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This web appendix presents the proofs of the technical results, the details of the empirical

exercise and the additional simulation results. More specifically, Section A includes some lemmas

that are essential for our theoretical results. The proofs of some lemmas are given in Section B.

Sections C and D provide the proofs of the main technical results. Section E provides some details

on our empirical application. Section F presents the details on the identification conditions. Section

G includes the pseudo estimation algorithms. Finally, Section H provides the additional simulation

results.

A Some Useful Lemmas

The following lemmas are useful in the proofs of the theorems in the paper. Lemma A.1 can be

found in Kelejian and Prucha (1999). Lemma A.3 can be found in Lin and Lee (2010), Lemma A.4

can be found in Debarsy et al. (2015), Lemma A.6 can be found in Lee (2007a), Lemma A.7 can

be found in Lin and Lee (2010). The proofs of Lemma A.2 and A.5 can be found in section B.

Lemma A.1. Let {AN} and {BN} be two sequences of N×N matrices that are uniformly bounded

in both row sum and column sum matrix norms. Let {CN} be a sequence of conformable matrices

whose elements are uniformly O(h−1
n ). Then,

(i) the sequence {ANBN} are uniformly bounded in both row sum and column sum matrix norms,

(ii) the elements of {AN} are uniformly bounded and tr(AN ) = O(N), and

(iii) the elements of {ANCN} and {CNAN} are uniformly O(h−1
n ).

Lemma A.2. Under our assumptions in the paper, we have

(i) QC(τ) is uniformly bounded in both row sum and column sum matrix norms, uniformly in

τ ∈ ∆τ ,
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(ii) QX(τ) is uniformly bounded in both row sum and column sum matrix norms, uniformly in

τ ∈ ∆τ ,

(iii) The elements of PC(τ) has the uniform order O (max {1/n, 1/T}), uniformly in τ ∈ ∆τ .

(iv) Let {AN} be a sequence of N ×N matrices that are uniformly bounded in both row sum and

column sum matrix norms and {CN} be a sequence of N × N matrices whose elements are

uniformly O(h−1
n ).

(a) 1
N tr (QC(τ)AN ) = 1

N tr (AN ) +O (max {1/n, 1/T}), uniformly in τ ∈ ∆τ .

(b) 1
N tr (QC(τ)CN ) = 1

N tr (CN ) + O (1/max{T, hn}) = O(h−1
n ) + O (1/max{T, hn}), uni-

formly in τ ∈ ∆τ .

Remark 1. A similar result in Lee (2004, Lemma A.9) shows that 1
ntr(MnAn) = 1

ntr(An) + o(1),

where An are uniformly bounded in both row and column sums and Mn = In − Xn(X
′
nXn)−1X

′
n.

This result follows from 1
ntr(MnAn) = 1

ntr(An)− 1
ntr
(

(X
′
nXn)−1X

′
nAnXn

)
. Under the assumption

that limn→∞
1
nX

′
nXn exists and is non-singular, Lee (2004) shows that the elements of k×k matrices

( 1
nX

′
nXn)−1 and 1

nX
′
nAnXn are uniformly bounded, where k is the number of columns in Xn. Thus,

it follows that tr
(

(X
′
nXn)−1X

′
nAnXn

)
= O(1), which implies that 1

ntr(MnAn) = 1
ntr(An) + o(1).

This result cannot be used in our case for the terms such as 1
N tr (QC(τ)AN ) and 1

N tr (QC(τ)CN )

because C(τ) is an N × (n+ T − 1) matrix, i.e., its column dimension depends on n and T .

Lemma A.3. Let {AN} be a sequence of N × N matrices such that either ‖AN‖∞ or ‖AN‖1 is

bounded. Suppose that the elements of AN are O
(
h−1
n

)
uniformly. Assume that the elements of

the innovation vector ε have zero mean and finite variance, and are mutually independent. Let cN

be an N × 1 vector with elements of uniform order O(h
−1/2
n ). Then,

(i) E (ε′AN ε) = O
(
N
hn

)
, (ii) Var (ε′AN ε) = O

(
N
hn

)
,

(iii) ε′AN ε = Op

(
N
hn

)
, (iv) ε′AN ε− E (ε′AN ε) = Op

((
N
hn

) 1
2

)
,

(v) c′NAN ε = Op

((
N
hn

) 1
2

)
, if ‖AN‖1 is bounded.

Lemma A.4. Let An be any n× n matrix that is uniformly bounded in row sum and column sum

matrix norms and an = op(1). Then
∥∥eanAn − In∥∥∞ = op(1) and

∥∥eanAn − In∥∥1
= op(1).

Lemma A.5. Suppose that {AN} and {BN} are two sequences of N×N matrices that are uniformly

bounded in either row sum or column sum matrix norms. Under our assumptions in the paper,

tr(ANPX(τ)BN ) = O(1), uniformly in τ ∈ ∆τ .

