂ can be obtained as the square root of the diagonal elements

of 1
nD−1(γ̂)F(γ̂)D−1(γ̂), where D(γ̂) and F(γ̂) are the plug-in estimators of D and F, respectively.

Also, note that D and F involve the unknown diagonal matrix Σ. As in White (1980), the terms

involving Σ can be consistently estimated by replacing Σ with Σ̂ = Diag
(
v2

1(γ̂), . . . , v2
n(γ̂)

)
, where

vi(γ̂) is the ith element of V(γ̂).

5 M-estimation approach

In this section, we study the consistent estimation of the MESS model under heteroskedasticity. Since

the content of this section is new and has not been explored in previous literature, we present formal

results along with the necessary assumptions. Under heteroskedasticity, when W and M do not

commute, we can use the M-estimation method to formulate a consistent estimator of γ based on the

adjusted score functions. We denote V(β, ζ) = eρM(eλWY − Xβ) and V = V(β0, ζ0). Then, the

12



score functions based on (4.1) can be determined as2

S(β, ζ) =


β : X

′
eρM

′
V(β, ζ),

λ : −Y
′
eλW′

W
′
eρM

′
V(β, ζ),

ρ : −V
′
(β, ζ)MV(β, ζ).

(5.1)

The essential reason why the QMLE is not consistent is plimn→∞
1
nS(γ0) 6= 0. In the case of the score

functions with respect to β and ρ, we have E(X
′
eρ0M′V) = 0, and E(V

′
MV) = tr(ΣM) = 0 because

Σ is a diagonal matrix and M has zero diagonal elements. In the case of the score function with

respect to λ, we have

E(Y
′
eλ0W′

W
′
eρ0M′V) = E(Y

′
eλ0W′

eρ0M′e−ρ0M′W
′
eρ0M′V) = E(Y

′
eλ0W′

eρ0M′W
′
V)

= E(V
′
WV) = tr(ΣW). (5.2)

If W and M commute, i.e., WM = MW, then we have W = W, which yields tr(ΣW) = tr(ΣW) = 0.

Thus, when the commutative property holds, we have plimn→∞
1
nS(γ0) = 0, suggesting that the

QMLE can be consistent under heteroskedasticity. However, if WM 6= MW, then we have tr(ΣW) =

O(n) and plimn→∞
1
nS(γ0) 6= 0 in general, indicating that the QMLE may not be consistent under

heteroskedasticity. We will adjust the score function with respect to λ so that plimn→∞
1
nS(γ0) = 0

holds in all cases.

To adjust the score function with respect to λ, we use the trace property tr(DA) = tr(D Diag(A)),

where D is an n × n diagonal matrix and A is a conformable matrix. Using this property, we can

express E(Y
′
eλ0W′

W
′
eρ0M′V) as

E(Y
′
eλ0W′

W
′
eρ0M′V) = E(Y

′
eλ0W′

eρ0M′W
′
V) = tr(ΣW) = tr(Σ Diag(W))

= E(V
′
Diag(W)V) = E(Y

′
eλ0W′

eρ0M′ Diag(W)V). (5.3)

Then, subtracting the last term from the second term in (5.3), we obtain

E(Y
′
eλ0W′

eρ0M′W
′
V)− E(Y

′
eλ0W′

eρ0M′ Diag(W)V) = 0

=⇒ E(Y
′
eλ0W′

eρ0M′WDV) = 0, (5.4)

where WD = W−Diag(W). Thus, we suggest using the sample counter part of E(Y
′
eλ0W′

eρ0M′WDV)

as the adjusted score function with respect to λ. Then, the adjusted score functions take the following

2Under heteroskedasticity, there is no score function with respect to σ2. Our aim is to construct adjusted score
functions such that E (S(β0, ζ0)) = 0.

13



form:

S∗(γ) =


β : X

′
eρM

′
V(β, ζ),

λ : −Y
′
eλW′

eρM
′WD(ρ)V(β, ζ),

ρ : −V
′
(β, ζ)MV(β, ζ),

(5.5)

where WD(ρ) = W(ρ) − Diag(W(ρ)) and W(ρ) = eρMWe−ρM. Note that E (S∗(γ0)) = 0 holds by

construction. We first derive the estimator of β0 for a given ζ value, which is given by

β̂M (ζ) = (X
′
eρM

′
eρMX)−1X

′
eρM

′
eρMeλWY. (5.6)

Then, substituting β̂M (ζ) into the λ and ρ elements of (5.5), we obtain the concentrated adjusted

score functions as

Sc∗(ζ) =

 λ : −Y
′
eλW′

eρM
′WD(ρ)V̂(ζ),

ρ : −V̂
′
(ζ)MV̂(ζ),

(5.7)

where V̂(ζ) = V(β̂M (ζ), ζ). Then, the M-estimator (ME) of ζ0 is defined by

ζ̂M = argsolve{Sc∗(ζ) = 0}. (5.8)

Substituting ζ̂M into (5.6), we get the M-estimator for β as β̂M = β̂M (ζ̂M ). To prove the consistency

of γ̂M = (β̂
′
M , ζ̂

′
M )
′
, we only need to prove the consistency of ζ̂M since β̂M = β̂M (ζ̂M ). To that end,

we let S̄∗(β, ζ) = E(S∗(β, ζ)) be the population counterpart of the adjusted score functions in (5.5).

Given ζ, we can write β̄M (ζ) = (X
′
eρM

′
eρMX)−1X

′
eρM

′
eρMeλW E(Y), which can be substituted into

the λ and ρ elements of S̄∗(β, ζ) to obtain

S̄c∗(ζ) =

 λ : −E
(
Y
′
eλW′

eρM
′WD(ρ)V̄(ζ)

)
,

ρ : −E
(
V̄
′
(ζ)MV̄(ζ)

)
,

(5.9)

where V̄(ζ) = V(β̄M (ζ), ζ). The uniform convergence supζ∈∆
1
n

∥∥S∗c(ζ)− S̄∗c(ζ)
∥∥ p−−→ 0 and As-

sumption 6 in Appendix B ensure the consistency of ζ̂M .

Theorem 5.1. Under Assumptions 2–6 stated in Appendix B, we have γ̂M
p−→ γ0.

Proof. See Section C.1 in the Appendix.

To derive the asymptotic distribution of γ̂M , we apply the mean value theorem to S∗(γ̂M ) = 0 at

γ0, to obtain
√
n(γ̂M −γ0) = −

(
1
n
∂S∗(γ)

∂γ′

)−1
1√
n
S∗(γ0), where γ lies between γ0 and γ̂M elementwise.

By substituting the reduced form Y = e−λ0W
(
Xβ0 + e−ρ0MV

)
into S∗(γ0), we obtain a linear-
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quadratic form in V:

S∗(γ0) =


β : X

′
eρ0M′V,

λ : −β′0X
′
eρ0M′WDV −V

′WDV,

ρ : −V
′
MV,

(5.10)

where WD = WD(ρ0). Thus, the CLT for the linear-quadratic forms of V in Lemma 4 of the Appendix

can be used to establish the asymptotic normality of 1√
n
S∗(γ0). Also, our assumptions ensure that

1
n
∂S∗(γ)

∂γ′
− 1

n E
(
∂S∗(γ0)

∂γ′

)
= op(1). Using these results, we determine the asymptotic distribution of γ̂M

in Theorem 5.2.

Theorem 5.2. Under Assumptions 2–6 stated in Appendix B, we have

√
n(γ̂M − γ0)

d−−→ N
(

0, lim
n→∞

Ψ−1(γ0)Ω(γ0)Ψ−1′(γ0)
)
, (5.11)

where Ψ(γ0) = − 1
n E

(
∂S∗(γ0)

∂γ′

)
and Ω(γ0) = Var

(
1√
n
S∗(γ0)

)
are assumed to exist and Ψ(γ0) is

assumed to be positive definite for sufficiently large n.

Proof. See Section C.2 in the Appendix.

To conduct inference, we need consistent estimators of Ψ(γ0) and Ω(γ0). For Ψ(γ0), we can

use its observed counterpart given by Ψ(γ̂M ) = − 1
n
∂S∗(γ)

∂γ′
|γ=γ̂M . The elements of Ψ(γ) are given by

Ψββ(γ) =
1

n
X
′
eρM

′
eρMX, Ψβλ(γ) = − 1

n
X
′
eρM

′
Y(ζ),

Ψβρ(γ) = − 1

n
X
′
eρM

′
MsV(β, ζ), Ψλβ(γ) = − 1

n
Y
′
eλW′

eρM
′
WD(ρ)eρMX,

Ψλλ(γ) =
1

n
Y
′
(ζ)WD(ρ)V(β, ζ) +

1

n
Y
′
eλW′

eρM
′
WD(ρ)Y(ζ),

Ψλρ(γ) =
1

n
Y
′
eλW′

eρM
′
M
′
WD(ρ)V(β, ζ) +

1

n
Y
′
eλW′

eρM
′
ẆD(ρ)V(β, ζ)

+
1

n
Y
′
eλW′

eρM
′
WD(ρ)MV(β, ζ),

Ψρβ(γ) = Ψβρ(γ), Ψρλ(γ) =
1

n
Y
′
(ζ)MsV(β, ζ),

Ψρρ(γ) =
1

n
V
′
(β, ζ)MsMV(β, ζ),

where ẆD(ρ) = ∂WD(ρ)
∂ρ = MWD(ρ)−WD(ρ)M−Diag (MWD(ρ)−WD(ρ)M) and Y(ζ) = eρMWeλWY.

In the proof of Theorem 5.2, we show that Ψ(γ̂M ) is a consistent estimator of Ψ(γ0). Using Lemma
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2 in the Appendix, we determined the closed form of Ω(γ0) as

Ω(γ0) =


1
nX

′
eρ0M′Σeρ0MX − 1

nX
′
eρ0M′ΣW′

De
ρ0MXβ0 0k×1

∗ Ω22
1
ntr(ΣWDΣMs)

∗ ∗ 1
ntr(ΣMΣMs)

 ,

where Ω22 = 1
nβ
′
0X
′
eρ0M′WDΣW′

De
ρ0MXβ0 + 1

ntr(ΣWDΣWs
D). Let Ω(γ̂M ) be the plug-in estimator

of Ω(γ0), where we replace Σ with Σ̂ = Diag
(
v2

1(γ̂), . . . , v2
n(γ̂)

)
and vi(γ̂M ) is the ith element of

V(γ̂M ).

Theorem 5.3. Under Assumptions 2–6 stated in Appendix B, we have Ω(γ̂M ) = Ω(γ0) + op(1).

Proof. See Section C.3 in the Appendix.

Thus, the standard error of γ̂M can be obtained as the square root of the diagonal elements of

1
nΨ−1(γ̂M )Ω(γ̂M )Ψ−1′(γ̂M ).

6 GMM estimation approach

In this section, we consider the GMM estimation of the MESS model, which can be more efficient

than the QML estimation for either the homoskedastic case or the heteroskedastic case (Debarsy

et al., 2015).

6.1 Estimation under homoskedasticity

In this subsection, we consider the GMM estimation of the MESS(1,1) model under Assumption 1.

Recall again from the definition of MESS(1,1) that V(γ) = eρM(eλWY−Xβ), where γ = (β
′
, ζ
′
)
′

and

ζ = (λ, ρ)
′
. We consider the following vector of moment functions consisting of kp quadratic moments

and kf linear moments:

g(γ) =
1

n

(
V
′
(γ)P1V(γ), . . . ,V

′
(γ)PkpV(γ),V

′
(γ)F

)′
,

where Pm’s are n × n matrices of constants with tr(Pm) = 0 for m = 1, . . . , kp, and F is the n × kf
matrix of instrumental variables (IV). Given an arbitrary symmetric weighting matrix Φ, the GMM

objective function is given by g
′
(γ)Φg(γ). Then, an initial GMME (IGMME) can be obtained by

γ̂ = arg min
γ

g
′
(γ)Φg(γ). (6.1)
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Define G = E
(
∂g(γ0)

∂γ′

)
and H = nE (g (γ0) g′ (γ0)). Let vec(A) denote the column vector formed by

stacking the columns of matrix A and recall that vecD(A) denotes the column vector formed by the

diagonal elements of the matrix A. Then, by Lemma 2 in Appendix A, we obtain

H =
1

n

 σ4
0
2 ω

′
ω + 1

4

(
µ4 − 3σ4

0

)
ω
′
dωd

1
2µ3ω

′
dF

1
2µ3F

′
ωd σ2

0F′F

 ,

and

G =
1

n

 0
σ2
0
2 ω
′ vec (Ws)

σ2
0
2 ω

′
vec (Ms)

−F
′
eτ0MX F

′Weτ0MXβ0 0

 ,

where ω = (vec(Ps
1), . . . , vec(Ps

kp
)) and ωd = (vecD(Ps

1), . . . , vecD(Ps
kp

)).

The large sample properties of the IGMME γ̂ can be established under some regularity condi-

tions. For consistency, the necessary conditions are identification of γ0 from the population moments

and the uniform stochastic convergence of the generalized method of moments objective function to

its population counterpart. For the asymptotic normality of γ̂, the central limit theorem for linear and

quadratic forms can be utilized.3 The asymptotic distribution of γ̂ can be derived by applying the mean

value theorem to ∂g
′
(γ̂)
∂γ Φg(γ̂) = 0 at γ0 to get

√
n(γ̂ − γ0) = −

(
∂g
′
(γ̂)
∂γ Φ∂g(γ̄)

∂γ′

)−1
∂g
′
(γ̂)
∂γ Φ

√
ng(γ0),

where γ̄ lies between γ̂ and γ0 elementwise. Then, the asymptotic distribution of
√
n(γ̂−γ0) follows by

applying the CLT in Lemma 4 in the Appendix to
√
ng(γ0) and showing that ∂g(γ̂)

∂γ′
−E

(
∂g(γ0)

∂γ′

)
= op(1).

Thus, we have

√
n (γ̂ − γ0)

d→ N
(
0, lim

n→∞
(G
′
ΦG)−1G

′
ΦHΦG(G

′
ΦG)−1

)
. (6.2)

From the expression for the variance-covariance matrix of IGMME, we can see that the precision of the

estimator can be improved by replacing the arbitrary weighing matrix Φ in the objective function with

H−1. The resulting GMME is called the optimal GMME (Hansen, 1982). However, this estimator

is not feasible as H−1 is unknown. To make it feasible, a plug-in estimator Ĥ ≡ H(γ̂) based on the

initial GMME γ̂ can be formulated. Then, the feasible optimal GMME is defined by

γ̂o = arg min
γ

g
′
(γ)Ĥ−1g(γ). (6.3)

Under some conditions, Debarsy et al. (2015) show that

√
n (γ̂o − γ0)

d→ N
(
0, lim

n→∞
(G
′
H−1G)−1

)
. (6.4)

3The low level assumptions guaranteeing the large sample properties are provided in Debarsy et al. (2015).
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Debarsy et al. (2015) determine the best set of moment functions that provide the most efficient GMME

for the MESS(1,1) under homoskedasticity. Their idea is to decompose the components of the inverse of

the variance-covariance matrix of the optimal GMME, and then use the Cauchy-Schwarz inequality in

such a way that an upper bound on the inverse of the variance-covariance matrix that is free of arbitrary

pieces of the moment functions (free of Pi’s and F) can be attained. The resulting GMME is termed

as the best GMME (BGMME). When the disturbance terms are normally distributed, the BGMME

turns out to be asymptotically as efficient as the QMLE. However, when the disturbance terms are

not normally distributed, and W and M do not commute, the BGMME can be asymptotically more

efficient than the QMLE. The best set of moment functions is

g∗(γ) =
1

n

(
V
′
(γ)P∗1V(γ), . . . ,V

′
(γ)P∗k∗+4V(γ),V

′
(γ)F∗

)′
, (6.5)

where P∗1 = W, P∗2 = Diag(W), P∗3 = Diag(eρ0MWXβ0)(t), P∗4 = M, P∗m+4 = Diag(eρ0MXm)(t) for

m = 1, ..., k∗, and F∗ = (F∗1,F
∗
2,F

∗
3,F

∗
4) with F∗1 = eρ0MX∗, F∗2 = eρ0MWXβ0, F∗3 = l, F∗4 = vecD(W),

where X∗ excludes the intercept term in X if M is row-normalized so that F∗1 does not contain the

intercept term generated in eρ0MX, k∗ is the number of columns in X∗, A(t) = A− Intr(A)/n for any

n× n matrix A and l is an n× 1 vector of ones.

6.2 Estimation under heteroskedasticity

In this subsection, we consider the GMM estimation of MESS(1,1) under Assumption 2. Recall that

Σ denotes the variance-covariance matrix of the error terms, i.e., Σ = Diag(σ2
1, . . . , σ

2
n). Similar to

the homoskedastic case, we again employ the following vector of moment functions consisting of kp

quadratic moment functions and kf linear moment functions:

g(γ) =
1

n
(V
′
(γ)P1V(γ), . . . ,V

′
(γ)PkpV(γ),V

′
(γ)F)

′
.