Lemma A.6. Assume that the elements {εi} in the innovation vector ε are independent and iden-

tically distributed with mean zero and finite variance σ2. Let E(ε3i ) = η3 and E(ε4i ) = η4. For any

N ×N matrices AN and BN of constants, define AsN = AN +A
′
N and Bs

N = BN +B
′
N . Then,
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(i) E(ε
′
AN ε× ε

′
BN ε) = (η4 − 3σ4)vec

′
D(AN )vecD(BN ) + σ4 (tr(AN )tr(BN ) + tr(ANB

s
N )),

(ii) E(AN ε× ε
′
BN ε) = ANvecD(BN )η3,

(iii) E(ε
′
BN ε× ε

′
AN ) = η3vec

′
D(BN )AN .

Lemma A.7. Assume that the elements {εi} in the innovation vector ε are independent and dis-

tributed with mean zero and finite variance σ2
i . Let E(ε3i ) = ηi3 and E(ε4i ) = ηi4. For any N ×N

matrix AN = [aij ] and BN = [bij ] of constants, define AsN = AN + A
′
N and Bs

N = BN + B
′
N . Let

cN be an N × 1 vector of elements ci and Γ = diag
(
σ2

1, . . . , σ
2
N

)
. Then,

(i) E(ε
′
AN ε× ε

′
BN ε) =

∑N
i=1 aiibii

(
ηi4 − 3σ4

i

)
+ tr(ΓAN )tr(ΓBN ) + tr(ΓANΓBs

N ),

(ii) E(ε
′
AN ε× c

′
N ε) =

∑N
i=1 aiiciηi3,

(iii) E(AN ε× ε
′
BN ε) = AN

∑N
i=1 biiηi3,

(iv) E(ε
′
AN ε) = tr(ΓAN ) =

∑N
i=1 aiiσ

2
i .

B Proofs of Lemmas

Proof of Lemma A.2.

Proof of (i). The order analysis of these terms becomes tractable, when the identification restric-

tion is imposed as λ1 = 0. This is an equivalent way of achieving the identification restriction.

Then, we can write C∗λ = [0n1×(T−1); blkdiag(ln2 , . . . , lnT )], where the semicolon sign ; means verti-

cal stack. Let Cµ(τ) = eτMCµ, Cλ(τ) = eτMC∗λ, C11(τ) = C′µCµ, C12(τ) = C′µCλ, C21(τ) = C′λCµ,

C22(τ) = C′λCλ and B(τ) = C′µ(τ)QCλ(τ)Cµ(τ). Recall that C(τ) = eτMC = [Cµ(τ) Cλ(τ)]. By

the formula for the inverse of a partitioned matrix,

[C
′
(τ)C(τ)]−1 =

[
C11(τ) C12(τ)

C21(τ) C22(τ)

]−1

=

[
B−1(τ) −B−1(τ)C12(τ)C−1

22 (τ)

−C−1
22 (τ)C12(τ)B−1(τ) C−1

22 (τ) + C−1
22 (τ)C′12(τ)B−1(τ)C12(τ)C−1

22 (τ)

]
.

Substituting this expression into the definition of QC(τ), after a little bit of tedious derivation we

obtain QC(τ) = QCλ(τ)−QCλ(τ)Cµ(τ)[C′µ(τ)QCλ(τ)Cµ(τ)]−1C′µ(τ)QCλ(τ).

Since Cλ(τ) = [0n1×(T−1); blkdiag(eτM2 ln2 , . . . , e
τMT lnT )], for the first element on the right hand

side of the above equation, we have QCλ(τ) = blkdiag(K1(τ), . . . ,KT (τ)), where K1(τ) = In1 and

Kt(τ) = Int − 1
nt
eτMt lnt [

1
nt
l
′
nte

τM ′teτMt lnt ]
−1l

′
nte

τM ′t for t = 2, . . . , T . By Assumptions 3 and 4,

eτMt is bounded in row sum matrix norm uniformly in τ ∈ ∆τ . Hence, the elements of eτMt lnt is

bounded uniformly in τ ∈ ∆τ . Therefore, 1
nt
l
′
nte

τM ′teτMt lnt is bounded uniformly in τ ∈ ∆τ . It

is also bounded away from zero uniformly in τ ∈ ∆τ , because it is a sum of squares. Then, the

elements of 1
nt
eτMt lnt [

1
nt
l
′
nte

τM ′teτMt lnt ]
−1l

′
nte

τM ′t has the uniform order O(1/nt), which is equal to
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O(1/n) by Assumption 2. Then, 1
nt
eτMt lnt [

1
nt
l
′
nte

τM ′teτMt lnt ]
−1l

′
nte

τM ′t is bounded in row sum and

column sum matrix norms uniformly in τ ∈ ∆τ for t = 2, . . . , T . Therefore, Kt(τ) is uniformly

bounded in both row and column sum matrix norms uniformly in τ ∈ ∆τ for t = 2, . . . , T . This

implies that QCλ(τ) is uniformly bounded in both row and column sum matrix norms uniformly in

τ ∈ ∆τ .

The second term on the right hand side of the above equation can be partitioned into T×T tiles.

The (s, t)th tile can be written as − 1
TKs(τ)eτMsCs[

1
T

∑T
t=1C

′
te
τM ′tKt(τ)eτMtCt]

−1C
′
te
τM ′tKt(τ).

By Assumption 5, eτMsCs[
1
T

∑T
t=1C

′
te
τM ′tKt(τ)eτMtCt]

−1C
′
te
τM ′t is bounded in row sum and

column sum matrix norms uniformly in τ ∈ ∆τ . Then, the elements of the (s, t)th block has the

uniform order O(1/T ), uniformly in τ ∈ ∆τ . Hence, the second term on the right-hand side of the

above equation is also bounded in both row and column sum matrix norms uniformly in τ ∈ ∆τ .

Therefore, QC(τ) is bounded in both row sum and column sum matrix norms uniformly in τ ∈ ∆τ .

Proof of (ii). Let X(τ) = [ 1
NX′(τ)X(τ)]−1 and denote its (j, k)th element by Xjk(τ). By Assump-

tion 7, there exists a constant aX such that
∣∣Xjk(τ)

∣∣ ≤ aX uniformly in τ ∈ ∆τ for large enough N .

Also, by Assumption 7, the elements of X are non-stochastic and bounded. In the previous part, we

showed QCλ(τ) is bounded in row sum and column sum matrix norms uniformly in τ ∈ ∆τ . Also,

by Assumptions 3 and 4, eτM is bounded in row sum and column sum matrix norms uniformly

in τ ∈ ∆τ . Therefore, the elements of X(τ) = QC(τ)eτMX are bounded uniformly in τ ∈ ∆τ by

Lemma A.1.

Let Xjk(τ) be the (j, k)th element of X(τ). Then there exists a constant aX such that |Xjk(τ)| ≤
aX uniformly in τ ∈ ∆τ . Let Pjl(τ) be the (j, l)th element of PX(τ) = 1

NX(τ)[ 1
NX′(τ)X(τ)]−1X′(τ).

Then
∑N

j=1 |Pjl(τ)| ≤ 1
N

∑N
j=1

∑k
r=1

∑k
s=1

∣∣Xrs(τ)Xjr(τ)Xls(τ)
∣∣ ≤ k2aXa

2
X uniformly in τ ∈ ∆τ

for all l = 1, . . . , N . Also
∑N

l=1 |Pjl(τ)| ≤ 1
N

∑N
l=1

∑k
r=1

∑k
s=1

∣∣Xrs(τ)Xjr(τ)Xls(τ)
∣∣ ≤ k2aXa

2
X for

all j = 1, . . . , N . Then PX(τ) is bounded in row sum and column sum matrix norms uniformly

in τ ∈ ∆τ . Thus, QX(τ) is bounded in row sum and column sum matrix norms uniformly in τ ∈ ∆τ .

Proof of (iii). Recall that in part (i), we showed QC(τ) = QCλ(τ) −
QCλ(τ)Cµ(τ)[C′µ(τ)QCλ(τ)Cµ(τ)]−1C′µ(τ)QCλ(τ). Hence, PC(τ) = IN − QC(τ) =

IN − QCλ(τ) + QCλ(τ)Cµ(τ)[C′µ(τ)QCλ(τ)Cµ(τ)]−1C′µ(τ)QCλ(τ) = PCλ(τ) +

QCλ(τ)Cµ(τ)[C′µ(τ)QCλ(τ)Cµ(τ)]−1C′µ(τ)QCλ(τ).

In part (i), we showed that QCλ(τ)Cµ(τ)[C′µ(τ)QCλ(τ)Cµ(τ)]−1C′µ(τ)QCλ(τ)

can be partitioned to T × T tiles, and the (s, t)th tile can be written as

− 1
TKs(τ)eτMsCs[

1
T

∑T
t=1C

′
te
τM ′tKt(τ)eτMtCt]

−1C
′
te
τM ′tKt(τ). We also concluded that the el-

ements of the (s, t)th block (and therefore the entire term) has the uniform order O(1/T ),

uniformly in τ ∈ ∆τ .

Also, in part (i), we showed that QCλ(τ) = blkdiag(K1(τ), . . . ,KT (τ)), where K1(τ) = In1 and

Kt(τ) = Int − 1
nt
eτMt lnt [

1
nt
l
′
nte

τM ′teτMt lnt ]
−1l

′
nte

τM ′t for t = 2, . . . , T . Our analysis indicated that

the elements of 1
nt
eτMt lnt [

1
nt
l
′
nte

τM ′teτMt lnt ]
−1l

′
nte

τM ′t has the uniform order O(1/n). Therefore, the
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elements of PCλ(τ) has the uniform order O(1/n), uniformly in τ ∈ ∆τ .