At γ0, we have E
(
V
′
PmV

)
= tr (PmΣ) = tr (Σ Diag(Pi)), which is equal to zero if the diagonal

elements of Pm are zeros. Hence, in the heteroskedastic case, we require that the diagonal elements of

Pm are zeros, i.e., Diag(Pm) = 0 for m = 1, 2, . . . , kp. Then, an initial GMME based on an arbitrary

symmetric weighting matrix Φ, with rank greater than or equal to k + 2, can be defined as

γ̂ = arg min g
′
(γ)Φg(γ). (6.6)
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Let G = E
(
∂g(γ0)

∂γ′

)
and H = nE (g (γ0) g′ (γ0)). By Lemma 2 in Appendix A, we can show that

H =
1

n

 1
2ω
′
ω 0

0 F
′
ΣF

 ,

and

G =
1

n

 0 1
2ω
′
vec
(
Σ1/2

(
Σ−1W

)s
Σ1/2

)
1
2ω
′
vec
(
Σ1/2

(
Σ−1M

)s
Σ1/2

)
−F

′
eτ0MX F

′Weτ0MXβ0 0

 ,

where ω = vec(Σ1/2Ps
1Σ

1/2, . . . ,Σ1/2Ps
kp

Σ1/2). It follows again that

√
n (γ̂ − γ0)

d→ N
(
0, lim

n→∞
(G
′
ΦG)−1G

′
ΦHΦG(G

′
ΦG)−1

)
. (6.7)

Note that G and H involve the unknown diagonal matrix Σ. These terms can be consistently estimated

by replacing Σ with Diag(v2
1(γ̂), . . . , v2

n(γ̂)). Let Ĥ be the plug-in estimator of H based on the initial

GMME γ̂. Then, a feasible optimal robust GMME (RGMME) can be obtained as

γ̂o = arg min g
′
(γ)Ĥ−1g(γ). (6.8)

It can be shown that

√
n (γ̂o − γ0)

d→ N
(
0, lim

n→∞
(G
′
H−1G)−1

)
. (6.9)

In the heteroskedastic case, the best set of moment functions is not feasible because the moment func-

tions involve the unknown Σ, which cannot be consistently estimated. In practice, we can formulate

the RGMME based on the following vector of moment functions (Debarsy et al., 2015):

g∗(γ) =
1

n

(
V
′
(γ)(Ŵ−Diag(Ŵ))V(γ),V

′
(γ)MV(γ),V

′
(γ)F

)′
, (6.10)

where F = (Ŵeτ̂MXβ̂, eτ̂MX) with Ŵ = eτ̂MWe−τ̂M.

7 Bayesian estimation approach

In this section, we provide a comprehensive review of Bayesian estimation methods for the MESS model

under both homoskedastic and heteroskedastic errors (LeSage and Pace, 2007, 2009; Yang et al., 2021;

Doğan et al., 2023).
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7.1 Estimation under homoskedasticity

Following LeSage and Pace (2007), we assume the following independent prior distributions: λ ∼

N(µλ, Vλ), ρ ∼ N(µρ, Vρ), β ∼ N(µβ,Vβ), and σ2 ∼ IG(a, b), where IG denotes the inverse-gamma

distribution. Under these prior distributions, the posterior distribution of parameters can be expressed

as4

p(θ|Y) ∝ p(Y|θ)p(θ) = p(Y|θ)p(β)p(σ2)p(λ)p(ρ),

where p(θ) is the joint prior distribution of θ = (β
′
, σ2, λ, ρ)

′
and p(Y|θ) is the likelihood function

given as

p(Y|θ) = (2πσ2)−n/2 exp

(
− 1

2σ2
(eλWY −Xβ)

′
eρM

′
eρM(eλWY −Xβ)

)
.

Algorithm 1 describes a Gibbs sampler that can be used to generate random draws from p(θ|Y).

Algorithm 1 (Estimation of (2.1) under homoskedasticity).

1. Sampling step for β:

β|Y, λ, ρ, σ2 ∼ N(β̂,Kβ),

where Kβ = (V−1
β + σ−2X

′
eρM

′
eρMX)−1 and β̂ = Kβ(σ−2X

′
eρM

′
eρMeλWY + V−1

β µβ).

2. Sampling step for σ2:

σ2|Y, λ, ρ,β ∼ IG(σ̂2,Kσ2),

where σ̂2 = a+ n
2 and Kσ2 = b+ 1

2(eλWY −Xβ)
′
eρM

′
eρM(eλWY −Xβ).

3. Sampling step for λ:

p(λ|Y,β, ρ, σ2)

∝ exp

(
−1

2

(
σ−2(eλWY −Xβ)

′
eρM

′
eρM(eλWY −Xβ) + V −1

λ (λ2 − 2µλλ)
))

.

Generate a candidate value λnew according to

λnew = λold + cλ ×N(0, 1),

4We use p(·) to denote the relevant density functions, and ignore X in the conditional sets for the sake of simplicity.
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where cλ is a tuning parameter.5 Then, accept the candidate value λnew with probability

P(λnew, λold) = min

(
1,
p(λnew|Y,β, σ2, ρ)

p(λold|Y,β, σ2, ρ)

)
.

4. Sampling step for ρ:

p(ρ|Y,β, λ, σ2)

∝ exp

(
−1

2

(
σ−2(eλWY −Xβ)

′
eρM

′
eρM(eλWY −Xβ) + V −1

ρ (ρ2 − 2µρρ)
))

.

Use the random-walk Metropolis-Hastings algorithm described in Step 3 to generate random draws

from p(ρ|Y,β, λ, σ2).

In Algorithm 1, the conditional posterior distributions of β and σ2 are determined from p(β|Y, λ, ρ, σ2) ∝

p(Y|θ)p(β) and p(σ2|Y, λ, ρ,β) ∝ p(Y|θ)p(σ2), respectively. Since we assume conjugate priors for

β and σ2, these conditional posterior distributions take known forms as shown in Algorithm 1. The

Bayesian argument used to determine these conditional posterior distributions is analogous to the one

used for a linear regression model. On the other hand, the conditional posterior distributions of spatial

parameters are non-standard because the likelihood function is non-linear in terms of these parame-

ters. To sample these parameters, we use the random walk Metropolis-Hastings algorithm suggested

by LeSage and Pace (2009).

7.2 Estimation under heteroskedasticity

Following Lesage (1997) and LeSage and Pace (2009), we assume that the disturbance terms have a

scale mixture of normal distributions such that the scale mixture variables generate different distribu-

tions with distinct variance terms. Thus, we have vi|ηi ∼ N(0, ηiσ
2), where ηi’s are independent scale

mixture variables with ηi ∼ IG(ν/2, ν/2) for i = 1, . . . , n. Let θ = (β
′
, σ2, λ, ρ, ν)

′
, η = (η1, . . . , ηn)

′
,

and H(η) = Diag (η1, . . . , ηn) be the n × n diagonal matrix with the ith diagonal element ηi. Then,

we can derive the conditional likelihood function p(Y|θ,η) as

p(Y|θ,η) = (2πσ2)−n/2

(
n∏
i=1

ηi

)−1/2

(7.1)

× exp

(
− 1

2σ2

(
eλWY −Xβ

)′
eρM

′
H−1(η)eρM

(
eλWY −Xβ

))
.

To introduce a Bayesian estimation approach, we adopt the prior distributions assumed in Section

6.1 for β, λ, ρ, and σ2. In the heteroskedastic case, we also need to determine a prior distribution

5The tuning parameter is determined during the estimation such that the acceptance rate falls between 40% and 60%
(LeSage and Pace, 2009).
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for ν. To that end, we note that the marginal distribution of vi is a t distribution with mean zero,

scale parameter σ2 and ν degrees of freedom, i.e., vi ∼ tν(0, σ2). Thus, we assume the following prior

ν ∼ Uniform(2, ν̄), where Uniform(a, b) denotes the uniform distribution over the interval (a, b), and

ν̄ is a known positive number. This prior distribution ensures that the variance of vi exists because

ν > 2. Also, we can set ν̄ to a large positive number so that the t distribution is allowed to approximate

the normal distribution well-enough.

The posterior distribution of parameters then takes the following form:

p(θ,η|Y) ∝ p(Y|θ, η)p(θ,η) = p(Y|θ,η)p(β)p(σ2)p(λ)p(ρ)p(η|ν)p(ν),

where p(Y|θ,η) is the conditional likelihood function stated in (7.1) and p(θ,η) is the joint prior

distribution of θ and η. Algorithm 2 describes a Gibbs sampler that can be used to generate random

draws from p(θ,η|Y).

Algorithm 2 (Estimation of (2.1) under heteroskedasticity).

1. Sampling step for β:

β|Y, λ, ρ, σ2,η ∼ N(β̂,Kβ),

where Kβ = (V−1
β + σ−2X

′
eρM

′
H−1(η)eρMX)−1, H(η) = Diag(η1, . . . , ηn) and

β̂ = Kβ(σ−2X
′
eρM

′
H−1(η)eρMeλWY + V−1

β µβ).

2. Sampling step for σ2:

σ2|Y, λ, ρ,β,η ∼ IG(σ̂2,Kσ2),

where σ̂2 = a+ n
2 and Kσ2 = b+ 1

2(eλWY −Xβ)
′
eρM

′
H−1(η)eρM(eλWY −Xβ).

3. Sampling step for λ:

p(λ|Y,β, ρ, σ2,η)

∝ exp

(
−1

2

(
σ−2(eλWY −Xβ)

′
eρM

′
H−1(η)eρM(eλWY −Xβ) + V−1

λ (λ2 − 2µλλ)
))

.

Use the random-walk Metropolis-Hastings algorithm described in Step 3 of Algorithm 1 to sample

this parameter.

4. Sampling step for ρ:

p(ρ|Y,β, λ, σ2,η)

∝ exp

(
−1

2

(
σ−2(eλWY −Xβ)

′
eρM

′
eρM(eλWY −Xβ) + V−1

ρ (ρ2 − 2µρρ)
))

.
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Use the random-walk Metropolis-Hastings algorithm described in Step 3 of Algorithm 1 to gen-

erate random draws from p(ρ|Y,β, λ, σ2,η).

5. Sampling step for η:

ηi|Y, λ, ρ,β, σ2, ν ∼ IG

(
ν + 1

2
,
ν

2
+
Y 2
i (γ)

2σ2

)
for i = 1, 2, . . . , n,

where Yi(γ) is the ith element of Y(γ) = eρM
(
eλWY −Xβ

)
.

6. Sampling step for ν:

p(ν|η) ∝ (ν/2)nν/2

Γn(ν/2)

(
n∏
i=1

ηi

)−( ν
2

+1)

exp

(
−

n∑
i=1

ν

2ηi

)
.

Use the Griddy-Gibbs sampler to sample this parameter.

The conditional posterior distributions of β, η, and σ2 take known forms as shown in Algo-

rithm 2. In the case of spatial parameters, we again resort to the random walk Metropolis-Hastings

algorithm suggested by LeSage and Pace (2009). The conditional posterior distribution of ν is deter-

mined from p(ν|Y,β,η, λ, ρ, σ2) = p(ν|η) ∝ p(η|ν)p(ν). However, this distribution does not take a

known form. Since ν has support over (2, ν̄), we suggest using a Griddy-Gibbs sampler to sample this

parameter. Algorithm 3 describes this Griddy-Gibbs sampler.

Algorithm 3 (The Griddy-Gibbs sampler for ν).

1. Construct a grid of points ν1, . . . , νm from the interval (2, ν̄).

2. Compute pi =
∑i

j=1 p(νj |η) for i = 1, . . . ,m, and generate u from Uniform(0, 1).

3. Determine the smallest k such that pk ≥ u and return ν = νk.

8 Estimation in the presence of endogenous and Durbin regressors

The preceding sections consider a regression model with spatial dependence specified by the MESS,

where no endogenous regressors are included. In this section, we consider a MESS model with en-

dogenous and Durbin regressors. The popular nonlinear two-stage least squares (N2SLS) estimation

method in such a setting can have some irregular features (Jin and Lee, 2018).

Consider the following model:

eλ0WY = X∗β10 + Wlβ20 + WX1β30 + Zβ40 + V, (8.1)
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where l is an n× 1 vector of ones, X1 excludes the intercept term from the exogenous variable matrix

X, Z is an n× kz matrix of endogenous regressors, and X∗ = X = [l,X1] if W is not row-normalized

to have row sums equal to one, and X∗ = X1 otherwise. The β10, β20, β30 and β40 are conformable

true parameters, and W, Y and V have the same meanings as those in (2.1). The Durbin regressors

WX1 are neighbors’ characteristics and capture exogenous externalities. When W is row-normalized,

Wl = l is the intercept term; when W is not row-normalized, Wl is also a Durbin regressor. In

particular, if W is not row-normalized and has binary elements, Wl is a vector of out-degrees that

measure the overall numbers of links for each spatial unit. Model (8.1) includes Durbin regressors

explicitly since the MESS structure and the Durbin regressors lead to some irregular features of the

N2SLS estimator. Model (2.1) has not considered Durbin regressors explicitly but can allow for that,

where the theoretical analysis will not be affected although the related expressions for estimators need

to be modified accordingly. To focus on the N2SLS estimation, a MESS process for the disturbances

is not considered in (8.1).6

Let F be an n× kf full rank IV matrix for the N2SLS estimation, where kf is not smaller than

the total number of parameters in φ = (λ,β
′
)
′

with β = (β
′
1,β2,β

′
3,β

′
4)
′
. For example, F can be the

matrix formed by the independent columns of [l,X1,Wl,WX1,W
2l,W2X1, Z̄], where Z̄ is the IV

matrix for Z.7 Assume that the elements of V are independent conditional on F but can have different

conditional variances so that Σ = E(VV
′ |F) is a diagonal matrix of conditional variances. Denote

D = [X∗,Wl,WX1,Z] and Π = F
′
ΣF. The infeasible N2SLS estimation, as if Σ were known, has

the objective function

Q(φ) = (eλWY −Dβ)
′
FΠ−1F

′
(eλWY −Dβ). (8.2)

The N2SLS estimator φ̂ derived by minimizing Q(φ) is consistent under regularity conditions.

Let δ = (β
′
1,β2)

′
and ξ = (β

′
3,β

′
4)
′

when W is row-normalized, and let δ = β1 and ξ =

(β2,β
′
3,β

′
4)′ when W is not row-normalized. Then, ξ contains the coefficients for the Durbin and

endogenous regressors. When ξ0 6= 0, all components of φ̂ are
√
n-consistent and φ̂ has the asymptotic

distribution

√
n(φ̂− φ0)

d−→ N
(

0, lim
n→∞

{ 1

n
E[(−WDβ0,D)′F]Π̄−1 E[F′(−WDβ0,D)]

}−1)
. (8.3)

However, some components of φ̂ have a rate of convergence slower than
√
n and are not asymptotically

normal in the case that ξ0 = 0, i.e., the Durbin and endogenous regressors are irrelevant, which is

unknown when estimation is considered.

6If there is a MESS process for the disturbances, then as in Jin and Wang (2022), the GMM estimation with both
linear and quadratic moments can be considered, since instrumental variables alone are not enough to identify parameters
for the disturbance process.

7If W is row-normalized, then Wl and W2l are redundant.
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When ξ0 = 0, we have

1√
n

∂Q(φ0)

∂λ
+

1√
n

∂Q(φ0)

∂β′
(01×k∗ , δ20, δ

′
10, 01×kz)

′ = op(1),

where k∗ is the number of columns in X∗, δ20 is the last element of δ0 and δ10 contains the remaining

elements. Thus, 1√
n
∂Q(φ0)
∂λ and 1√

n
∂Q(φ0)
∂β are linearly dependent with probability approaching one

(w.p.a.1.). As a result, 1
n
∂Q(φ0)
∂θ

∂Q(φ0)
∂θ′ is singular w.p.a.1. In addition, we can show that 1

n
∂2Q(φ0)
∂θ∂θ′

is also singular for large n. Hence, the usual method of deriving the asymptotic distribution of an

estimator based on the mean value theorem expansion of the first order condition will not work.

The asymptotic distribution of φ̂ in the case with ξ0 = 0 can be derived by first reparameterizing

the model so that the derivative of the new N2SLS objective function with respect to a new parameter

is exactly zero and then investigating a third order Taylor expansion of the first order condition at

the true parameter vector. Let Π̄ = E(Π), kd be the number of columns in D, J be a random vector

that follows the normal distribution N(0,∆), where

∆ = lim
n→∞

2 0

0 Ikd

( 1

n
E[(−W2Xδ0,D)′F]Π̄−1 E[F′(−W2Xδ0,D)]

)−1

2 0

0 Ikd

 ,

and L = J2 − limn→∞[ 2
n E(D′F)Π̄−1 E(F′D)]−1 1

n E(D′F)Π̄−1 E(F′W2X)δ0J1, where J1 is the first

element of J and J2 contains the remaining elements of J . Then, in the case with ξ0 = 0, the N2SLS

estimator φ̂ = (λ̂, β̂′1, β̂2, β̂
′
3, β̂

′
4)′ has the asymptotic distribution

n1/4(λ̂− λ0)

n1/2(β̂1 − β10)

n1/4(β̂2 − β20)

n1/4(β̂3 − β30)

n1/2(β̂4 − β40)


d−→



(−1)BJ
1/2
1

J2x∗

(−1)Bδ20J
1/2
1

(−1)Bδ10J
1/2
1

J2z


I(J1 > 0) +


0

Lx∗

0k×1

Lz

 I(J1 < 0), (8.4)

where I(·) denotes the indicator function, J2x∗ and Lx∗ are vectors consisting of the first k∗ elements of

J2 and L respectively, J2z and Lz are vectors consisting of the last kz elements of J2 and L respectively,

and B is a Bernoulli random variable with success probability described in Jin and Lee (2018). Thus,

only β̂1 and β̂4 are
√
n-consistent, and the remaining components of φ̂ have a slow rate n1/4 of

convergence and follow non-standard asymptotic distributions.

The above N2SLS estimator is an infeasible estimator as Π is unknown. A feasible N2SLS

estimator can be derived as follows. We may first derive an initial consistent but inefficient N2SLS

estimator, e.g., the minimizer φ̌ of (eλWY −Dβ)′F(F′F)−1F′(eλWY −Dβ), and then consider the

feasible N2SLS estimation with the objective function Q̌(φ) = (eλWY−Dβ)′F(F′Σ̌F)−1F′(eλWY−
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Dβ), where Σ̌ = Diag(v̌2
1, · · · , v̌2

n) with v̌i the ith element of eλ̌WY − Dβ̌. The feasible N2SLS

estimator φ̃ has the same asymptotic distribution as the infeasible estimator φ̂.

As ξ0 = 0 and ξ0 6= 0 lead to different asymptotic distributions of θ̂, Jin and Lee (2018) propose

several tests for the hypothesis that ξ0 = 0. Depending on whether ξ0 = 0 is rejected or not, inference

can be based on (8.3) or (8.4). Consider the case with ξ0 6= 0 as an example. By (8.3), the variance of

φ̃ can be estimated by [(−WDβ̃,D)′F(F′Σ̃F)−1F′(−WDβ̃,D)]−1, where Σ̃ = Diag(ṽ2
1, · · · , ṽ2

n) with

ṽi the ith element of eλ̃WY −Dβ̃.