Combining these two terms, the elements of PC(τ) has the uniform order O (max{1/n, 1/T}),
uniformly in τ ∈ ∆τ .

Proof of (iv). (a) By definition, QC(τ) = IN − PC(τ). Then, it follows that 1
N tr (QC(τ)AN ) =

1
N tr (AN ) − 1

N tr (PC(τ)AN ). Note that the elements of PC(τ) has the uniform order

O (max {1/n, 1/T}) by part (iii). Then, by Lemma A.1 (iii), the elements of PC(τ)AN are uniformly

O (max {1/n, 1/T}). Thus, 1
N tr (QC(τ)AN ) = 1

N tr (AN )+O (max {1/n, 1/T}), uniformly in τ ∈ ∆τ .

(b) Similarly, we have 1
N tr (QC(τ)CN ) = 1

N tr (CN )− 1
N tr (PC(τ)CN ). Since the elements of CN are

uniformly O(h−1
n ), we have 1

N tr (CN ) = O(h−1
n ) by Lemma A.1 (ii). Since the elements of PC(τ) are

uniformly O (max {1/n, 1/T}) and that of CN are uniformly O(h−1
n ), the order of 1

N tr (PC(τ)CN )

is either uniformly O(1/T ) or O(1/hn). Therefore, 1
N tr (PC(τ)CN ) = O (1/max{T, hn}) uniformly.

Then, we have 1
N tr (QC(τ)CN ) = 1

N tr (CN ) + O (1/max{T, hn}) = O(h−1
n ) + O (1/max{T, hn}),

uniformly in τ ∈ ∆τ .

Proof of Lemma A.5.

From the proof of Lemma A.2, we know that the elements of X(τ) and X(τ) = [ 1
NX′(τ)X(τ)]−1

are uniformly bounded in τ ∈ ∆τ . By the assumption of the lemma, AN and BN are uniformly

bounded in row or column sum norm. Then by Lemma A.1, BNAN is also uniformly bounded in

row or column sum norm. By Lemma A.6 of Lee (2004), the elements of 1
NX′(τ)BNANX(τ)

are uniformly bounded. Then tr(ANPX(τ)BN ) = tr[ANX(τ)(X′(τ)X(τ))−1X′(τ)BN ] =

tr[( 1
NX′(τ)X(τ))−1( 1

NX′(τ)BNANX(τ))] = O(1) uniformly in τ ∈ ∆τ since there are fixed number

of k independent variables.

C Proofs of theorems

C.1 Proof of Theorem 3.1

Given Assumption 6, we need to prove supζ∈∆
1
N1

∥∥S∗c(ζ)− S∗c(ζ)
∥∥ p−−→ 0. Note that we can

express S∗c(ζ)− S∗c(ζ) as

S∗c(ζ)− S∗c(ζ) =


α : σ̂∗2ε (ζ)−σ∗2ε (ζ)

σ∗2ε (ζ)σ̂∗2ε (ζ)
y
′
eαW

′
W
′
eτM

′
ε̂(ζ)− 1

σ∗2ε (ζ)

(
y
′
eαW

′
W
′
eτM

′
ε̂(ζ)

−E
(
y
′
eαW

′
W
′
eτM

′
ε(ζ)

))
,

τ : σ̂∗2ε (ζ)−σ∗2ε (ζ)

σ∗2ε (ζ)σ̂∗2ε (ζ)
ε̂
′
(ζ)Mε̂(ζ)− 1

σ∗2ε (ζ)

(
ε̂
′
(ζ)Mε̂(ζ)− E(ε

′
(ζ)Mε(ζ))

)
.

So we need to prove the following results:

(i) infζ∈∆ σ
∗2
ε (ζ) > c > 0 for some positive number c,

(ii) supζ∈∆

∣∣σ̂∗2ε (ζ)− σ∗2ε (ζ)
∣∣ = op(1),

(iii) supζ∈∆
1
N1

∥∥∥y′eαW
′
W
′
eτM

′
ε̂(ζ)− E

(
y
′
eαW

′
W
′
eτM

′
ε(ζ)

)∥∥∥ = op(1),
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(iv) supζ∈∆
1
N1

∥∥∥ε̂′(ζ)Mε̂(ζ)− E
(
ε
′
(ζ)Mε(ζ)

)∥∥∥ = op(1).