An interesting alternative estimation method is the adaptive group LASSO (AGLASSO), which

can implement model selection and estimation simultaneously. The resulting estimator has the oracle

properties (Fan and Li, 2001), so that the true model can be selected w.p.a.1. and the estimator

always has the
√
n-rate of convergence and asymptotic normal distribution. The AGLASSO objective

function to be minimized is
1

n
Q̌(φ) + αn‖ξ̌‖−µ‖ξ‖, (8.5)

where αn is a tuning parameter that is positive and converges to zero, ξ̌ is an initial consistent

estimator, and µ is some positive number such as 1 or 2. Under regularity conditions, the AGLASSO

estimator φ̇ is consistent. In the case that ξ0 = 0, the probability that ξ̇ = 0 goes to one as n goes

to infinity, that is, φ̇ has the sparsity property, and for the remaining parameters ψ = (λ, δ′)′, the

AGLASSO estimator has an asymptotic normal distribution as if ξ0 were known:

√
n(ψ̇ −ψ0)

d−→ N
(

0, lim
n→∞

1

n

{
E[(−WXδ0,X)′F]Π̄−1 E[F′(−WXδ0,X)]

}−1
)
,

in the case that ξ0 6= 0, under the condition that αn = o(n−1/2) and other regularity conditions, φ̇ has

the same asymptotic normal distribution as that stated in (8.3). Similar to the variance estimation of φ̃,

the variance of ψ̇ for the case with ξ0 = 0 can be estimated by [(−WXδ̇,X)′F(F′Σ̇F)−1F′(−WXδ̇,X)]−1,

where Σ̇ is defined similarly to Σ̃.

A practical question for the AGLASSO estimator is the selection of the tuning parameter αn.

We can use an information criterion to choose αn. To make the dependence of φ̇ on αn explicit, denote

the minimizer of 1
nQ̌(φ) + α‖ξ̃‖−µ‖ξ‖ by φ̇α. Correspondingly, the AGLASSO estimator of ξ is ξ̇α.

Consider the following information criterion:

hn(α) =
1

n
Q̌(φ̇α)− I(ξ̇α = 0)Γn,

where Γn > 0 satisfies Γn → 0 and n1/2Γn →∞ as n→∞. For example, we may take Γn = O(n−1/4).

The tuning parameter chosen by minimizing hn(α) can achieve model selection consistency.

The Monte Carlo results presented in Jin and Lee (2018) show that the N2SLS and AGLASSO
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estimators have similar performance in the regular case with ξ0 6= 0, but the AGLASSO estimator

performs significantly better in the irregular case with ξ0 = 0. Thus, we suggest the use of the

AGLASSO estimator.

9 Impact measures

In empirical applications, practitioners are often interested in quantifying the marginal effect of an

explanatory variable on an outcome variable. In spatial econometric models, due to transmission

channels, calculation of marginal effects and their interpretation become less straightforward. In

this section, we review the summary measures suggested in the literature for the interpretation and

presentation of marginal effects in a MESS(1,1) model.

From the model definition in (2.1), the marginal effect of a change in the kth explanatory variable

Xk on E(Y) is given by e−λ0Wβ0k, where β0k is the kth element of the true coefficient vector β0. LeSage

and Pace (2009) propose three scalar measures for the marginal effect to ease the interpretation and

presentation of this marginal effect:

1. Average Direct Impact (ADI): 1
ntr(e−λ0Wβ0k),

2. Average Indirect Impact (AII): 1
n

(
β0kl

′e−λ0Wl− tr(e−λ0Wβ0k)
)
,

3. Average Total Impact (ATI): 1
nβ0kl

′e−λ0Wl.

The ADI, AII and ATI are, respectively, the average of the main diagonal elements of e−λ0Wβ0k, the

average of the off-diagonal elements of e−λ0Wβ0k, and the average of all the elements of e−λ0Wβ0k. In

empirical studies, the ADI, ATI, and AII can be interpreted as the average own response, the average

total response, and the average others’ response of Y to a change in Xk, respectively.

There are alternative ways that can be used to determine the dispersion of these scalar impact

measures (Arbia et al., 2020). In the Bayesian estimation approach, a sequence of random draws for

each impact measure can be obtained by using the posterior draws. Then, the mean and the standard

deviation calculated from each sequence of impact measures can be used for inference.

In the classical estimation approaches, the delta method can be used to determine the asymptotic

distributions of impact measure estimators. Applying the mean value theorem to ADI estimator

1
ntr(e−λ̂Wβ̂k) yields

1√
n

(
tr(e−λ̂Wβ̂k)− tr(e−λ0Wβ0k)

)
=

1√
n

(
−tr(e−λ̂WWβ̂k)(λ̂− λ0) + tr(e−λ̂W)(β̂k − β0k)

)
+ op(1)

= A1 ×
√
n(λ̂− λ0, β̂k − β0k)

′
+ op(1)

d−→ N
(

0, lim
n→∞

A1BA
′
1

)
,
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where A1 =
(
− 1
ntr(e−λ0WWβ0k),

1
ntr(e−λ0W)

)
and B is the asymptotic covariance of

√
n(λ̂−λ0, β̂k−

β0k). Thus, we can estimate the asymptotic variance of the direct impact as 1
nÂ1B̂Â

′
1, where Â1 =(

− 1
ntr(e−λ̂WWβ̂k),

1
ntr(e−λ̂W)

)
, and B̂ is the estimated asymptotic covariance of

√
n(λ̂−λ0, β̂k−β0k).

Applying the mean value theorem to ATI estimator 1
n β̂kl

′e−λ̂Wl, we obtain

1√
n

(
β̂kl
′e−λ̂Wl− β0kl

′e−λ0Wl
)

= A2 ×
√
n(λ̂− λ0, β̂k − β0k)

′
+ op(1)

d−→ N
(

0, lim
n→∞

A2BA
′
2

)
,

where A2 =
(
− 1
nβkl

′e−λ0WWl, 1
n l
′e−λ0Wl

)
. Thus, Var( 1

n β̂kl
′e−λ̂Wl) can be estimated by 1

nÂ2B̂Â
′
2,

where Â2 =
(
− 1
n β̂kl

′e−λ̂WWl, 1
n l
′e−λ̂Wl

)
.

Finally, applying the mean value theorem to the estimator of AII, we obtain

1√
n

((
β̂kl
′e−λ̂Wl− tr(e−λ̂Wβ̂k)

)
−
(
β0kl

′e−λ̂0Wl− tr(e−λ̂0Wβ0k)
))

= (A2 −A1)×
√
n(λ̂− λ0, β̂k − β0k)

′
+ op(1)

d−→ N
(

0, lim
n→∞

(A2 −A1)B(A2 −A1)
′
)
.

Then, an estimate of Var
(

1
n

(
β̂kl
′e−λ̂Wl− tr(e−λ̂Wβ̂k)

))
is given by 1

n(Â2 − Â1)B̂(Â2 − Â1)
′
.

To illustrate these summary impact measures, we consider two examples. The first example

follows from the empirical application in Debarsy et al. (2015). They consider a modified gravity

equation for explaining Belgium’s outward FDI, which takes the following form:

eλWLFDI = β01n + β1LGDP + β2LPOP + β3OECD + β4LDIS + β5MP + U,

eρWU = V, (9.1)

where LFDI is the n × 1 vector of the logarithm of Belgium’s outward FDI stock to host countries,

LGDP is the n × 1 vector of the logarithm of host countries’ GDPs, LPOP is the n × 1 vector of

the logarithm of host countries’ populations, OECD is a dummy variable indicating whether the host

country is an OECD country, LDIS is the n× 1 vector of the logarithm of bilateral distance between

Belgium and host countries, and the last variable MP is the surrounding-market potential variable

constructed by following Blonigen et al. (2007). The sample data is described in detail in Debarsy

et al. (2015) and includes data on Belgium’s outward FDI stock in 35 host countries in 2009, which

constitute 94% of Belgium’s total outward FDI stock. The estimation results reported in Table 7

of Debarsy et al. (2015) are included here as Table 1 for easy reference. The results show that the

QMLE and the GMME produce almost identical point estimates: the estimates of λ0, β20, β30, β40

and β50 are statistically significant and have expected signs while the estimates of β60 and ρ0 are

statistically insignificant. Since the estimate of λ0 is negative and statistically significant, Debarsy

et al. (2015) conclude that the vertical FDI mode is the dominant type of outward FDI for Belgium.
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They also estimate the SARAR(1,1) version of (9.1) by both the QMLE and the GMME. Note that

these estimates of spatial parameters are not directly comparable between MESS and SAR. However,

when the spatial weights matrix is row normalized, Debarsy et al. (2015) suggest a relation using ATI:

λSAR = 1− eλMESS for the spatial parameter λ in Y. In this respect, the positive estimates for λSAR in

columns (2), (3), (5) and (6) and negative estimates for λMESS in columns (1) and (3) are compatible

with this relation.

Table 1: Estimation results for the outward FDI example

(1) (2) (3) (4) (5) (6)

Constant 7.005 5.094 5.383 6.350 5.094 5.383
(6.039) (5.951) (5.972) (5.316) (5.503) (5.475)

LGDP 1.087*** 1.107*** 1.104*** 1.089*** 1.107*** 1.103***

(0.240) (0.249) (0.248) (0.221) (0.243) (0.241)

LPOP −0.579*** −0.576** −0.578*** −0.575*** −0.576*** −0.578***

(0.241) (0.249) (0.249) (0.241) (0.254) (0.252)

OECD 1.064* 1.061* 1.052* 1.115* 1.061* 1.051*

(0.549) (0.557) (0.559) (0.592) (0.615) (0.616)

LDIS −1.234 *** −1.164*** −1.172*** −1.211*** −1.164*** −1.172***

(0.238) (0.219) (0.221) (0.224) (0.203) (0.204)
MP 1.062 1.080 1.049 1.101 1.080 1.049

(1.094) (1.107) (1.131) (1.177) (1.205) (1.205)

Spatial parameter in Y −0.329** 0.258** 0.258*** −0.331* 0.258** 0.257**

(0.159) (0.111) (0.115) (0.179) (0.124) (0.125)
Spatial parameter in errors 0.287 0.004 −0.045 0.332 0.005 −0.045

(0.434) (0.516) (0.529) (0.629) (0.420) (0.418)
n 35 35 35 35 35 35

Notes: Standard errors are in parentheses; (1) is homoskedastic SARAR by QML, (2) is ho-
moskedastic MESS(1,1) by QML, (3) is homoskedastic MESS(1,1) by GMM, (4) is heteroskedastic
SARAR by GMM, (5) is heteroskedastic MESS(1,1) by QML and (6) is heteroskedastic MESS(1,1)
by GMM; ∗, ∗∗ and ∗∗∗ correspond to significance at the 10%, 5% and 1%, respectively. This table
is taken from Debarsy et al. (2015).

The average direct effects and average total effects are reported in Table 2. Although the

MESS(1,1) model suggests an exponential decay pattern for the influence of high-order neighboring

characteristics, while the SARAR(1,1) process indicates a geometric decay, we note that the summary

impact measures provided in the table for both models are almost identical.

The second example follows from the empirical application in Pace and Barry (1997) on the

US presidential election in 1980. The dataset contains variables on the election results and county

characteristics for 3107 US counties. We consider the following MESS(1,1) specification

eλWLPV = β01n + β1EDUC + β2LHOW + β3LINC + U, eρWU = V, (9.2)

where LPV is the n × 1 vector of log proportion of voting age population that voted in the election,
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Table 2: Average direct effects and average total effects for the outward FDI example

Average direct effects Average total effects

SARAR MESS(1,1) SARAR MESS(1,1)

GMM QML GMM GMM QML GMM

LGDP 1.096 1.109 1.105 0.887 0.920 0.917
LPOP −0.578 −0.577 −0.579 −0.468 −0.479 −0.480
OECD 1.121 1.063 1.053 0.907 0.882 0.874
LDIS −1.218 −1.165 −1.174 −0.986 −0.968 −0.975

Notes: Effects are computed from estimation results of heteroskedastic SARAR (estimated by
GMM) and heteroskedastic MESS(1,1) (estimated by QML and GMM).

EDUC is the n × 1 vector of log percentage of population with a twelfth grade or higher education,

LHOW is the n×1 vector of log percentage of population with home-ownership, and LINC is the n×1

vector of log per capita income. We consider a contiguity based weights matrix constructed using the

latitude and longitude of the counties for this application.

We estimate (9.2) using the QML, GMM and Bayesian methods. We use the expm and the

matrix-vector product (mvp) methods from Section 3 to compute the estimation results and record

the corresponding computation times (in seconds). In the case of mvp method, the truncation order

q is set to 15. For the Bayesian estimator, we set the length of the chain to 1500 draws, with first

500 draws as burn-ins. We also report the results for the SARAR version of (9.2) by using the fast

estimation routines available in the Spatial Econometrics Toolbox provided by James LeSage.

Table 3: Presidential election voting example

MESS SARAR

QML GMM Bayesian QML GMM Bayesian

expm mvp expm mvp expm mvp

Constant 0.738∗∗∗ 0.738∗∗∗ 0.732∗∗∗ 0.732∗∗∗ 0.734∗∗∗ 0.734∗∗∗ 0.856∗∗∗ 0.662∗∗∗ 0.858∗∗∗

(0.052) (0.052) (0.051) (0.051) (0.054) (0.054) (0.029) (0.035) (0.109)
EDUC 0.316∗∗∗ 0.316∗∗∗ 0.300∗∗∗ 0.300∗∗∗ 0.317∗∗∗ 0.317∗∗∗ 0.161∗∗∗ 0.168∗∗∗ 0.160∗∗∗

(0.021) (0.021) (0.020) (0.020) (0.020) (0.020) (0.009) (0.013) (0.020)
LHOW 0.572∗∗∗ 0.572∗∗∗ 0.571∗∗∗ 0.571∗∗∗ 0.572∗∗∗ 0.572∗∗∗ 0.239∗∗∗ 0.240∗∗∗ 0.237∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.009) (0.008) (0.016)
LINC −0.154∗∗∗ −0.154∗∗∗ −0.144∗∗∗ −0.144∗∗∗ −0.155∗∗∗ −0.155∗∗∗ −0.095∗∗∗ −0.099∗∗∗ −0.094∗∗∗

(0.021) (0.021) (0.020) (0.020) (0.021) (0.021) (0.011) (0.011) (0.015)
λ −0.350∗∗∗ −0.350∗∗∗ −0.423∗∗∗ −0.423∗∗∗ −0.337∗∗∗ −0.337∗∗∗ 0.491∗∗∗ 0.468∗∗∗ 0.478∗∗∗

(0.045) (0.045) (0.045) (0.045) (0.041) (0.041) (0.002) (0.034) (0.101)
ρ −0.443∗∗∗ −0.443∗∗∗ −0.374∗∗∗ −0.374∗∗∗ −0.458∗∗∗ −0.458∗∗∗ 0.251∗∗∗ 0.250∗∗∗ 0.239∗∗∗

(0.055) (0.055) (0.055) (0.055) (0.050) (0.050) (0.020) (0.041) (0.146)

Time (in seconds) 1072.431 6.017 4805.841 21.103 47742.328 11.423 1.936 0.273 13.944

Significance levels: ∗: 10%, ∗∗: 5%, and ∗∗∗: 1%.

The estimation results are shown in Table 3.8 Overall, the coefficient estimates of the explanatory

variables are consistent across columns in terms of sign and statistical significance. We also note that

spatial parameter estimates are statistically significant. The estimates of λ range from −0.42 to −0.34

8To estimate the model, we used a MacBook Pro 2016 with a 2.4GHz Intel Core i7 processor and 8 GB 1867 MHz
LPDDR3 memory.
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in the case of MESS, and from 0.46 to 0.49 in the case of SARAR. The estimates of ρ range from

−0.45 to −0.37 in the case of MESS model, and from 0.23 to 0.25 in the case of SAR model. We note

again that the positive estimates for λSARAR in columns (7) to (9) and negative estimates for λMESS

in columns (1) to (6) are compatible with the relation λSARAR = 1− eλMESS using ATI.

In terms of computational time, the matrix-vector product approach offers significant gains

over the scaling and squaring method (combined with a Pad’e approximation) for computing matrix

exponential terms. However, the estimation time for the MESS specification using the matrix-vector

product approach is slightly higher than that for the SARAR specification, except for the case of

Bayesian estimator in this application.

The impact measure estimates are summarized in Table 4. The results show that the correspond-

ing impact measures are very similar across the QML, GMM and Bayesian methods. For example, in

the case of MESS, the average direct effect estimate for EDUC is 0.320 using the QML method, 0.305

using the GMM method, and 0.320 for the Bayesian method. In the case of SAR, the average direct

effect estimate for EDUC is 0.170 using the QML method, 0.176 using the GMM method, and 0.169

for the Bayesian method.

As a prelude to the next section, we must emphasize that MESS and SAR models are not

substitutes for each other, as they are non-nested. In practice, their performance may differ depending

on the application. Therefore, the choice between these two models should be guided by formal model

selection methods.