Proof of (i). Utilizing ε(ζ) = PX(τ)QC(τ)G(ζ) (y − E(y)) +QX(τ)QC(τ)G(ζ)y in equation (3.13),

we can express σ∗2ε (ζ) as:

σ∗2ε (ζ) =
1

N1
E
(
ε
′
(ζ)ε(ζ)

)
=

1

N1
E
(

(y − E(y))
′
P(ζ)(y − E(y)) + y

′
Q(ζ)y

)
=
σ2
ε0

N1
tr
(
G−1′(ζ0)P(ζ)G−1(ζ0)

)
+

1

N1
E
(
y
′
Q(ζ)y

)
,

where Q(ζ) = G
′
(ζ)QC(τ)QX(τ)QC(τ)G(ζ) and P(ζ) = G

′
(ζ)QC(τ)PX(τ)QC(τ)G(ζ). Using the

fact that y = E(y) + G−1(ζ0)ε, we can further express σ∗2ε (ζ) as

σ∗2ε (ζ) =
σ2
ε0

N1
tr (QC(τ)F(ζ)) +

1

N1
E(y)

′
Q(ζ)E(y), (C.1)

where F(ζ) = G(ζ)
(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ). For the first term in (C.1), we have

σ2
ε0

N1
tr (QC(τ)F(ζ)) ≥ σ2

ε0

N1
γmin (F(ζ)) tr (QC(τ))

≥ σ2
ε0γmin(eτM

′
eτM)γmin(eαW

′
eαW)γmax(eα0W

′
eα0W)−1γmax(eτ0M

′
eτ0M)−1 > 0,

because the matrix exponential terms are positive definite. The second term in (C.1) is non-negative

uniformly in ζ ∈ ∆ since QX(τ) is positive semi-definite.

Proof of (ii). We can express ε̂(ζ) as ε̂(ζ) = QC(τ)G(τ)y − QC(τ)eτMXβ̂
∗
(τ), where β̂

∗
(ζ) =(

X′(τ)X(τ)
)−1

X′(τ)QC(τ)G(ζ)y. Thus, we can further express ε̂(ζ) as ε̂(ζ) = QC(τ)G(τ)y −
PX(τ)QC(τ)G(τ)y = (QX(τ) + PX(τ))QC(τ)G(τ)y − PX(τ)QC(τ)G(τ)y = QX(τ)QC(τ)G(ζ)y.

Then, we have σ̂∗2ε (ζ) = 1
N1
ε̂
′
(ζ )̂ε(ζ) = 1

N1
y
′
Q(ζ)y. Also in the proof of (i), we showed that

σ∗2ε (ζ) =
σ2
ε0
N1

tr
(
G−1′(ζ0)P(ζ)G−1(ζ0)

)
+ 1

N1
E
(
y
′
Q(ζ)y

)
. Thus,

σ̂∗2ε (ζ)− σ∗2ε (ζ) = −σ
2
ε0

N1
tr
(
G−1′(ζ0)P(ζ)G−1(ζ0)

)
+

1

N1

(
y
′
Q(ζ)y − E(y

′
Q(ζ)y)

)
. (C.2)

For the first term on the right hand side of (C.2), we have

σ2
ε0

N1
tr
(
G−1′(ζ0)P(ζ)G−1(ζ0)

)
=
σ2
ε0

N1
tr
(
G−1′(ζ0)G

′
(ζ)QC(τ)PX(τ)QC(τ)G(ζ)G−1(ζ0)

)
≤ σ2

ε0

N1
γmax (F(ζ)) γ2

max (QC(τ)) tr (PX(τ)) = o(1),

because γmax (F(ζ)) ≤ γmax(e−α0W
′
e−α0W)γmax(e−τ0M

′
e−τ0M)γmax(eαW

′
eαW)γmax(eτM

′
eτM) <

∞ by the fact that the norm of matrix exponential terms are finite, γmax (QC(τ)) = 1 and

tr (PX(τ)) = k. Thus, we have supζ∈∆

∣∣∣σ2
ε0
N1

tr
(
G−1′(ζ0)P(ζ)G−1(ζ0)

)∣∣∣ = o(1). For the second term
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on the right hand side of (C.2), we need to prove supζ∈∆

∣∣∣ 1
N1

(
y
′
Q(ζ)y − E(y

′
Q(ζ)y)

)∣∣∣ = op(1),

which follows from the point-wise convergence of 1
N1

(
y
′
Q(ζ)y − E(y

′
Q(ζ)y)

)
in each ζ ∈ ∆ and

stochastic equicontinuity of 1
N1
y
′
Q(ζ)y. To prove the point-wise convergence, we have

1

N1

(
y
′
Q(ζ)y − E(y

′
Q(ζ)y)

)
=

2

N1
β
′
0X

′
e−α0W

′
Q(ζ)G−1(ζ0)ε+

2

N1
δ
′
0C
′
e−α0W

′
Q(ζ)G−1(ζ0)ε

+
1

N1

(
ε
′
G−1′(ζ0)Q(ζ)G−1(ζ0)ε− σ2

ε0tr(G−1′(ζ0)Q(ζ)G−1(ζ0))
)

By Lemma A.1 and A.2, e−α0W
′
Q(ζ)G−1(ζ0) and G−1′(ζ0)Q(ζ)G−1(ζ0) are uniformly bounded

in row and column sum norms. Thus, the first two terms on r.h.s. are point-wise convergent by

Lemma A.3(v), and the last term is point-wise convergent by Lemma A.3(iv).

To prove the stochastic equicontinuity, note for any two parameter vectors ζ1, ζ2 ∈ ∆, it follows

from the mean value theorem that

1

N1

(
y
′
Q(ζ1)y − y′Q(ζ2)y

)
=

1

N1
y
′ ∂Q(ζ)

∂ζ ′
y(ζ1 − ζ2),

where ζ is between ζ1 and ζ2 elementwise. Thus we need to prove that supζ∈∆
1
N1
y
′ ∂Q(ζ)
∂α y = Op(1)

and supζ∈∆
1
N1
y
′ ∂Q(ζ)

∂τ y = Op(1). We will prove the latter and the former can be proved in a similar

way. First note

∂Q(ζ)

∂τ
= G

′
(ζ)M

′
QC(τ)QX(τ)QC(τ)G(ζ) + G

′
(ζ)Q̇C(τ)QX(τ)QC(τ)G(ζ)

+ G
′
(ζ)QC(τ)Q̇X(τ)QC(τ)G(ζ) + G

′
(ζ)QC(τ)QX(τ)Q̇C(τ)G(ζ)

+ G
′
(ζ)QC(τ)QX(τ)QC(τ)MG(ζ),

where Q̇C(τ) = ∂QC(τ)
∂τ = − (QC(τ)MPC(τ) + PC(τ)M′QC(τ)) and Q̇X(τ) = ∂QX(τ)

∂τ . After some

algebra ∂X(τ)
∂τ = ∂QC(τ)eτMX

∂τ = D(τ)X(τ), where D(τ) = QC(τ)M− PC(τ)M
′
. This leads to

Q̇X(τ) =
∂QX(τ)

∂τ
= −QX(τ)D(τ)PX(τ)− PX(τ)D

′
(τ)QX(τ).

Recall that φ = Xβ0 + Cδ0. Then y = e−α0W(φ + e−τ0Mε). Denote Q†(ζ) = Q′(ζ)D(ζ)Q(ζ)

and Q(ζ) = QX(τ)QC(τ)G(ζ). Under our assumptions, Lemmas A.1 and A.2 ensure that Q†(ζ) is

bounded in row and column sum norms. This leads to

y
′ ∂Q(ζ)

∂τ
y = −2y

′
Q†(ζ)y = − 2

N1
(φ+ e−τ0Mε)

′
e−α0W

′
Q†(ζ)e−α0W(φ+ e−τ0Mε)

= − 2

N1
φ
′
e−α0W

′
Q†(ζ)e−α0Wφ− 4

N1
φ
′
e−α0W

′
Q†(ζ)G−1(ζ0)ε− 2

N1
ε
′
G−1(ζ0)Q†(ζ)G−1(ζ0)ε

= Op(1),
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uniformly in ζ ∈ ∆ by Lemma A.3. Thus, it follows that supζ∈∆
1
N1
y
′ ∂Q(ζ)

∂τ y = Op(1).

Proof of (iii). Using ε(ζ) = PX(τ)QC(τ)G(ζ) (y − E(y)) +QX(τ)QC(τ)G(ζ)y in (3.13) and ε̂(ζ) =

QX(τ)QC(τ)G(ζ)y from the proof of (ii), we have

1

N1
y
′
eαW

′
W
′
eτM

′
ε̂(ζ)− 1

N1
E
(
y
′
eαW

′
W
′
eτM

′
ε(ζ)

)
=

1

N1

(
y
′
eαW

′
W
′
eτM

′
Q(ζ)y − E(y

′
eαW

′
W
′
eτM

′
Q(ζ)y)

)
− σ2

ε0

N1
tr
(
G−1′(ζ0)eαW

′
W
′
eτM

′
P(ζ)G−1(ζ0)

)
,

where P(ζ) = PX(τ)QC(τ)G(ζ). The uniform convergence of the first term can be shown similar to

that of 1
N1

(
y
′
Q(ζ)y − E(y

′
Q(ζ)y)

)
in the proof of part (ii), and thus is omitted. By Lemma A.5,

the second term is o(1) uniformly in ζ ∈ ∆.

Proof of (iv). Using the expressions for ε(ζ) and ε̂(ζ) from the proof of (iii) again, we have

1

N1
ε̂
′
(ζ)Mε̂(ζ)− 1

N1
E
(
ε
′
(ζ)Mε(ζ)

)
=

1

N1

(
y
′
Q
′
(ζ)MQ(ζ)y − E(y

′
Q
′
(ζ)MQ(ζ)y)

)
− σ2

ε0

N1
tr
(
G−1′(ζ0)P

′
(ζ)MP(ζ)G−1(ζ0)

)
− σ2

ε0

N1
tr
(
G−1′(ζ0)P

′
(ζ)MsQ(ζ)G−1(ζ0)

)
,

where Ms = M + M
′
. The uniform convergence of the first term can be shown similar to that of

1
N1

(
y
′
Q(ζ)y − E(y

′
Q(ζ)y)

)
in the proof of (ii) and thus is omitted. By Lemma A.5, the second

and third term are o(1) uniformly in ζ ∈ ∆.