10 Model selection

There are various approaches in the literature for implementing model selection. In this section, we

consider methods based on testing, information criteria, and marginal likelihood.9

10.1 Testing approach

The classical tests, such as the Wald, Lagrange multiplier (Rao score), and likelihood ratio tests, for

inference on spatial parameters can be formulated by using the results on the asymptotic distributions

of the estimators (Anselin, 1988; Anselin et al., 1996; Anselin, 2001; LeSage and Pace, 2009; Elhorst,

2014; Doğan et al., 2018; Bera et al., 2018, 2019). In the literature, to test non-nested hypotheses, the

Cox statistic and the J statistic are adapted for mainly spatial autoregressive models (Anselin, 1984,

1986; Kelejian, 2008; Kelejian and Piras, 2011; Burridge, 2012; Jin and Lee, 2013). These non-nested

9The recent survey by Otto et al. (2024) reviews cross validation methods for geostatistical models. Whether cross
validation methods can be applied to spatial econometric models such as the SAR and MESS models we consider here are
not obvious, since these models are nonstationary, which can be seen from the distinct means and variances for different
spatial units, and splitting the data set into training and test data would destroy the original spatial dependence structure.
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Table 4: Impact measures for the presidential election voting example

MESS SARAR

QML GMM Bayesian QML GMM Bayesian

ADI
EDUC 0.320∗∗∗ 0.305∗∗∗ 0.320∗∗∗ 0.170∗∗∗ 0.176∗∗∗ 0.169∗∗∗

(0.020) (0.020) (0.020) (0.009) (0.006) (0.017)
LHOW 0.578∗∗∗ 0.580∗∗∗ 0.578∗∗∗ 0.252∗∗∗ 0.251∗∗∗ 0.249∗∗∗

(0.016) (0.016) (0.016) (0.009) (0.009) (0.013)
LINC −0.156∗∗∗ −0.147∗∗∗ −0.156∗∗∗ −0.099∗∗∗ −0.103∗∗∗ −0.099∗∗∗

(0.021) (0.020) (0.021) (0.011) (0.006) (0.015)

AII
EDUC 0.129∗∗∗ 0.153∗∗∗ 0.124∗∗∗ 0.147∗∗∗ 0.140∗∗∗ 0.144∗∗∗

(0.017) (0.017) (0.018) (0.008) (0.012) (0.040)
LHOW 0.234∗∗∗ 0.292∗∗∗ 0.224∗∗∗ 0.218∗∗∗ 0.201∗∗∗ 0.217∗∗∗

(0.036) (0.038) (0.032) (0.008) (0.017) (0.065)
LINC −0.063∗∗∗ −0.074∗∗∗ −0.060∗∗∗ −0.086∗∗∗ −0.083∗∗∗ −0.084∗∗∗

(0.011) (0.012) (0.011) (0.010) (0.010) (0.024)

ATI
EDUC 0.449∗∗∗ 0.458∗∗∗ 0.444∗∗∗ 0.317∗∗∗ 0.316∗∗∗ 0.312∗∗∗

(0.027) (0.027) (0.029) (0.018) (0.016) (0.034)
LHOW 0.812∗∗∗ 0.872∗∗∗ 0.802∗∗∗ 0.471∗∗∗ 0.452∗∗∗ 0.466∗∗∗

(0.043) (0.044) (0.039) (0.017) (0.023) (0.061)
LINC −0.219∗∗∗ −0.220∗∗∗ −0.217∗∗∗ −0.185∗∗∗ −0.186∗∗∗ −0.183∗∗∗

(0.028) (0.030) (0.029) (0.021) (0.017) (0.026)

Significance levels: ∗: 10%, ∗∗: 5%, and ∗∗∗: 1%.

32



testing approaches can also be used for the model selection problem between the spatial autoregressive

models and the MESS models.

In the J-test approach, we augment the null model with the predictor from the alternative

model and then check whether the predictor can add significantly to the explanatory power of the

augmented model (Davidson and MacKinnon, 1981). Han and Lee (2013b) consider the J-test for the

model selection problem between the SARAR(1,0) and MESS (1,0) models. When the SARAR(1,0)

model is the null model, we can formulate the null and the alternative hypotheses as

H0 : Y = αWY + Xβ + V,

H1 : Sex(λ)Y = Xβex + V,

where Sex(λ) = eλW and βex is a conformable parameter vector for X in the alternative model. As in

Kelejian and Piras (2011), Han and Lee (2013b) consider two predictors based on the alternative model.

These predictors are Ŷ1 = Sex(λ̂)−1Xβ̂ex and Ŷ2 = (In−Sex(λ̂))Y + Xβ̂ex, where λ̂ and β̂ex are the

QMLEs of λ and βex. Note that the first predictor is based on the reduced form of the alternative

model while the second predictor is derived from the identity Y = (In−Sex(λ))Y +Xβex+V. Then,

the null model can be augmented with these predictors to obtain the following testing equation:

Y = αWY + Xβ + Ŷr1δr1 + V, (10.1)

for r1 = 1, 2. Denote V(ηr1) = (In − αW)Y −Xβ − Ŷr1δr1 , where ηr1 = (α,β
′
, δr1)

′
. To estimate

the augmented model, Han and Lee (2013b) consider a GMME based on the following vector of linear

and quadratic moment functions:

g(ηr1) = (V
′
(ηr1)P1V(ηr1), . . . ,V

′
(ηr1)PqV(ηr1),F

′
V(ηr1)),

where F is a full-column rank matrix of IVs and Pm’s are n×n matrices of constants with tr(Pm) = 0

for m = 1, . . . , q. Following Kelejian and Prucha (2010), the IV matrix F can consist of the linearly in-

dependent columns of
(
X,WX, . . . ,WdX

)
, where d is a positive constant. Let Ξ = E[g(η0r1)g

′
(η0r1)],

where η0r1 = (α0,β
′
0, 0)

′
is the true parameter vector under H0. Then, using Lemma 2, it can be shown

that

Ξ =

(µ4 − 3σ4
0)ω

′
ω µ3ω

′
F

µ3F
′
ω 0

+


tr(P1P

s
1) . . . tr(P1P

s
q) 0

...
...

...
...

tr(PqP
s
1) . . . tr(PqP

s
q) 0

0 . . . 0 1
σ2
0
F
′
F

 ,
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where ω = [vecD(P1), . . . , vecD(Pq)]. Let 1
nΞ̂ be a consistent estimator of 1

nΞ. Then, the feasible

optimal GMME of η0r1 is defined by η̂r1 = arg minηr1 g
′
(ηr1)Ξ̂−1g(ηr1). Let λ∗sar and βex∗sar be the

pseudo true values of λ0 and βex0 under the null model, respectively. Define Sex∗sar = eλ
∗
sarW, S =

In − α0W and G = WS−1. Then, under some assumptions, Han and Lee (2013b) show that

√
n(η̂r1 − η0r1)

d−→ N

(
0, lim

n→∞

(
D
′
r1Ξ
−1Dr1

)−1
)
, (10.2)

for r1 = 1, 2, where

D1 =


σ2

0tr(Ps
1G) 0 0

...
...

...

σ2
0tr(Ps

qG) 0 0

F
′
GXβ0 F

′
X F

′
Sex∗−1
sar Xβex∗sar

 ,

D2 =


σ2

0tr(Ps
1G) 0 σ2

0tr(Ps
1(In − Sex∗sar)S

−1)
...

...
...

σ2
0tr(Ps

qG) 0 σ2
0tr(Ps

q(In − Sex∗sar)S
−1)

F
′
GXβ0 F

′
X F

′
((In − Sex∗sar)S

−1Xβ0 + Xβex∗sar )

 .

We summarize the estimation of ηr1 in Algorithm 4.

Algorithm 4 (Estimation of the augmented model in (10.1)).

1. Estimate the alternative model by the QMLE suggested in Section 3.1 and then compute the

predictors Ŷr1 for r1 = 1, 2.

2. Estimate the null model by one of the methods given in Section 3. Use the estimated values to

get a plug-in estimate of Ξ.

3. Compute η̂r1 = arg minηr1 g
′
(ηr1)Ξ̂−1g(ηr1).

The result in (10.2) can be used to construct the J statistic in three different ways: (i) the Wald

(W) statistic, (ii) the distance difference (DD) statistic, and (iii) the gradient (G) statistic (Newey

and West, 1987). Let R = (01×(k+1), 1) and D̂r1 be the plug-in estimator of Dr1 based on η̂r1 for

r1 = 1, 2. Then, the first two statistics are given as

Wr1 = (Rη̂r1)
′
(

R
(
D̂
′
r1Ξ̂
−1D̂r1

)−1
R
′
)−1

(Rη̂r1), (10.3)

DDr1 = min
{ηr1 |δr1=0}

g
′
(ηr1)Ξ̂−1g(ηr1)−min

ηr1
g
′
(ηr1)Ξ̂−1g(ηr1). (10.4)

Let η̃r1 = arg min{ηr1 |δr1=0} g
′
(ηr1)Ξ̂−1g(ηr1) be the restricted optimal GMME. Then, the gradient
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test statistic is defined by

Gr1 = g
′
(η̃r1)Ξ̂−1D̃r1(D̃

′
r1Ξ̂
−1D̃r1)−1D̃r1Ξ̂

−1g(η̃r1), (10.5)

where D̃r1 is the plug-in estimator of Dr1 based on η̃r1 for r1 = 1, 2. Under H0, these statistics have

a chi-squared distribution with one degree of freedom. Thus, we will reject H0 at the 5% significance

level if the test statistics are larger than 3.84.

When using the MESS model as the null model, the null and the alternative hypotheses take

the following form:

H0 : Sex(λ)Y = Xβex + V,

H1 : Y = αWY + Xβ + V.

Let α̂ and β̂ be the QML estimates of α0 and β0 from the alternative model. Again, we consider two

predictors Ŷ1 = (In − α̂W)−1Xβ̂ and Ŷ2 = α̂WY + Xβ̂. Thus, the augmented model is given by

Sex(λ)Y = Xβex + Ŷr2δr2 + V, (10.6)

for r2 = 1, 2. Let ψr2 = (λ,βex
′
, δr2)

′
, ψ0r2 = (λ0,β

ex′ , 0)
′

for r2 = 1, 2, and α∗ex and β∗ex be the

pseudo true values of α and β under the null model. Han and Lee (2013b) consider the non-linear

2SLS estimator (N2SLSE) for the estimation of the augmented model. Let g(ψr2) = F
′
V(ψr2) be the

vector of linear moment functions, where V(ψr2) = Sex(λ)Y−Xβex + Ŷr2δr2 for r2 = 1, 2. Then, the

N2SLSE is defined by

ψ̂r2 = arg min
ψr2

V
′
(ψr2)F(F

′
F)−1F

′
V(ψr2). (10.7)

Under some assumptions, it can be shown that

√
n(ψ̂r2 −ψ0r2)

d−→ N

(
0, σex2

0

(
plimn→∞

1

n
D
′
r2(F

′
F)−1Dr2

)−1
)
, (10.8)

where D1 = F
′ (

WXβex0 ,X,S∗−1
ex Xβ∗ex

)
and D2 = F

′ (
WXβex0 ,X, α∗exWSex−1Xβex0 + Xβ∗ex

)
with

S∗ex = In − α∗exW and Sex = eλ0W. Algorithm 5 summarizes the estimation of the augmented model

in (10.6).

Algorithm 5 (Estimation of the augmented model in (10.6)).

1. Estimate the alternative model by the QMLE and then compute the predictors Ŷr2 for r2 = 1, 2.

2. Use F =
(
X,WX, . . . ,WdX

)
to compute ψ̂r2 = arg minψr2 V

′
(ψr2)F(F

′
F)−1F

′
V(ψr2).
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Similar to the previous case in which the SARAR(1,0) model was the null model, we can use

the result in (10.8) to derive the three test statistics. When the disturbance terms are heteroskedastic,

robust methods are necessary to derive consistent estimators. However, the process to derive the three

test statistics are similar to the homoskedastic case.

Instead of using the critical value 3.84 from the asymptotic distribution, we can use the bootstrap

method to generate the empirical distribution of the test statistics. In this approach, we can report the

bootstrapped p-value, which is the percentage of test statistics based on the bootstrapped samples that

are greater than the corresponding test statistic obtained from the actual sample, to decide between

H0 and H1 (MacKinnon, 2009). The bootstrap procedure for testing H0 : Y = αWY + Xβ + V

against H1 : Sex(λ)Y = Xβex + V is described in Algorithm 6.

Algorithm 6 (Bootstrap testing procedure).

1. Compute Wr1, DDr1 and Gr1 for r1 = 1, 2.

2. Estimate the null model by one of the methods provided in Section 3. Let V̂ be the vector of

residuals.

3. Generate a random sample of size n from V̂ using sampling with replacement. Denote this

re-sampled residual vector by V̂b.

4. Use parameter estimates from Step 2 to compute Yb = (In − λ̂W)−1(Xβ̂ + V̂b). Compute the

bootstrapped versions of test statistics W b
r1, DDb

r1 and Gbr1 for r1 = 1, 2 by using Yb.

5. Repeat Steps 3–4 for 99 times. Then, a test statistic rejects H0 if the proportion of its bootstrapped

versions that exceed the corresponding one computed in Step 1 is less than 5%.

In the heteroskedastic case, besides using the heteroskedasticity robust estimation methods, we

also need to use a wild bootstrap approach to generate the bootstrapped versions of the test statistics.

The details of this approach are summarized in Han and Lee (2013b). The extensive simulation results

reported in Han and Lee (2013b) indicate that all versions of the J-statistic can perform satisfactorily

when the sample size is large.

Liu and Lee (2019) propose a non-degenerate Vuong-type model selection test for the model selec-

tion between the SARAR(1,1) and MESS(1,1) models. The log-likelihood function of the SARAR(1,1)

model in (2.2) can be expressed as

lnL1(θ1) = −n
2

ln(2π)− n

2
lnσ2 + ln |In − αW|+ ln |In − τW| −

1

2σ2

n∑
i=1

zi(θ1)2,

where θ1 = (β
′
, α, τ, σ2)

′
and zi(θ1) = yi − αWi·Y− τMi·Y + ατ

∑n
k=1mikWk·Y−Xiβ+ τMi·Xβ,

with Xi being the ith row of X, mik being the (i, k)th element of M, and Wi· and Mi· being the ith row
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of W and M, respectively. Then, we can write the log-likelihood function as lnL1(θ1) =
∑n

i=1 l1i(θ1),

where l1i(θ1) = −1
2 ln(2π)− 1

2 lnσ2 + 1
n ln |In − αW|+ 1

n ln |In − τW| − 1
2σ2 zi(θ1)2. Similarly, we can

express the log-likelihood function of the MESS(1,1) as

lnL2(θ2) =
n∑
i=1

l2i(θ2),

where θ2 = (β
′
, λ, ρ, σ2)

′
, l2i(θ2) = −n

2 ln(2π) − n
2 lnσ2 − 1

2σ2hi(θ2)2 and hi(θ2) is the ith element of

eρM(eλWY −Xβ). Liu and Lee (2019) first show that the QMLEs of both models, where one of the

models or both models are possibly misspecified, are consistent estimators of their pseudo-true values

and are asymptotically normal.

Liu and Lee (2019) assume that the true data generating process is unknown, and one of the two

models or both models might be misspecified. Let θ∗1 and θ∗2 be the pseudo-true parameter vectors

in the SARAR(1,1) and MESS(1,1) models, respectively. Then, the null hypothesis and alternative

hypotheses are given by

H0 : lim
n→∞

1√
n

E

[
ln
L1(θ∗1)

L2(θ∗2)

]
= 0 (Models 1 and 2 are asymptotically equivalent),

H1 : lim
n→∞

1√
n

E

[
ln
L1(θ∗1)

L2(θ∗2)

]
= +∞ (Model 1 is asymptotically better than model 2),

H2 : lim
n→∞

1√
n

E

[
ln
L1(θ∗1)

L2(θ∗2)

]
= −∞ (Model 1 is asymptotically worse than model 2).

Let LR(θ̂1, θ̂2) = lnL1(θ̂) − lnL2(θ̂), where θ̂1 and θ̂2 are the QMLEs of the two models. Define

ω2 = Var( 1√
n

LR(θ̂1, θ̂2)) and gi(θ1,θ2) = l1i(θ1) − l2i(θ2). Then, following Hsu and Shi (2017), Liu

and Lee (2019) consider the following test statistic:

T̂ =

1√
n

∑n
i=1 gi(θ̂1, θ̂2) + σ̂U
√
ω̂2 + σ̂2

,

where σ̂ is a data-dependent scalar, ω̂2 is an estimator of ω2 and U ∼ N(0, 1). Under some regularity

assumptions, it is shown that the test statistic converges to the standard normal distribution under

the null hypothesis, i.e., T̂
d−→ N(0, 1) under H0. Under the alternative hypotheses, they show that

T̂ → +∞ under H1, and T̂ → −∞ under H2. In a Monte Carlo study, Liu and Lee (2019) show that

the test statistic has good size and power properties.

10.2 Information criteria approach

The predictive accuracy of a model is usually measured through an information criterion, which is

typically defined based on the deviance term −2 ln p(Y|θ) (Gelman et al., 2003). The widely used
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Akaike information criterion (AIC) takes the following form:

AIC = −2 ln p(Y|θ̂) + 2p, (10.9)

where θ̂ is an estimate of θ and p is the dimension of θ. In a Bayesian context, Spiegelhalter et al.

(2002) suggest another criterion called the deviance information criterion (DIC):

DIC = D̄(θ) + pD,

where D̄(θ) is called the posterior mean deviance and pD is a measure of the effective number of

parameters in the model. The posterior mean deviance is defined by D̄(θ) = −2 E (ln p(Y|θ)|Y),

where the expectation is taken with respect to the posterior distribution of θ. This term serves as a

Bayesian measure of model fit. The effective number of parameters is defined by pD = D̄(θ)−D(θ̄) =

−2 E (ln p(Y|θ)|Y) + 2 ln p(Y|θ̄), where θ̄ is the posterior mean of θ. Thus, the DIC can be written

as

DIC = −4 E (ln p(Y|θ)|Y) + 2 ln p(Y|θ̄).

Let {θr}Rr=1 be a sequence of posterior draws. Then, the first term E (ln p(Y |θ)|Y ) in the DIC can

be computed by E (ln p(Y|θ)|Y) ≈ 1
R

∑R
r=1 ln p(Y|θr). The second term ln p(Y|θ̄) in the DIC is

computed by evaluating the log-likelihood function at the posterior mean θ̄. Using a decision-theoretic

perspective, it can be shown that both AIC and DIC choose the model whose predictive distribution

is close to the true data generating process (Li et al., 2020).

In our heteroskedastic model considered in Section 7.2, there are alternative likelihood functions:

(i) the conditional likelihood function denoted by p(Y|θ,η), (ii) the complete-data likelihood function

denoted by p(Y,η|θ), and (iii) the integrated (or observed) likelihood function denoted by p(Y|θ) =∫
p(Y,η|θ)dη. The log-conditional likelihood function is readily available and given by

ln p(Y|θ,η) = −n
2

ln(2π)− n

2
lnσ2 − 1

2

n∑
i=1

ln ηi (10.10)

− 1

2σ2
(eλWY −Xβ)

′
eρM

′
H−1(η)eρM(eλWY −Xβ),

where H(η) = Diag (η1, . . . , ηn) is the n × n diagonal matrix with the ith diagonal element ηi. As

shown in Section 6.2, this function facilitates the Bayesian estimation of the heteroskedastic model.

Both the conditional likelihood function and the complete-data likelihood function depend on the high-

dimensional latent scale mixture variables. Since these high-dimensional variables can not be estimated

precisely, the AIC and DIC formulated with the conditional and complete-data likelihood functions
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may not perform satisfactorily in model selection exercises (Chan and Grant, 2016). Indeed, the latent

variable models violate the conditions of the decision-theoretic perspective, indicating that the AIC and

DIC cannot be used as a measure of predictive accuracy (Li et al., 2020). Hopefully, the log-integrated

likelihood function can be obtained analytically by integrating out the scale mixture variables η from

the complete-data likelihood function, i.e., p(Y|θ) =
∫
p(Y,η|θ)dη =

∫
p(Y|η,θ)p(η|θ)dη. This

function can be derived as (Doğan et al., 2023)

ln p(Y|θ) = −n
2

ln(2π)− n

2
lnσ2 +

nν

2
ln(ν/2)

+ n ln Γ

(
ν + 1

2

)
− n ln Γ(ν/2)− ν + 1

2

n∑
i=1

ln

(
ν

2
+
y2
i (δ)

2σ2

)
,

where yi(δ) is the ith element of Y(δ) = eρM
(
eλWY −Xβ

)
with δ = (λ, ρ,β

′
)
′
. This function can

be used to formulate AIC and DIC in the heteroskedastic model.

Another popular criterion is the Bayesian information criterion, which can be derived from a

large sample approximation to the log-marginal likelihood of a candidate model. Let {Mk}Kk=1 be a

sequence of candidate models. Then, the marginal likelihood of the model Mk can be expressed as

p(Yk|Mk) =
∫
Θk

p(Y|θk,Mk)p(θk|Mk)dθk, where θk is the pk × 1 vector of parameters in Mk. Then,

the Laplace approximation to ln p(Yk|Mk) yields the following BIC measure (Schwarz, 1978):

BICk = −2 ln p(Y|θ̂) + 2p ln(n). (10.11)

The Laplace approximation to ln p(Yk|Mk) can also be used to show that (Kass and Raftery, 1995)

lim
n→∞

P

(∣∣∣∣BICk − BICl

ln BFkl
− 1

∣∣∣∣ > ε

)
= 0, (10.12)

where ε > 0 is an arbitrary number and BFkl = p(Y|Mk)/p(Y|Ml) is the Bayes factor of Mk against

Ml. The result in (10.12) indicates that the BIC is also a consistent model selection criterion like

the Bayes factor. Moreover, both BIC and the Bayes factor can be interpreted as the measures

of predictive accuracy because the marginal likelihood function can be interpreted as the predictive

density evaluated at Y (Chan and Grant, 2016).

In the Bayesian setting described in Section 7, Doğan et al. (2023) investigate the performance

of AIC, DIC and BIC for both nested and non-nested model selection problems through simulations.

They consider four popular MESS specifications and aim to see whether the information criteria can

select correct model specification and the correct spatial weights matrix from a pool of candidates.

Their extensive simulation results show that these criteria perform satisfactorily and can be useful

for selecting the correct model in the specification search exercises. In an empirical illustration, they

also consider the MESS counterpart of the spatial Durbin model considered in Ertur and Koch (2007)
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(EK) under both homoskedasticity and heteroskedasticity. EK incorporate technological interdepen-

dence into a neo-classical Solow growth model to explore the impact of technology spillover effects on

economic growth. The MESS counterpart of EK’s empirical model takes the following form

eλWLOPW = β01n + β1LSAV + β2LGLAB + β3W × LSAV + β4W × LGLAB + V, (10.13)

where LOPW is the n×1 vector of log output per-worker, LSAV is the n×1 vector of log of fraction of

savings, LGLAB the n× 1 vector of growth rate of labor variable. W×LSAV and W×LGLAB stand

for the Durbin terms. Doğan et al. (2023) consider two specifications for the spatial weights matrix.

Let dij denote the squared great-circle distance between country capitals i and j. The first weights

matrix is denoted as W1, and its elements are generated as d−2
ij . The second one is denoted as W2

and its elements are generated as e−2dij . Both weights matrices are row normalized.

The sample data come from EK and contain information on 91 countries for the year 1995. Doğan

et al. (2023) estimate (10.13) under homoskedastic and heteroskedastic cases using the estimation

algorithms described in Section 7. They report the mean and the standard deviation of the posterior

draws provided below in Table 5. In columns (1) and (2), EK’s results are reproduced for reference.

All information criteria are reported in the bottom panel.

Columns (3) and (4) present the estimation results under homoskedasticity. We observe that the

estimates for LSAV and LGLAB are close to those from EK. However, while EK report statistically

significant negative estimates for W×LSAV, in columns (3) and (4), although the estimates are close,

they are no longer statistically significant. The coefficient for W×LGLAB is estimated imprecisely

similar to EK.

The estimates of λ in columns (3) and (4) are around −0.85 and statistically significant. Note

again that these estimates are not directly comparable to the estimates of λ in columns (1) and (2).

However, when the spatial weights matrix is row normalized, the relation λSAR = 1−eλMESS suggested

by Debarsy et al. (2015) can be used. We observe that λSAR = 0.740 and λMESS = −0.857 for W1, and

λSAR = 0.658 and λMESS = −0.822 for W2. These coefficients have opposite signs, and approximately

satisfy the relation in this application. For the information criteria, we can see that AIC and BIC have

smaller values for W1, which implies that W1 is preferred over W2 for the SAR model. Similarly, for

the MESS model, AIC, DIC, and BIC have smaller values for W1.

Columns (5) and (6) present the estimation results under heteroskedasticity. The findings are

in general very similar to those from the homoskedastic specifications in columns (3) and (4). One

important difference occurs in the estimate of λ in column (6), which is smaller in magnitude. The

estimates of the number of degrees of freedom ν for the t distribution indicate no significant deviations

from the normality of the error terms. For the information criteria, we again observe that DIC, AIC

40



and BIC have smaller values for W1 compared to W2. Across columns (3) through (6), the lowest

values for all information criteria are observed in column (5).

Table 5: Estimation results for the MESS spatial growth model

SAR MESS

Homoskedasticity Homoskedasticity Heteroskedasticity

(1) W1 (2) W2 (3) W1 (4) W2 (5) W1 (6) W2

Constant 0.988 0.530 1.288 0.806 1.139 1.807
(0.602) (0.778) (1.781) (1.799) (1.788) (1.800)

LSAV 0.825∗∗∗ 0.792∗∗∗ 0.949∗∗∗ 0.893∗∗∗ 0.957∗∗∗ 0.873∗∗∗

(0.000) (0.000) (0.116) (0.121) (0.116) (0.117)
LGLAB −1.498∗∗∗ −1.451∗∗∗ −1.662∗∗∗ −1.614∗∗∗ −1.673∗∗∗ −1.556∗∗

(0.008) (0.009) (0.628) (0.619) (0.629) (0.609)
W×LSAV −0.322∗∗∗ −0.372∗∗∗ −0.292 −0.332∗ −0.338 −0.062

(0.079) (0.024) (0.223) (0.192) (0.223) (0.198)
W×LGLAB 0.571 0.137 0.149 −0.050 0.189 −0.345

(0.501) (0.863) (0.842) (0.788) (0.844) (0.787)
λ 0.740∗∗∗ 0.658∗∗∗ −0.857∗∗∗ −0.822∗∗∗ −0.894∗∗∗ −0.581∗∗∗

(0.000) (0.000) (0.115) (0.102) (0.113) (0.105)
σ2 0.334∗∗∗ 0.349∗∗∗ 0.333∗∗∗ 0.355∗∗∗

(0.052) (0.054) (0.052) (0.056)
ν 24.724∗∗ 27.615∗∗

(12.462) (12.311)

AIC 161.06 173.49 164.87 169.07 156.93 163.45
DIC 163.12 167.23 155.26 161.71
BIC 156.08 168.51 182.44 186.65 177.02 183.54

Significance levels: ∗: 10%, ∗∗: 5%, and ∗∗∗: 1%.

Yang et al. (2022) suggest using a Mallows Cp type selection criterion for selecting a spatial

weights matrix from a pool of candidates. Let W = {(Ws,Ms) : s ∈ {1, 2, . . . , S}} be the pool of spa-

tial weights matrices. The quasi log-likelihood function based on the tuple (Ws,Ms) can be expressed

as

`s = −n
2

ln 2πσ2 − 1

2σ2

∥∥eτMs(eαWsY −Xβ)
∥∥2
, (10.14)

where ‖ · ‖ denotes the Euclidean norm. For a given (α̂s, τ̂s) value, the first order conditions of (10.14)

with respect to β and σ2 yield

β̂s =
(
X
′
eτ̂sM

′
seτ̂sMsX

)−1

X
′
eτ̂sM

′
seτ̂sMseα̂sWsY, (10.15)

σ̂2
s =

1

n

∥∥∥eτ̂sMs(eα̂sWsY −Xβ̂s)
∥∥∥2
. (10.16)
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Let µ = E(Y) = e−α0WXβ0. Substituting (10.15) into µ̂s = e−α̂sWsXβ̂s, we obtain

µ̂s = e−α̂sWsX
(
X
′
eτ̂sM

′
seτ̂sMsX

)−1

X
′
eτ̂sM

′
seτ̂sMseα̂sWsY = P̃sY, (10.17)

where P̃s = e−α̂sWse−τ̂sMsP̂se
τ̂sMseα̂sWs with P̂s = eτ̂sMsX

(
X
′
eτ̂sM

′
seτ̂sMsX

)−1
X
′
eτ̂sM

′
s . Then,

Yang et al. (2022) consider the following selection criterion function:

Cs =
∥∥∥P̃sY −Y

∥∥∥2
+ 2

(
tr(P̃sΩ) +

∂λ̂s
∂Y′

Ω
∂P̃s

∂λ̂
Y +

∂ρ̂s
∂Y′

Ω
∂P̃s

∂ρ̂
Y

)
,

where Ω = σ2
0e
−λ0We−ρ0Me−ρ0M

′
e−λ0W

′
is the variance of Y, and the closed forms of ∂λ̂s

∂Y′
, ∂P̃s
∂λ̂

and

∂ρ̂s
∂Y′

can be found in Yang et al. (2022). Given an estimator of Ω, we can compute Cs for each s.

Thus, the selected model is defined as ŝ = arg mins∈{1,...,S}Cs. Under certain assumptions, Yang et al.

(2022) show that the selection estimator µ̂ŝ is asymptotically optimal in the sense that it is as efficient

as the infeasible estimator that uses the best candidate spatial weights matrix. They also show that

the selection procedure is selection consistent in the sense that it chooses the true tuple of weight

matrices with probability approaching one as n→∞.

Instead of selecting the asymptotically optimal model, it is also possible to use a model averaging

scheme that compromises across a set of candidate models. Let w = (w1, . . . , wS)
′

be a vector of

weights, and N =
{

w ∈ [0, 1]S :
∑S

s=1ws = 1
}

be the set of model weights vectors. Let P̃(w) =∑S
s=1wsP̃s be the weighted average of

{
P̃1, . . . , P̃S

}
. Then, the model averaging estimator for µ is

given by

µ̂(w) =
S∑
s=1

wsµ̂s =
S∑
s=1

wsP̃sY = P̃(w)Y. (10.18)

Then, Yang et al. (2022) consider the following model weights choice criterion function:

C(w) =
∥∥∥P̃(w)Y −Y

∥∥∥2
+ 2

(
tr
(
P̃(w)Ω

)
+

S∑
s=1

ws

(
∂λ̂s
∂Y′

Ω
∂P̃s

∂λ̂s
Y +

∂ρ̂s
∂Y′

Ω
∂P̃s

∂ρ̂s
Y

))
.

The optimal model weights vector is thus given by ŵ = arg minw∈N Ĉ(w). Similar to the model

selection procedure, the model averaging estimator µ̂(ŵ) is also asymptotically optimal.

The selection and averaging estimators can also be considered for the high order MESS mod-

els. In the case of heteroskedastic models, Yang et al. (2022) use a heteroskedasticity robust GMM

estimator to formulate the selection and model averaging criterion functions. The extensive simula-

tion results in Yang et al. (2022) indicate that the model selection and averaging estimators perform

satisfactorily.
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10.3 Marginal likelihood approach

In the Bayesian approach, the Bayes factor can be used for both nested and non-nested model se-

lection problems. As shown in Section 10.2, the Bayes factor for two models is simply the ratio

of the corresponding marginal likelihood functions: BFkl = p(Y|Mk)/p(Y|Ml), where p(Y|Mj) =∫
Θj
p(Y|θj ,Mj)p(θj |Mj)dθj for j ∈ {k, l}. Thus, the Bayes factor chooses Mk if p(Y|Mk) is larger

than p(Y|Ml). If the data is generated from Mk, then the Bayes factor will consistently choose Mk

over Ml. To see this, consider the expectation of the log-Bayes factor under p(Y|Mk):

E

(
log

p(Y|Mk)

p(Y|Ml)

)
=

∫
log

p(Y|Mk)

p(Y|Ml)
p(Y|Mk)dY, (10.19)

which is simply the Kullback-Leibler divergence between p(Y|Mk) and p(Y|Ml). Thus, the expectation

is strictly positive, unless p(Y|Mk) = p(Y|Ml) in which case it is zero.

The Bayes factor reduces to the Savage-Dickey density ratio (SDDR) for the nested model

selection problems (Verdinelli and Wasserman, 1995). For example, consider the following null and

alternative hypotheses: H0 : λ = 0 against H1 : λ 6= 0 or H0 : ρ = 0 against H1 : ρ 6= 0. Let MR and

MU be respectively the restricted and the unrestricted model. Then, the Bayes factor in favor of the

unrestricted model is

BFUR =
p(Y|MU )

p(Y|MR)
, (10.20)

where p(Y|Mj) for j ∈ {U,R} is the corresponding marginal likelihood function. Since our prior

distributions are independent, the Bayes factor in (10.20) reduces to the SDDR given by

BFUR =
p(λ = 0|MU )

p(λ = 0|Y,MU )
, (10.21)

where p(λ = 0|MU ) and p(λ = 0|Y,MU ) are respectively the prior and the marginal posterior densities

of λ evaluated at λ = 0. The BFUR indicates that if λ = 0 is more likely under the prior relative to the

marginal posterior, then the BFUR provides evidence in favor of H1. Under the prior λ ∼ N(µρ, Vρ),

we have p(λ = 0|MU ) = (2πVλ)−1/2 exp(−µ2
λ/2Vλ). Let {βr, λr, ρr, σ2r}Rr=1 be a sequence of posterior

draws. Then, one way to estimate the marginal posterior p(λ = 0|Y,MU ) is to use the following

Rao-Blackwell estimator (Gelfand and Smith, 1990):

p̂(λ = 0|Y,MU ) =
1

R

R∑
r=1

p(λ = 0|Y,βr, ρr, σ2r). (10.22)

This Rao-Blackwell estimator cannot be used in our case because the conditional posterior density

of λ does not take a standard form. If we assume that the parameter space of λ is contained in the
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interval (−τ, τ), where τ is a finite positive constant, then we may resort to a Griddy-Gibbs sampler

to estimate p(λ = 0|Y,MU ). Algorithm 7 describes how we can use this approach.

Algorithm 7 (Computing SDDR).

1. Construct a grid with random points λ1, . . . , λm from the interval (−τ, τ). The grid must also

include λk = 0.

2. Compute pr(λi) = p(λi|Y,βr,ρr,σ2r)∑m
j=1 p(λj |Y,βr,ρr,σ2r)

for i = 1, . . . ,m and r = 1, . . . , R.

3. Compute p(λi) =
∑R

r=1 pr(λi) for i = 1, . . . ,m.

4. Return p̂(λ = 0|Y,MU ) = p(λk).

The marginal likelihood function of the MESS type models does not take a closed form. There

are alternative methods that can be used to estimate or to approximate the marginal likelihood

function. In the homoskedastic case, we can analytically integrate out β and σ2 under the following

priors: (i) β|σ2N(µβ, σ
2Vβ) and σ2 ∼ IG(a, b) or (ii) p(β, σ2) ∝ 1/σ. However, in order to get the

marginal likelihood function, we also need to integrate out the spatial parameters, which is not possible

analytically. Then, one approach for computing the marginal likelihood function can be based on a

numerical integration method (Hepple, 1995; LeSage and Pace, 2009; Han and Lee, 2013a). In the

case of MESS(1,1), this approach requires a double numerical integration over the parameter space of

λ and ρ. It is clear that this approach may not be feasible for high order MESS models and for models

with heteroskedasticity.

Alternatively, since the conditional posterior distributions of the spatial parameters are in non-

standard forms, we may resort to the method suggested by Chib and Jeliazkov (2001) to estimate the

marginal likelihood function. This approach is general enough and only requires the MCMC draws of

parameters. In the heteroskedastic case, this approach based on the conditional likelihood function

p(Y|θ,η) provided in Section 7.2 requires the MCMC draws of the high-dimensional scale mixture

variables and may therefore not produce precise estimates (Frühwirth-Schnatter and Wagner, 2008).

For this reason, we should instead use this method based on the integrated likelihood function p(Y|θ)

given in Section 10.2.