C.2 Proof of Theorem 3.2

The mean value theorem gives
√
N1(θ̂

∗
− θ0) = −

(
1
N1

∂S∗(θ)

∂θ′

)−1
1√
N1
S∗(θ0), where θ is between θ̂

∗

and θ0 elementwise (Jennrich, 1969, Lemma 3). We need to prove the following results:

(i) 1√
N1
S∗(θ0)

d−−→ N [0, limN→∞Ω∗(θ0)],

(ii) 1
N1

(
∂S∗(θ)

∂θ′
− ∂S∗(θ0)

∂θ′

)
= op(1),

(iii) 1
N1

(
∂S∗(θ0)

∂θ′
− E

(
∂S∗(θ0)

∂θ′

))
= op(1).

Proof of (i). Note that elements of S∗(θ0) in (3.16) are linear-quadratic forms in ε. Let a =

(a
′
1, a2, a3, a4)

′
for an k × 1 constant vector a1 and constants a2, a3 and a4. Then we can express

a
′
S∗(θ0) as b

′
ε + ε

′
Bε − σ2

ε0tr(B), where b
′

= 1
σ2
ε0
a
′
1X
′
(τ0) − a3

σ2
ε0
φ
′
eτ0M

′
S
′
(τ0)QC(τ0) and B =

a2
2σ2
ε0
QC(τ0) − a3

σ2
ε0
QC(τ0)S(τ0) − a4

σ2
ε0
QC(τ0)MQC(τ0). Since b and B satisfy the conditions for the

CLT in Kelejian and Prucha (2001) by Lemma A.1 and A.2(i), 1
N1
a
′
S∗(θ0) is asymptotically normal.

Thus, the Cramér-Wold device leads to (i).
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Proof of (ii). The explicit expressions of the elements of the Hessian matrix H∗(θ) are given in

the main paper. By Assumptions 3-4, S(τ) is bounded in row sum and column sum matrix norms.

Since y = e−α0W(φ+e−τ0Mε), all terms in the Hessian matrix can be written in forms of functions

in Lemma A.3, and thus 1
N1
H∗(θ0) = Op(1). As σ2

ε
p−−→ σ2

ε0, σ−rε = σ−rε0 +op(1) for r = 2, 4, 6. Note

σrε appears in H∗(θ) multiplicatively, which implies 1
N1
H∗(β, σ2

ε , α, τ) = 1
N1
H∗(β, σ2

ε0, α, τ) + op(1),

where an error appears that can be neglected asymptotically. Then the proof of (ii) is equivalent

to the proof of

1

N1

(
H∗(β, σ2

ε0, α, τ)−H∗(θ0)
) p−−→ 0.

We first consider the random elements in H∗(θ). We can write eαW = (eαW − eα0W) + eα0W,

eτM = (eτM − eτ0M) + eτ0M and β = (β − β0) + β0, and then expand the terms in 1
N1
H∗(θ).

By Lemma A.2 and A.3 and the reduced form of y, 1
N1
y
′
Ay = Op(1) and 1

N1
X
′
Ay = Op(1),

where A is an N × N matrix that is uniformly bounded. Also note
∥∥eαW − eα0W

∥∥
∞ =∥∥(e(α−α0)W − IN )eα0W

∥∥
∞ ≤

∥∥(e(α−α0)W − IN
∥∥
∞
∥∥eα0W

∥∥
∞ = op(1) by Lemma A.4, and sim-

ilarly
∥∥eτM − eτ0M

∥∥
∞ = op(1). Then from the expanded forms of the random elements of

1
N1

(
H∗(β, σ2

ε0, α, τ)−H∗(θ0)
)
, we infer that these elements are op(1). For the nonrandom, i.e.,

the trace terms in 1
N1

(
H∗(β, σ2

ε0, α, τ)−H∗(θ0)
)
, the convergence results follow from the continu-

ous mapping theorem (see Proposition 2.27 in White (2001)) since τ − τ0 = op(1).

Proof of (iii). Note each element of 1
N1

(
∂S∗(θ0)

∂θ′
− E

(
∂S∗(θ0)

∂θ′

))
is a linear or quadratic function

of ε by the reduced form of y. By Lemma A.3, 1
N1

(
∂S∗(θ0)

∂θ′
− E

(
∂S∗(θ0)

∂θ′

))
= op(1).

C.3 Proof of Theorem 3.3

Since θ̂
∗
, ρ̂ and κ̂ are consistent, substituting them into Ω∗(θ) does not cause any bias as an

estimator for Ω∗(θ0). For δ̂
∗
, however, the incidental parameter problem makes it inconsistent

when T is fixed, which leads to bias. The bias is derived as following. From (3.3) in the main

paper, δ̂(β, ζ) =
(
C′(τ)C(τ)

)−1
C′(τ)eτM(eαWy − Xβ). Also note eα̂

∗Wy − Xβ̂
∗

= eα0Wy −

Xβ0 + (eα̂
∗W − eα0W)y − X(β̂

∗
− β0) and eα0Wy − Xβ0 = Cδ0 + e−τ0Mε. Let δ̂

∗
= δ̂(β̂

∗
, ζ̂
∗
).