The modified harmonic mean method of Gelfand and Dey (1994) can also be used to estimate

the marginal likelihood function. This method requires a probability density function g whose support

lies in the support of the posterior distribution. The method produces an approximation based on

E
(

g(θ)
p(Y|θ)p(θ)

∣∣Y), where the expectation is taken with respect to p(θ|Y). The expectation gives the
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following relationship:

E

(
g(θ)

p(Y|θ)p(θ)

∣∣Y) =

∫
g(θ)

p(Y|θ)p(θ)
p(θ|Y)dθ =

∫
g(θ)

p(Y|θ)p(θ)

p(Y|θ)p(θ)

p(Y)
dθ

= p−1(Y)

∫
g(θ)dθ = p−1(Y). (10.23)

Thus, the marginal likelihood function p(Y ) can be estimated by the following estimator:

p̂(Y) =

(
1

R

R∑
r=1

g(θr)

p(Y|θr)p(θr)

)−1

, (10.24)

where {θr}Rr=1 is a sequence of the posterior draws from p(θ|Y). Under the condition that g(θ)/ (p(Y|θ)p(θ))

is bounded above over the support of the posterior distribution, it can be shown that this estimator is

a simulation consistent estimator when R goes to infinity (Geweke, 1999). To guarantee this bound-

edness condition, following Geweke (1999), we can consider a truncated multivariate normal density

for g. Let A = {θ ∈ Rp : (θ − θ̂)
′
Ω̂−1(θ − θ̂) < χ2

α,p} be the truncation set, where θ̂ is the posterior

mean of θ, Ω̂ is the posterior covariance of θ, and χ2
α,p is the (1− α) quantile of the χ2

p distribution.

Then, g takes the following form:

g(θ) = (1− α)−1(2π)−p/2
∣∣∣Ω̂∣∣∣−1/2

exp

(
−1

2
(θ − θ̂)

′
Ω̂−1(θ − θ̂)

)
× 1A(θ), (10.25)

where 1A(θ) is the indicator function taking value 1 if θ ∈ A, otherwise 0.

Note that the computation of the modified harmonic mean estimator requires the integrated

likelihood function which is available for both homoskedastic and heteroskedastic models. In the

context of spatial autoregressive models, Doğan (2023) investigates the finite sample performance of

this estimator along with some other popular information criteria for both nested and non-nested

model selection problems. His simulation results show that the modified harmonic mean estimator

performs satisfactorily, and can be useful for the specification search exercises in spatial econometrics.

11 A Monte Carlo study

11.1 Design

In this section, we conduct a Monte Carlo study to investigate the finite sample properties of the

estimators considered in Sections 4 through 7. To this end, we consider the following data generating

process:

Y = e−λ0WXβ0 + e−λ0We−ρ0MV,
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where X contains two explanatory variables with β0 = (β10, β20)′ = (1, 1)
′
. The observations for

the first explanatory variable are drawn independently from the standard normal distribution, while

the observations for the second explanatory variable are drawn independently from Uniform(0,
√

12).

The spatial parameters λ0 and ρ0 can take values from the set {(−2,−1), (−2, 1), (0.5,−1), (0.5, 1)}.

For V, in the homoskedastic scenario, the elements vi are i.i.d. draws from either (i) the standard

normal distribution or (ii) the standardized chi-squared distribution with three degrees of freedom,

i.e., (χ2
3 − 3)/

√
6. In the heteroskedastic scenario, we set V ∼ N (0,Diag(γ1, . . . , γn)) with either (i)

γi = 2ϑi/(
∑n

j=1 ϑj/n), where ϑi is the number of neighbors for unit i using the description of W1

below, or (ii) γi = exp(0.1 + 0.35X2i) and X2i is the ith element of X2.

For the spatial weights matrix W, we consider the interaction scenario described in Arraiz et al.

(2010). To this end, let n entities be distributed across four quadrants of a square grid in such a way

that the number of entities in each quadrant can be arranged to allow for sparse or dense quadrants.

The location of each entity across the grid is determined by the xy-coordinates on the grid. Let c

and c be two integers. The entities in the northeast quadrant of the grid have discrete coordinates

satisfying (c+1) ≤ x ≤ c and (c+1) ≤ y ≤ c, with an increment value of 0.5. For the other quadrants,

the location coordinates are integers satisfying 1 ≤ x ≤ c, 1 ≤ y ≤ c, and 1 ≤ x ≤ c, 1 ≤ y ≤ c. The

distance dij between any two entities i and j, located respectively at (x1, y1) and (x2, y2), is measured

by the Euclidean distance given by dij =
[
(x1 − x2)2 + (y1 − y2)2

]1/2
. Then, the (i, j)th element of

W is set to 1 if 0 ≤ dij ≤ 1, and to 0 otherwise. We then row normalize W. In this scenario, varying

the values for c and c leads to a different sample size and a different share of units in the northeast

quadrant. We consider the following two combinations: (c, c) = (5, 15) and (c, c) = (14, 20). The

first combination produces a sample size of 486 and locates 75 percent of the entities in the northeast

quadrant (W1), whereas the second combination generates a sample size of 485 and locates 25 percent

of the entities in the northeast quadrant (W2).

For the spatial weights matrix M, we consider a nearest neighbors scheme. To this end, using

the Euclidean distances (dij ’s) from the construction of W above, we let entity i be dependent on its

5 nearest neighbors so that the weights corresponding to these neighbors in the i’th row of M are set

to 1 and the rest are set to zero. Then, M is row normalized. We use the “makeneighborsw” function

from the Spatial Econometrics Toolbox to generate M (LeSage and Pace, 2009).

We evaluate the performance of the following estimators: (i) the QMLE in (4.4), (ii) the ME

in (5.8), (iii) the IGMME in (6.1), (iv) the BGMME in (6.4), (v) the RGMME in (6.8), (vi) the

Bayesian estimator (BE) based on Algorithm 1, and (vii) the robust Bayesian estimator (RBE) based

on Algorithm 2. For classical estimation methods, we conduct 1000 repetitions. In the case of Bayesian

estimation, we choose the following priors: λ ∼ N(0, 100), ρ ∼ N(0, 100), β ∼ N(0, 100I2) and

σ2 ∼ IG(0.01, 0.01). We set the number of repetitions to 100, the number of draws to 1500, and the
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burn-ins to 500. For each method, we report bias, root mean squared error (RMSE) and empirical

coverage ratio of a 95% confidence interval.10

11.2 Simulation results

Tables 6 and 7 present the simulation results for two homoskedastic cases: (i) vi ∼ N(0, 1) and (ii)

vi ∼ (χ2
3−3)/

√
6. Similarly, Tables 8 and 9 report the simulation results for the heteroskedastic cases.

Below, we summarize our main findings from these tables.

1. The results in Tables 6 and 7 demonstrate that all estimators exhibit excellent finite sample

performance in terms of bias across all cases. All estimators report negligible bias for all param-

eters. For instance, in Table 6, when (α0, τ0, β10, β20) is (−2,−1, 1, 1) in the case of W1, in terms

of bias in estimating α0, the QMLE, IGMME, BGMME, ME and BE report −0.0023, −0.0009,

−0.0026, −0.0021, and −0.0024, respectively.

2. In Tables 6 and 7, in terms of finite sample efficiency, the QMLE, BGMME and BE outperform

the other estimators and report smaller RMSE when the true disturbance terms are normally

distributed. However, when the true disturbance terms are not normally distributed, we observe

that the BGMME reports the smallest RMSE. This is not surprising because the theoretical re-

sults in Debarsy et al. (2015) show that when the disturbance terms are not normally distributed

and W and M do not commute, the BGMME can be more efficient than the QMLE. For ex-

ample, in Table 7, when (α0, τ0, β10, β20) is (−2,−1, 1, 1) in the case of W2, for α0 the BGMME

reports 0.045 for RMSE, whereas the QMLE, IGMME, ME and BE report 0.051, 0.060, 0.052

and 0.061, respectively.

3. In Tables 6 and 7, in terms of finite sample coverage ratios, all estimators perform satisfactorily

regardless of the distribution of the true disturbance terms or the denseness of W. There are

occasional negligible under coverage cases for the ME and the BE for α0. This is not surprising

in the case of ME because it uses the adjusted quasi score (with respect to α) that tries to correct

the score for the potential heteroskedasticity in the disturbance terms. For example, in Table 6,

when (α0, τ0, β10, β20) is (−2,−1, 1, 1) in the case of W1, for α0, the QMLE, IGMME, BGMME,

ME and BE report 94.5%, 93.4%, 94.6%, 92.7%, and 95%, respectively. Overall, all estimators

perform satisfactorily.

4. In the heteroskedastic cases, the results in Tables 8 and 9 indicate that all estimators exhibit ex-

cellent finite sample performance in terms of bias. For example, in Table 9, when (α0, τ0, β10, β20)

is (0.5,−1, 1, 1) in the case of W2, in terms of bias in estimating τ0, the QMLE, IGMME,

RGMME, ME and BE report 0.0015, 0.0074, 0.0013, 0.0021, and 0.0092, respectively.

10An estimation routine written in MATLAB is available in the supplementary online appendix.
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5. In Tables 8 and 9, in terms of finite sample efficiency, the QMLE, RGMME, ME and RBE

perform similarly. The RGMME and RBE report smaller RMSE values, whereas the IGMME

reports the largest RMSE values. For example, in Table 9, when (α0, τ0, β10, β20) is (0.5,−1, 1, 1)

in the case of W1, for τ0 the RGMME and RBE report 0.094 and 0.091 for RMSE, respectively,

whereas the QMLE, IGMME, and ME report 0.093, 0.107 and 0.093, respectively.

6. In Tables 8 and 9, in terms of finite sample coverage ratio, all estimators perform satisfactorily.

For example, in Table 9, when (α0, τ0, β10, β20) is (0.5, 1, 1, 1) in the case of W1, for τ0, the QMLE,

IGMME, RGMME, ME and RBE report 95.0%, 94.6%, 94.9%, 96.8%, and 90.0%, respectively.
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Table 6: Estimation results under homoskedasticity with vi ∼ N(0, 1)

QMLE IGMME BGMME ME BE

W1

α0 = −2 −0.0023(.043)[.945] −0.0009(.054)[.934] −0.0026(.043)[.946] −0.0021(.045)[.927] −0.0024(.045)[.950]
τ0 = −1 0.0015(.089)[.941] 0.0041(.100)[.938] 0.0013(.089)[.939] 0.0013(.090)[.941] 0.0141(.089)[.930]
β10 = 1 0.0034(.040)[.955] 0.0034(.042)[.960] 0.0031(.040)[.953] 0.0030(.040)[.909] 0.0036(.042)[.970]
β20 = 1 −0.0007(.035)[.943] −0.0011(.037)[.947] −0.0009(.035)[.942] 0.0010(.035)[.976] 0.0002(.035)[.940]

W1

α0 = −2 −0.0006(.038)[.942] −0.0005(.044)[.949] −0.0002(.039)[.939] −0.0012(.048)[.908] 0.0037(.036)[.970]
τ0 = 1 0.0140(.088)[.942] 0.0094(.097)[.941] 0.0115(.088)[.941] 0.0141(.091)[.954] 0.0066(.080)[.960]
β10 = 1 0.0012(.040)[.946] 0.0010(.043)[.945] 0.0011(.040)[.946] 0.0020(.041)[.972] 0.0039(.040)[.960]
β20 = 1 0.0000(.038)[.944] 0.0004(.044)[.938] 0.0004(.038)[.939] 0.0000(.047)[.940] 0.0054(.036)[.960]

W1

α0 = 0.5 −0.0002(.048)[.939] 0.0022(.061)[.948] −0.0004(.048)[.942] −0.0001(.049)[.883] 0.0021(.048)[.960]
τ0 = −1 0.0032(.092)[.936] 0.0037(.106)[.949] 0.0028(.092)[.931] 0.0031(.092)[.940] −0.0032(.093)[.940]
β10 = 1 0.0020(.041)[.944] 0.0014(.043)[.939] 0.0017(.041)[.944] 0.0024(.041)[.890] −0.0001(.046)[.950]
β20 = 1 0.0000(.034)[.954] 0.0001(.034)[.955] −0.0002(.034)[.951] 0.0020(.034)[.995] −0.0026(.034)[.940]

W1

α0 = 0.5 −0.0009(.041)[.954] −0.0005(.047)[.951] −0.0005(.041)[.955] −0.0034(.054)[.891] 0.0037(.040)[.930]
τ0 = 1 0.0147(.089)[.940] 0.0094(.096)[.953] 0.0121(.089)[.942] 0.0168(.097)[.957] −0.0073(.078)[.980]
β10 = 1 −0.0017(.042)[.934] −0.0016(.045)[.936] −0.0020(.043)[.933] −0.0006(.043)[.971] 0.0011(.041)[.950]
β20 = 1 −0.0006(.040)[.947] 0.0000(.046)[.951] −0.0002(.040)[.946] −0.0003(.052)[.955] 0.0060(.040)[.930]

W2

α0 = −2 −0.0001(.051)[.951] 0.0003(.061)[.952] 0.0000(.051)[.952] −0.0004(.052)[.894] 0.0057(.053)[.960]
τ0 = −1 0.0074(.083)[.944] 0.0111(.093)[.950] 0.0065(.084)[.943] 0.0077(.083)[.948] 0.0068(.073)[.980]
β10 = 1 0.0034(.044)[.948] 0.0036(.046)[.950] 0.0031(.044)[.948] 0.0036(.044)[.874] −0.0049(.044)[.940]
β20 = 1 −0.0006(.034)[.943] −0.0004(.035)[.951] −0.0013(.034)[.944] 0.0005(.034)[.997] −0.0002(.031)[.970]

W2

α0 = −2 −0.0013(.038)[.959] −0.0016(.045)[.952] −0.0012(.038)[.958] −0.0037(.054)[.845] 0.0010(.044)[.900]
τ0 = 1 0.0143(.083)[.941] 0.0096(.087)[.950] 0.0106(.082)[.940] 0.0143(.086)[.956] −0.0219(.083)[.950]
β10 = 1 0.0008(.036)[.948] 0.0007(.039)[.949] 0.0003(.036)[.949] 0.0015(.038)[.985] −0.0015(.040)[.950]
β20 = 1 −0.0006(.037)[.955] −0.0006(.044)[.954] −0.0006(.037)[.957] 0.0001(.051)[.953] 0.0011(.043)[.900]

W2

α0 = 0.5 0.0025(.050)[.953] 0.0025(.062)[.933] 0.0027(.050)[.952] 0.0025(.052)[.845] 0.0122(.056)[.880]
τ0 = −1 −0.0030(.086)[.941] 0.0033(.096)[.939] −0.0036(.087)[.937] −0.0031(.087)[.933] −0.0014(.089)[.930]
β10 = 1 0.0001(.038)[.963] −0.0006(.041)[.947] −0.0003(.038)[.962] 0.0008(.038)[.933] 0.0046(.041)[.930]
β20 = 1 −0.0025(.035)[.951] −0.0024(.036)[.941] −0.0030(.035)[.947] −0.0015(.035)[.998] 0.0035(.028)[.970]

W2

α0 = 0.5 −0.0005(.038)[.949] −0.0008(.044)[.948] −0.0005(.038)[.948] 0.0010(.049)[.869] −0.0010(.040)[.910]
τ0 = 1 0.0099(.080)[.950] 0.0056(.085)[.957] 0.0063(.080)[.950] 0.0082(.082)[.960] −0.0023(.085)[.950]
β10 = 1 0.0001(.037)[.945] 0.0001(.040)[.940] −0.0004(.037)[.943] 0.0006(.038)[.981] −0.0036(.034)[.980]
β20 = 1 −0.0001(.038)[.944] −0.0002(.044)[.949] −0.0001(.038)[.943] −0.0002(.049)[.942] 0.0010(.040)[.900]

Notes: We report the bias (RMSE) [95% coverage ratio].
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Table 7: Estimation results under homoskedasticity with vi ∼ (χ2
3 − 3)/

√
6

QMLE IGMME BGMME ME BE

W1

α0 = −2 0.0012(.045)[.933] 0.0009(.054)[.946] −0.0024(.036)[.945] 0.0010(.045)[.906] −0.0006(.040)[.950]
τ0 = −1 0.0005(.088)[.944] 0.0037(.099)[.942] 0.0036(.086)[.939] 0.0009(.088)[.944] 0.0037(.074)[.990]
β10 = 1 −0.0016(.043)[.944] −0.0017(.045)[.943] −0.0004(.032)[.948] −0.0008(.043)[.890] 0.0018(.041)[.950]
β20 = 1 −0.0001(.035)[.948] 0.0003(.037)[.945] 0.0006(.027)[.961] 0.0018(.035)[.981] 0.0011(.036)[.930]

W1

α0 = −2 0.0016(.038)[.946] 0.0020(.043)[.943] 0.0002(.029)[.948] 0.0007(.046)[.910] 0.0022(.041)[.930]
τ0 = 1 0.0071(.088)[.936] 0.0013(.094)[.940] 0.0057(.086)[.927] 0.0079(.091)[.943] −0.0006(.081)[.960]
β10 = 1 0.0013(.040)[.941] 0.0016(.042)[.937] 0.0002(.028)[.957] 0.0013(.041)[.968] −0.0027(.043)[.910]
β20 = 1 0.0027(.038)[.953] 0.0033(.042)[.951] 0.0015(.029)[.946] 0.0006(.044)[.951] 0.0034(.041)[.940]

W1

α0 = 0.5 0.0024(.049)[.947] 0.0027(.061)[.941] −0.0003(.041)[.946] 0.0025(.050)[.891] 0.0020(.044)[.970]
τ0 = −1 0.0027(.092)[.942] 0.0061(.106)[.953] 0.0047(.089)[.937] 0.0027(.092)[.942] −0.0051(.082)[.950]
β10 = 1 0.0017(.041)[.941] 0.0017(.043)[.932] 0.0005(.030)[.946] 0.0026(.041)[.890] −0.0010(.046)[.950]
β20 = 1 0.0011(.034)[.934] 0.0010(.035)[.936] 0.0017(.027)[.951] 0.0031(.034)[.990] −0.0046(.036)[.930]

W1

α0 = 0.5 0.0009(.042)[.940] 0.0016(.046)[.945] −0.0009(.031)[.949] −0.0022(.055)[.881] −0.0039(.040)[.940]
τ0 = 1 0.0121(.087)[.945] 0.0050(.096)[.944] 0.0114(.083)[.948] 0.0149(.094)[.950] 0.0010(.089)[.920]
β10 = 1 −0.0003(.042)[.941] 0.0000(.044)[.943] −0.0008(.031)[.939] 0.0003(.043)[.976] −0.0051(.039)[.930]
β20 = 1 0.0019(.041)[.944] 0.0027(.045)[.949] 0.0002(.030)[.946] 0.0003(.052)[.948] −0.0038(.040)[.950]

W2

α0 = −2 0.0036(.051)[.949] 0.0025(.060)[.954] −0.0011(.045)[.946] 0.0036(.052)[.888] −0.0059(.061)[.900]
τ0 = −1 0.0006(.084)[.939] 0.0069(.093)[.948] 0.0028(.083)[.939] 0.0008(.085)[.941] −0.0052(.080)[.980]
β10 = 1 −0.0017(.042)[.948] −0.0017(.044)[.943] −0.0018(.032)[.956] −0.0011(.042)[.883] 0.0014(.041)[.930]
β20 = 1 −0.0013(.033)[.952] −0.0015(.034)[.953] −0.0016(.025)[.949] −0.0002(.033)[.999] −0.0041(.036)[.950]

W2

α0 = −2 0.0009(.039)[.939] 0.0015(.045)[.945] −0.0001(.030)[.951] −0.0008(.053)[.847] −0.0072(.036)[.940]
τ0 = 1 0.0102(.075)[.958] 0.0050(.082)[.959] 0.0047(.075)[.960] 0.0102(.079)[.963] 0.0029(.083)[.920]
β10 = 1 −0.0011(.036)[.943] −0.0016(.039)[.953] −0.0010(.026)[.952] −0.0011(.039)[.983] −0.0025(.039)[.920]
β20 = 1 0.0014(.038)[.945] 0.0023(.044)[.950] 0.0007(.029)[.949] 0.0000(.050)[.952] −0.0057(.036)[.950]

W2

α0 = 0.5 0.0019(.050)[.947] 0.0012(.061)[.949] −0.0007(.045)[.943] 0.0023(.051)[.857] −0.0002(.054)[.930]
τ0 = −1 0.0006(.085)[.946] 0.0077(.094)[.941] 0.0011(.085)[.936] 0.0004(.085)[.945] 0.0099(.091)[.940]
β10 = 1 −0.0033(.037)[.950] −0.0017(.040)[.945] −0.0026(.029)[.941] −0.0027(.038)[.922] −0.0022(.043)[.940]
β20 = 1 −0.0004(.035)[.959] −0.0008(.036)[.951] 0.0003(.026)[.957] 0.0006(.035)[.997] −0.0004(.032)[.950]

W2

α0 = 0.5 0.0006(.039)[.946] −0.0006(.045)[.945] 0.0009(.029)[.949] −0.0016(.050)[.863] 0.0124(.048)[.850]
τ0 = 1 0.0142(.082)[.940] 0.0114(.088)[.940] 0.0093(.081)[.940] 0.0149(.084)[.943] 0.0038(.089)[.930]
β10 = 1 −0.0012(.035)[.953] −0.0022(.038)[.952] −0.0007(.026)[.958] −0.0010(.037)[.986] 0.0090(.041)[.870]
β20 = 1 0.0008(.039)[.948] 0.0000(.045)[.947] 0.0011(.028)[.957] −0.0004(.049)[.952] 0.0138(.048)[.880]

Notes: We report the bias (RMSE) [95% coverage ratio].
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Table 8: Estimation results under heteroskedasticity with γi = 2ϑi/(
∑n

j=1 ϑj/n)

QMLE IGMME RGMME ME RBE

W1

α0 = −2 −0.0014(.057)[.950] 0.0004(.074)[.945] −0.0022(.057)[.953] −0.0011(.059)[.948] −0.0049(.049)[.960]
τ0 = −1 0.0001(.104)[.911] 0.0043(.112)[.945] −0.0017(.111)[.893] −0.0001(.105)[.942] −0.0012(.103)[.920]
β10 = 1 0.0044(.057)[.952] 0.0046(.059)[.954] 0.0037(.057)[.953] 0.0044(.052)[.933] 0.0013(.043)[.960]
β20 = 1 −0.0016(.049)[.943] −0.0017(.051)[.953] −0.0028(.049)[.944] 0.0014(.049)[.970] 0.0118(.048)[.970]

W1

α0 = −2 0.0024(.052)[.947] 0.0000(.057)[.957] 0.0008(.052)[.948] −0.0021(.064)[.913] 0.0104(.059)[.820]
τ0 = 1 0.0097(.096)[.938] 0.0097(.096)[.960] 0.0068(.101)[.923] 0.0131(.100)[.962] −0.0037(.097)[.900]
β10 = 1 0.0015(.054)[.951] −0.0002(.056)[.950] 0.0000(.054)[.947] 0.0011(.047)[.992] −0.0035(.042)[.930]
β20 = 1 0.0035(.052)[.945] 0.0015(.057)[.961] 0.0019(.052)[.944] 0.0001(.013)[.999] 0.0116(.060)[.840]

W1

α0 = 0.5 −0.0036(.056)[.965] −0.0004(.071)[.955] −0.0042(.056)[.963] −0.0039(.058)[.958] 0.0005(.050)[.980]
τ0 = −1 0.0071(.104)[.931] 0.0074(.108)[.962] 0.0073(.111)[.909] 0.0075(.104)[.946] −0.0026(.086)[.970]
β10 = 1 0.0010(.057)[.948] 0.0010(.059)[.948] 0.0003(.057)[.945] 0.0009(.056)[.891] 0.0027(.041)[.960]
β20 = 1 −0.0019(.044)[.972] −0.0016(.045)[.971] −0.0033(.044)[.970] 0.0011(.044)[.989] −0.0061(.050)[.970]

W1

α0 = 0.5 0.0016(.058)[.937] −0.0006(.062)[.963] 0.0002(.058)[.936] −0.0111(.095)[.892] 0.0056(.047)[.900]
τ0 = 1 0.0075(.103)[.924] 0.0060(.102)[.962] 0.0058(.109)[.907] 0.0174(.125)[.976] −0.0143(.098)[.890]
β10 = 1 0.0002(.060)[.935] −0.0004(.063)[.939] −0.0012(.061)[.930] 0.0002(.054)[.993] 0.0016(.041)[.920]
β20 = 1 0.0030(.059)[.937] 0.0012(.064)[.956] 0.0016(.059)[.935] 0.0000(.014)[.999] 0.0072(.047)[.900]

W2

α0 = −2 0.0033(.068)[.953] 0.0027(.091)[.941] 0.0031(.067)[.954] 0.0049(.069)[.883] −0.0096(.061)[.999]
τ0 = −1 0.0018(.094)[.935] 0.0093(.105)[.956] −0.0015(.095)[.930] 0.0008(.094)[.945] −0.0129(.090)[.930]
β10 = 1 0.0016(.054)[.942] 0.0019(.057)[.948] 0.0011(.055)[.945] 0.0023(.053)[.945] 0.0051(.039)[.980]
β20 = 1 −0.0020(.048)[.955] −0.0022(.052)[.947] −0.0034(.049)[.954] 0.0000(.048)[.995] −0.0063(.045)[.960]

W2

α0 = −2 0.0001(.052)[.958] −0.0028(.061)[.960] −0.0029(.053)[.955] −0.0062(.074)[.900] −0.0017(.054)[.920]
τ0 = 1 0.0117(.091)[.928] 0.0100(.095)[.946] 0.0078(.092)[.927] 0.0147(.097)[.948] −0.0012(.089)[.940]
β10 = 1 0.0023(.059)[.939] 0.0013(.062)[.956] 0.0010(.060)[.940] 0.0028(.058)[.992] 0.0001(.038)[.980]
β20 = 1 0.0012(.052)[.957] −0.0011(.061)[.960] −0.0018(.052)[.954] −0.0001(.013)[.999] 0.0009(.054)[.890]

W2

α0 = 0.5 0.0069(.074)[.951] 0.0082(.094)[.940] 0.0074(.074)[.947] 0.0086(.076)[.843] 0.0086(.059)[.980]
τ0 = −1 −0.0007(.099)[.923] 0.0043(.105)[.949] −0.0036(.100)[.918] −0.0016(.099)[.943] 0.0074(.089)[.930]
β10 = 1 −0.0024(.056)[.943] −0.0017(.059)[.955] −0.0028(.056)[.945] −0.0011(.055)[.926] 0.0055(.036)[.970]
β20 = 1 0.0004(.050)[.954] 0.0014(.051)[.948] −0.0008(.050)[.951] 0.0021(.049)[.999] −0.0061(.049)[.930]

W2

α0 = 0.5 0.0030(.056)[.942] −0.0039(.065)[.954] −0.0004(.057)[.945] 0.0009(.073)[.871] 0.0068(.059)[.880]
τ0 = 1 0.0048(.088)[.947] 0.0069(.092)[.955] 0.0009(.089)[.947] 0.0053(.092)[.963] 0.0079(.084)[.930]
β10 = 1 0.0037(.055)[.944] 0.0030(.058)[.944] 0.0022(.055)[.942] 0.0033(.052)[.992] 0.0019(.034)[.990]
β20 = 1 0.0042(.056)[.935] −0.0017(.062)[.951] 0.0010(.056)[.936] 0.0001(.013)[.999] 0.0102(.054)[.880]

Notes: We report the bias (RMSE) [95% coverage ratio].
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Table 9: Estimation results under heteroskedasticity with γi = exp(0.1 + 0.35X2i)

QMLE IGMME RGMME ME RBE

W1

α0 = −2 −0.0023(.050)[.942] −0.0006(.060)[.958] −0.0025(.050)[.941] −0.0019(.051)[.941] 0.0062(.040)[.960]
τ0 = −1 0.0035(.092)[.952] 0.0056(.106)[.952] 0.0028(.093)[.950] 0.0031(.093)[.955] −0.0031(.094)[.910]
β10 = 1 −0.0001(.050)[.942] −0.0009(.052)[.947] −0.0005(.050)[.942] −0.0004(.047)[.933] −0.0062(.032)[.990]
β20 = 1 0.0004(.045)[.933] 0.0005(.047)[.925] 0.0000(.045)[.932] 0.0025(.045)[.969] 0.0031(.045)[.920]

W1

α0 = −2 0.0008(.046)[.954] 0.0002(.050)[.955] 0.0012(.046)[.956] −0.0016(.056)[.933] −0.0003(.043)[.940]
τ0 = 1 0.0087(.093)[.925] 0.0063(.098)[.938] 0.0060(.093)[.932] 0.0107(.100)[.940] −0.0071(.078)[.950]
β10 = 1 0.0000(.048)[.942] −0.0004(.050)[.945] 0.0001(.048)[.941] 0.0005(.041)[.993] −0.0039(.036)[.920]
β20 = 1 0.0017(.047)[.945] 0.0013(.051)[.949] 0.0021(.047)[.944] 0.0000(.011)[1.000] 0.0008(.044)[.950]

W1

α0 = 0.5 0.0029(.049)[.960] 0.0023(.059)[.970] 0.0028(.049)[.963] 0.0026(.050)[.948] −0.0027(.054)[.890]
τ0 = −1 0.0015(.093)[.942] 0.0061(.107)[.948] 0.0014(.094)[.943] 0.0019(.093)[.947] 0.0035(.091)[.930]
β10 = 1 −0.0021(.047)[.958] −0.0017(.049)[.958] −0.0027(.047)[.957] −0.0011(.046)[.924] −0.0011(.038)[.970]
β20 = 1 0.0011(.042)[.943] 0.0012(.043)[.939] 0.0007(.042)[.944] 0.0031(.042)[.982] 0.0061(.043)[.980]

W1

α0 = 0.5 −0.0008(.048)[.948] −0.0018(.055)[.953] −0.0003(.048)[.952] −0.0029(.069)[.897] −0.0097(.046)[.930]
τ0 = 1 0.0087(.090)[.950] 0.0056(.099)[.946] 0.0064(.090)[.949] 0.0102(.102)[.968] 0.0050(.092)[.900]
β10 = 1 0.0006(.049)[.956] 0.0003(.051)[.951] 0.0006(.049)[.953] 0.0015(.044)[.994] −0.0019(.037)[.930]
β20 = 1 0.0001(.051)[.942] −0.0006(.057)[.950] 0.0007(.051)[.940] −0.0001(.013)[1.000] −0.0066(.043)[.950]

W2

α0 = −2 0.0006(.059)[.961] 0.0008(.073)[.968] 0.0001(.059)[.962] 0.0009(.061)[.858] −0.0029(.064)[.910]
τ0 = −1 0.0058(.084)[.953] 0.0116(.098)[.953] 0.0054(.084)[.956] 0.0057(.085)[.962] −0.0072(.098)[.930]
β10 = 1 0.0023(.045)[.952] 0.0025(.047)[.961] 0.0017(.045)[.951] 0.0027(.044)[.955] 0.0062(.034)[.980]
β20 = 1 −0.0003(.047)[.929] −0.0004(.049)[.934] −0.0011(.047)[.931] 0.0013(.047)[.989] 0.0085(.044)[.950]

W2

α0 = −2 −0.0025(.047)[.957] −0.0029(.055)[.957] −0.0022(.047)[.954] −0.0045(.062)[.890] 0.0039(.044)[.940]
τ0 = 1 0.0130(.084)[.943] 0.0090(.090)[.948] 0.0093(.083)[.949] 0.0135(.088)[.948] −0.0092(.087)[.920]
β10 = 1 −0.0019(.048)[.955] −0.0031(.051)[.955] −0.0023(.048)[.953] −0.0009(.047)[.993] −0.0045(.036)[.930]
β20 = 1 −0.0010(.048)[.937] −0.0010(.056)[.947] −0.0008(.048)[.941] 0.0004(.011)[1.000] 0.0056(.046)[.930]

W2

α0 = 0.5 −0.0005(.059)[.964] −0.0014(.073)[.961] −0.0013(.059)[.964] −0.0013(.061)[.874] 0.0059(.057)[.950]
τ0 = −1 0.0015(.087)[.949] 0.0074(.098)[.950] 0.0013(.088)[.946] 0.0021(.088)[.945] 0.0092(.093)[.940]
β10 = 1 −0.0017(.048)[.957] −0.0011(.051)[.953] −0.0019(.048)[.958] −0.0015(.047)[.932] 0.0003(.036)[.940]
β20 = 1 0.0010(.043)[.946] 0.0008(.045)[.945] 0.0001(.043)[.947] 0.0029(.043)[.995] 0.0003(.050)[.900]

W2

α0 = 0.5 −0.0012(.048)[.948] −0.0022(.057)[.953] −0.0015(.048)[.954] −0.0037(.068)[.846] −0.0058(.043)[.940]
τ0 = 1 0.0098(.082)[.948] 0.0056(.087)[.961] 0.0066(.082)[.951] 0.0109(.088)[.963] 0.0054(.078)[.970]
β10 = 1 −0.0004(.046)[.945] 0.0008(.048)[.955] −0.0008(.046)[.947] 0.0005(.043)[.994] 0.0004(.032)[.970]
β20 = 1 −0.0004(.048)[.948] −0.0009(.055)[.949] −0.0008(.047)[.947] −0.0003(.012)[1.000] −0.0045(.043)[.910]

Notes: We report the bias (RMSE) [95% coverage ratio].
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12 Conclusion and outlook

In this article, we provided an extensive review of cross-sectional MESS models. We mainly focused

on the first-order MESS model to discuss specification, estimation, model selection, and interpretation

issues. The primary characteristic of a MESS-type model lies in its use of matrix exponential terms to

specify spatial dependence in both the dependent variable and the disturbance terms. These models

possess several distinctive properties.

• The power series representation of a matrix exponential term indicates an exponential decay of

spatial dependence in these models.

• The reduced forms of MESS-type models always exist and do not require any restrictions on the

parameter space of spatial parameters. The reduced forms of these models imply an exponential

decay for the influence of high-order neighboring characteristics.

• The likelihood functions of these types of models are free of any Jacobian terms that must be

computed at each iteration during the estimation process.

• When the spatial weights matrices are commutative, the QMLEs of these types of models can

be consistent under an unknown form of heteroskedasticity.

• When the spatial weights matrices are not commutative, the QMLE can be inconsistent under

an unknown form of heteroskedasticity. In such cases, a heteroskedasticity-robust estimation is

required.

• The MESS and SAR models are not perfect substitutes because these two classes of models

are non-nested. In practice, non-nested model selection procedures such as the J-test statistic,

the Vuong-type model selection statistic, or Bayesian methods based on the marginal likelihood

functions should be used for model selection exercises.

We provided a comprehensive description of various estimation methods, including the QML approach,

the M-estimation approach, the GMM approach, and the Bayesian estimation approach. This detailed

overview may enable practitioners to select and adapt a method that aligns with their specific needs.

Additionally, we addressed estimation in the presence of endogenous explanatory variables and Durbin

terms. We also discussed model selection methods based on testing, information criteria, and marginal

likelihood approaches.

In future studies, it might be interesting to consider the MESS in a social interactions scenario,

and compare its implications with the SAR-type social interaction models. As the QMLE of the

MESS can still remain consistent under an unknown form of heteroskedasticity, allowing for such

heteroskedasticity in a social interactions model would be a significant contribution. The performance
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of model selection procedures such as the J-test statistic, the Vuong-type model selection statistic,

the Cox test statistics, and Bayesian methods based on the marginal likelihood functions should be

assessed in future studies for non-nested model selection problems between the MESS and SAR models

through both simulation studies and empirical applications. We also think that the literature on

nonlinear spatial models, such as the spatial extensions of the limited dependent variable data models,

still holds some open questions, and estimation strategies for the the MESS-type limited dependent

variable data models must be studied carefully. Finally, although the matrix-vector product approach

to compute the matrix exponential terms can reduce the computation time significantly, we think that

a faster and more reliable computation approach would be a significant contribution to the literature.
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Appendix

A Useful Lemmas

In this section, we collect some lemmas that are required for our asymptotic results in Theorems 5.1-

5.3 on the M-estimator. Lemma 1 can be found in Kelejian and Prucha (1999) and Lee (2002). The

homoskedastic and heteroskedastic versions of Lemma 2 can be found in Lee (2007) and Lin and Lee

(2010), respectively. Lemma 3 can be found in Debarsy et al. (2015), Lemma 4 gives a CLT result

from Kelejian and Prucha (2010), and Lemma 5 is a modified version of Lemma A.4 in Yang (2018).

Lemma 1. Let {A} and {B} be two sequences of n×n matrices that are uniformly bounded in both row

sum and column sum matrix norms. Let {C} be a sequence of conformable matrices whose elements

are uniformly O(h−1
n ), where the rate sequence {hn} can be bounded or divergent. Then,

(a) the sequence {AB} are uniformly bounded in both row sum and column sum matrix norms,

(b) the elements of {A} are uniformly bounded and tr(A) = O(n), and

(c) the elements of {AC} and {CA} are uniformly O(h−1
n ).

Lemma 2. Let {V} be a sequence of random n× 1 column vectors, c be the n× 1 vector of constants,

and {A} and {B} be two sequences of n× n matrices of constants. Let vecD (A) be a column vector

formed by the diagonal elements of A, and As = A + A′.

1. Homoskedastic case: Suppose that the elements of V satisfy vi ∼ i.i.d.(0, σ2
0). Let E(v3

i ) = µ3

and E(v4
i ) = µ4. Then, we have the following results:

(a) E(AV ·V′BV) = µ3AvecD(B),

(b) E(V
′
AV ·V′B) = µ3vec

′
D(A)B, and

(c) E(V
′
AV ·V′BV) =

(
µ4 − 3σ4

0

)
vec

′
D (A) vecD (B) + σ4

0 (tr(A)tr(B) + tr (ABs)).

2. Heteroskedastic case: Suppose V has elements that are independently distributed (i.n.i.d.)

with vi ∼ i.n.i.d.(0, σ2
i ). Let Σ = Diag(σ2

1, . . . , σ
2
n). Then, we have the following results:

(a) E(V
′
AV) = tr (ΣA),

(b) E(V′AV · c′V) =
∑n

i=1 E(v3
i )aiici, where aii is the (i, i)th element of A and ci is the ith

element of c, and

(c) E(V′AV ·V′BV) =
∑n

i=1 aiibii(E(v4
i )− 3σ4

i ) + tr(ΣA)tr(ΣB) + tr(ΣAΣBs).

If the diagonal elements of A are zeros, then these results take the following form:
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(a) E(V
′
AV) = 0,

(b) E(V
′
AV · c′V) = 0, and

(c) E(V
′
AV ·V′BV) = tr(ΣAΣBs).

Lemma 3. Let A be any n× n matrix that is uniformly bounded in row sum and column sum matrix

norms, and let a = op(1). Then,
∥∥eaA − In

∥∥
∞ = op(1) and

∥∥eaA − In
∥∥

1
= op(1), where ‖ · ‖∞ denotes

the row sum matrix norm, and ‖ · ‖1 denotes the column sum matrix norm.

Lemma 4. Suppose that {A} is a sequence of n×n matrices uniformly bounded in both row sum and

column sum matrix norms, {c} is a sequence of constant column vectors such that supn
1
n

∑n
i=1 |ci|

2+η1 <

∞ for some η1 > 0, vi in V are independent random variables with mean zero and variance σ2
i and

supi E(|vi|4+η2) <∞ for some η2 > 0. Denote σ2
Z = Var (Z), where Z = c′V+V

′
AV− tr (AΣ) where

Σ = Diag(σ2
1, . . . , σ

2
n). Assume that 1

nσ
2
Z is bounded away from zero. Then Z

σ2
Z

d−→ N(0, 1).

Lemma 5. Let {A} be a sequence of n × n matrices that are bounded in both row sum and column

sum matrix norms. Suppose also that the elements of A are O
(
h−1
n

)
, uniformly. Let c be an n × 1

vector with elements of the uniform order O(h
−1/2
n ). Assume that the elements of the n×1 innovation

vector V have zero mean and finite variance, and are mutually independent. Then,

(1) E(V
′
AV) = O (n/hn), Var(V

′
AV) = O (n/hn),

(2) V
′
AV = Op (n/hn), V′AV − E(V

′
AV) = Op

(
(n/hn)1/2), and c

′
AV = Op

(
(n/hn)1/2 ).

B Assumptions for the M-Estimator

To investigate the asymptotic properties of ζ̂M stated in Theorems 5.1-5.3, we maintain the following

assumptions.

Assumption 3. The spatial weights matrices W and M are uniformly bounded in both row sum and

column sum matrix norms.

Assumption 4. There exists a constant c > 0 such that |λ| ≤ c and |ρ| ≤ c, and the true parameter

vector ζ0 lies in the interior of ∆ = [−c, c]× [−c, c].

Assumption 5. X is exogenous, with uniformly bounded elements, and has full column rank. Also,

limn→∞
1
nX

′
eρM

′
eρMX exists and is nonsingular, uniformly in ρ ∈ [−c, c].

Assumption 6. infζ: d(ζ,ζ0)≥ϑ
∥∥S̄∗c(ζ)

∥∥ > 0 for every ϑ > 0, where d(ζ, ζ0) is a measure of distance

between ζ and ζ0.
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Assumption 3 provides the essential properties of the spatial weights matrices. It ensures that the

spatial correlation is limited to a manageable degree (Kelejian and Prucha, 2001, 2010). Assumption 4

requires that the parameter space of the parameters in the matrix exponential terms is compact.

Assumption 3 and Assumption 4 imply that the matrix exponential terms are uniformly bounded in

both row sum and column sum matrix norms. This can be seen from
∥∥eλW

∥∥ =
∥∥∑∞

i=0 λ
iWi/i!

∥∥ ≤∑∞
i=0 |λ|i‖W‖i/i! = e|λ|‖W‖, which is bounded if |λ| and ‖W‖ are bounded, where ‖ · ‖ is either the

row sum or the column sum matrix norm. Assumption 5 provides some regularity conditions and

corresponds to Assumption 4 of Debarsy et al. (2015). Assumption 6 is a high-level assumption and

ensures the identification of ζ0. In Appendix C, we provide two low-level conditions that are sufficient

for Assumption 6.

C Proofs of Main Results

In this section, we provide the proofs of the main theorems in Section 5 of the paper.

C.1 Proof of Theorem 5.1

As discussed in the main paper, we only need to show the consistency of ζ̂. To that end, given

Assumption 5, we need to show that supζ∈∆
1
n

∥∥S∗c(ζ)− S̄∗c(ζ)
∥∥ p−−→ 0. Note that

V̂(ζ) = V(β̂M , ζ) = eρM(eλWY −Xβ̂M ) = Q(ρ)eρMeλWY, (C.1)

and

V̄(ζ) = V(β̄M , ζ) = eρM(eλWY −Xβ̄M ) = Q(ρ)eρMeλWY + P(ρ)eρMeλW(Y − E(Y)), (C.2)

where P(ρ) is the projection matrix based on eρMX and Q(ρ) = In − P(ρ). Denote G(ζ) =

eρMeλW and G(ζ0) = eρ0Meλ0W. Substituting (C.1) and (C.2) into S∗c(ζ) and S̄∗c(ζ), the proof

of supζ∈∆
1
n

∥∥Sc∗(ζ)− S̄c∗(ζ)
∥∥ p−−→ 0 is equivalent to that of the following:

(i) supζ∈∆
1
n

(
Y
′
Ri(ζ)Y − E

(
Y
′
Ri(ζ)Y

))
= op(1), for i = 1, 2,

(ii) supζ∈∆
1
ntr
(
ΣG−1′(ζ0)Ti(ζ)G−1(ζ0)

)
= o(1), for i = 1, 2, 3,

where the terms are defined as R1(ζ) = G
′
(ζ)WD(ρ)Q(ρ)G(ζ), R2(ζ) = G

′
(ζ)Q(ρ)MQ(ρ)G(ζ),

T1(ζ) = G
′
(ζ)WD(ρ)P(ρ)G(ζ), T2(ζ) = G

′
(ζ)P(ρ)G(ζ) and T3(ζ) = G

′
(ζ)Q(ρ)MsP(ρ)G(ζ).

Proof of (i). Note that (i) follows from the point-wise convergence of 1
n

(
Y
′
Ri(ζ)Y − E(Y

′
Ri(ζ)Y)

)
in each ζ ∈ ∆ and stochastic equicontinuity of 1

nY
′
Ri(ζ)Y for i = 1, 2. To prove the point-wise

57



convergence, we have

1

n

(
Y
′
Ri(ζ)Y − E(Y

′
Ri(ζ)Y)

)
=

2

n
β
′
0X
′
eλ0W′

Ri(ζ)G−1(ζ0)V +
1

n

(
V
′
G−1′(ζ0)Ri(ζ)G−1(ζ0)V − tr(ΣG−1′(ζ0)Ri(ζ)G−1(ζ0))

)
.

Note that eλ0W′
Ri(ζ)G−1(ζ0) and G−1′(ζ0)Ri(ζ)G−1(ζ0) are uniformly bounded in row and column

sum norms for i = 1, 2 by Lemma 1. Thus, the terms on the r.h.s. are pointwise convergent by Lemma

5(2).

To prove the stochastic equicontinuity, by the mean value theorem, for any two parameter vectors

ζ1, ζ2 ∈∆, we have

1

n

(
Y
′
Ri(ζ1)Y −Y

′
Ri(ζ2)Y

)
=

1

n
Y
′ ∂Ri(ζ̄)

∂ζ ′
Y(ζ1 − ζ2),

where ζ̄ is between ζ1 and ζ2 elementwise. Thus we need to prove that supζ∈∆
1
nY

′ ∂Ri(ζ)
∂λ Y = Op(1)

and supζ∈∆
1
nY

′ ∂Ri(ζ)
∂ρ Y = Op(1) for i = 1, 2. Note that

∂R1(ζ)

∂λ
= W

′
R1(ζ) + R1(ζ)W,

∂R2(ζ)

∂λ
= W

′
R2(ζ) + R2(ζ)W,

∂R1(ζ)

∂ρ
= M

′
R1(ζ) + G

′
(ζ)ẆD(ρ)Q(ρ)G(ζ) + G

′
(ζ)WD(ρ)Q̇(ρ)G(ζ) + R1(ζ)M,

∂R2(ζ)

∂ρ
= M

′
R2(ζ) + G

′
(ζ)Q̇(ρ)MQ(ρ)G(ζ) + G

′
(ζ)Q(ρ)MQ̇(ρ)G(ζ) + R2(ζ)M,

where ẆD(ρ) = ∂WD(ρ)
∂ρ = MWD(ρ) −WD(ρ)M − Diag (MWD(ρ)−WD(ρ)M) and Q̇(ρ) = ∂Q(ρ)

∂ρ =

−(Q(ρ)MP(ρ) + P(ρ)M
′
Q(ρ)). By substituting the reduced form Y = e−λ0W(Xβ0 + e−ρ0MV) into

Y
′ ∂Ri(ζ)

∂λ Y and Y
′ ∂Ri(ζ)

∂ρ Y for i = 1, 2, we get a group of nonstochastic terms and linear and quadratic

forms in V. By Lemma 5, supζ∈∆
1
nY

′ ∂Ri(ζ)
∂λ Y = Op(1) and supζ∈∆

1
nY

′ ∂Ri(ζ)
∂ρ Y = Op(1) for i = 1, 2.

Proof of (ii). Under Assumption 5, Lemma 1 ensures that 1
ntr
(
ΣG−1′(ζ0)Ti(ζ)G−1(ζ0)

)
= o(1),

for i = 1, 2, 3.

C.2 Proof of Theorem 5.2

By the mean value theorem,
√
n(γ̂M − γ0) = −

(
1
n
∂S∗(γ)

∂γ′

)−1
1√
n
S∗(γ0), where γ is between γ̂M and

γ0 elementwise. Thus we need to prove:

(i) 1√
n
S∗(γ0)

d−−→ N (0, limN→∞Ω(γ0)) ,

(ii) 1
n

(
∂S∗(γ)

∂γ′
− ∂S∗(γ0)

∂γ′

)
= op(1), and

(iii) 1
n

(
∂S∗(γ0)

∂γ′
− E

(
∂S∗(γ0)

∂γ′

))
= op(1).
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Proof of (i). Note that the elements of S∗(γ0) are linear-quadratic forms of V as shown in (5.10).

Then we can construct an (k + 2) × 1 vector a = (a
′
1, a2, a3)

′
such that a

′
S∗(γ0) = b

′
V + V

′
BV,

where b
′

= a
′
1X
′
eρ0M′−a2β

′
0X
′
eρ0M′WD and B = −a2WD−a3M. Then, 1

na
′
S∗(γ0) is asymptotically

normal by Lemma 4. Then, the Cramer-Wold device leads to (i).

Proof of (ii). Let Π(γ) = − 1
n
∂S∗(γ)

∂γ′
. Since Y = e−λ0W(Xβ0 + e−ρ0MV), all terms in the Hessian

matrix can be written in forms of functions in Lemma 5. By Lemma 5, we know that 1
nΠ(γ0) = Op(1),

which implies 1
nΠ(γ̄) = Op(1). We can write eλ̄W = (eλ̄W−eλ0W)+eλ0W, eρ̄M = (eρ̄M−eρ0M)+eρ0M

and β̄ = (β̄ − β0) + β0, and then expand the terms in 1
nΠ(γ). By Lemma 5 and the reduced form

of Y, 1
nY

′
AY = Op(1) and 1

nX
′
AY = Op(1), where A is an n × n matrix that is bounded in

both row and column sum matrix norms. Also note
∥∥∥eλ̄W − eλW

∥∥∥
∞

=
∥∥∥(e(λ̄−λ0)W − In)eλ0W

∥∥∥
∞
≤∥∥∥(e(λ̄−λ0)W − In

∥∥∥
∞

∥∥eλ0W
∥∥
∞ = op(1) by Lemma 3, and similarly

∥∥eρ̄M − eρ0M
∥∥
∞ = op(1). Then the

expanded forms of 1
n (Π(γ̄)−Π(γ0)) imply that it is op(1).

Proof of (iii). Substituting the reduced form of Y into 1
n

(
∂S∗(γ0)

∂γ′
− E

(
∂S∗(γ0)

∂γ′

))
, we know that

each element is a linear or quadratic function of V. For example, for Π∗λρ(γ0),

Π∗λρ(γ0)− E
(
Π∗λρ(γ0)

)
= −β′0X

′
eρ0M′M

′
WD(ρ)V −V

′
M
′
WD(ρ)V + E

(
V
′
M
′
WD(ρ)V

)
− β′0X

′
eρ0M′ẆD(ρ)V −V

′
ẆD(ρ)V + E

(
V
′
M
′
ẆD(ρ)V

)
− β′0X

′
eρ0M′WD(ρ)MV

−V
′
WD(ρ)MV + E

(
V
′
WD(ρ)MV

)
.

By Lemma 5, 1
n

(
Π∗λρ(γ0)− E

(
Π∗λρ(γ0)

))
= op(1). The proof for the rest of the terms are similar to

that for Π∗λρ(γ0) and thus are omitted.

C.3 Proof of Theorem 5.3

Since the terms in Ω(γ0) are similar to those in Proposition 5 in Debarsy et al. (2015), the proof is

similar to that of Proposition 5 and thus is omitted.

D Details of the Identification Conditions

The identification condition in Assumption 6 under the heteroskedastic error terms is a high level

assumption. In this section, we derive low level conditions for the identification of ζ0. Note that the

identification of ζ0 requires that S̄c∗(ζ) 6= 0 for ζ 6= ζ0 under the exact identification case, similar

to the method of moment approach. Also recall that the population counterpart of the concentrated
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adjusted score function is given by

S̄c∗(ζ) =

 λ : −E
(
Y
′
eλW′

eρM
′WD(ρ)V̄(ζ)

)
,

ρ : −E
(
V̄
′
(ζ)MV̄(ζ)

)
,

where V̄(ζ) = V(β̄M (ζ), ζ). Also recall that (C.2) implies that

V̄(ζ) = Q(ρ)G(ζ)Y + P(ρ)G(ζ)(Y − E(Y)),

where G(ζ) = eρMeλW. Denote G = G(ζ0). From the reduced form Y = e−λ0WXβ0 + G−1V, we

know Y − E(Y) = G−1V. Then,

V̄(ζ) = Q(ρ)G(ζ)Y + P(ρ)G(ζ)G−1V

= Q(ρ)G(ζ)(e−λ0WXβ0 + G−1V) + P(ρ)G(ζ)G−1V

= Q(ρ)G(ζ)e−λ0WXβ0 + G(ζ)G−1V.

Then we have

E(V̄
′
(ζ)WD(ρ)V̄(ζ))

= E
(

(Q(ρ)G(ζ)e−λ0WXβ0 + G(ζ)G−1V)
′
WD(ρ)(Q(ρ)G(ζ)e−λ0WXβ0 + G(ζ)G−1V)

)
= β

′
0X
′
e−λ0W′

G
′
(ζ)Q(ρ)WDQ(ρ)G(ζ)e−λ0WXβ0 + E(V

′
G−1′G

′
(ζ)WD(ρ)G(ζ)G−1V)

= β
′
0X
′
e−λ0W′

G
′
(ζ)Q(ρ)WDQ(ρ)G(ζ)e−λ0WXβ0 + tr(ΣG−1′G

′
(ζ)WD(ρ)G(ζ)G−1).

Similarly E(V̄
′
(ζ)MV̄(ζ)) can be expressed as

E(V̄
′
(ζ)M(ρ)V̄(ζ))

= β
′
0X
′
e−λ0W′

G
′
(ζ)Q(ρ)MQ(ρ)G(ζ)e−λ0WXβ0 + tr(ΣG−1′G

′
(ζ)MG(ζ)G−1).

Thus, the identification of ζ0 follows, if ζ 6= ζ0, one of the following conditions holds:

(i) lim
n→∞

1

n
[β
′
0X
′
e−λ0W′

G
′
(ζ)Q(ρ)WDQ(ρ)G(ζ)e−λ0WXβ0 + tr(ΣG−1′G

′
(ζ)WD(ρ)G(ζ)G−1)] 6= 0,

(ii) lim
n→∞

1

n
[β
′
0X
′
e−λ0W′

G
′
(ζ)Q(ρ)MQ(ρ)G(ζ)e−λ0WXβ0 + tr(ΣG−1′G

′
(ζ)MG(ζ)G−1)] 6= 0.
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