Applying the mean value theorem to Cδ̂
∗

with respect to the τ̂∗ element, we have

Cδ̂
∗

= e−τ̂
∗MPC(τ̂∗)eτ̂

∗M(eα̂
∗Wy −Xβ̂

∗
)

=
(
e−τ0MPC(τ0)eτ0M + ξ(τ)(τ̂∗ − τ0)

)
(eα̂

∗Wy −Xβ̂
∗
)

= Cδ0 + e−τ0MPC(τ0)ε+ e−τ0MPC(τ0)eτ0M
(

(eα̂
∗W − eα0W)y −X(β̂

∗
− β0)

)
+ ξ(τ)(eα̂

∗Wy −Xβ̂
∗
)(τ̂∗ − τ0), (C.3)

where τ lies between τ̂∗ and τ0 and ξ(τ) = ∂e−τMPC(τ)eτM

∂τ |τ=τ = e−τM(D(τ)QC(τ) −M)eτM −
Me−τMPC(τ)eτM.

Note
∥∥∥eα̂∗W − eα0W

∥∥∥
∞

=
∥∥∥(e(α̂∗−α0)W − IN )eα0W

∥∥∥
∞
≤
∥∥∥e(α̂∗−α0)W − IN

∥∥∥
∞

∥∥eα0W
∥∥
∞ =
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op(1) by Lemma A.4. Using Lemmas A.3 and A.4, we can express the terms in Ω∗(θ̂
∗
) that are

linear in Cδ̂
∗

in the following way:

1

N1
a
′
Cδ̂
∗

=
1

N1
a
′
Cδ0 +

1

N1
a
′
e−τ0MPC(τ0)ε+ op(1) =

1

N1
a
′
Cδ0 + op(1), (C.4)

where a is a suitable vector. Thus, the terms that are linear in Cδ̂
∗

can be consistently estimated.

The only quadratic term in φ = Xβ0 +Cδ0 is 1
N1σ2

ε0
φ
′Q′3(τ0)Q3(τ0)φ, which is contained in Ω∗αα(θ0).

Then, the only quadratic term in δ0 is 1
N1σ2

ε0
δ
′
0C
′Q′3(τ0)Q3(τ0)Cδ0. Recall thatQ2(τ) = Q3(τ)e−τM.

Then, using (C.3), we obtain

1

N1σ̂
∗2
ε

δ̂
∗′
C
′Q′3(τ̂∗)Q3(τ̂∗)Cδ̂

∗

=
1

N1σ̂
∗2
ε

δ
′
0C
′Q′3(τ̂∗)Q3(τ̂∗)Cδ0 +

1

N1σ̂
∗2
ε

ε
′
PC(τ0)e−τ0M

′
Q′3(τ0)Q3(τ0)e−τ0MPC(τ0)ε+ op(1)

=
1

N1σ2
ε0

δ
′
0C
′Q′3(τ0)Q3(τ0)Cδ0 +

1

N1
tr
(
PC(τ0)Q′2(τ0)Q2(τ0)

)
+ op(1). (C.5)

Thus, the bias term, which has the same dimension of Ω∗(θ0), is a matrix of zeros except the

(α, α) element, which is 1
N1

tr
(
PC(τ0)Q′2(τ0)Q2(τ0)

)
. Since the bias term only involves τ0, we can

formulate a consistent estimator based on the plug-in estimator by the continuous mapping theorem.

C.4 Proof of Theorem 3.4

Let {εj}, {ε̃j} and {ε̂j} be the jth element of ε, ε̃ = QC(τ0)ε and ε̂ = QC(τ̂∗)eτ̂
∗M(eα̂

∗Wy −Xβ̂
∗
)

respectively for j = 1, . . . , N . Let qjh be the (j, h)th element of QC(τ0) for j, h = 1, . . . , N .

To prove the consistency of ρ̂, note that σ̂∗ − σε0 = op(1) and τ̂∗ − τ0 = op(1), thus the

denominator of ρ̂ is consistent, i.e., it converges in probability to its population counterpart. It’s

left to prove that the numerator of ρ̂ is consistent, i.e., 1
N

∑N
j=1(̂ε3j − E(ε̃3j )) = 0 or equivalently,

(1) 1
N

∑N
j=1(̂ε3j − ε̃3j )

p−−→ 0,

(2) 1
N

∑N
j=1

(
ε̃3j − E(ε̃3j )

)
p−−→ 0.

Proof of (1). For simplicity of exposition, we denote ω = (β
′
, ζ
′
)
′

and write ε̃(β, ζ) as ε̃(ω) =

QC(τ)eτM(eαWy −Xβ). Let χ(ω) = ∂ε̃(ω)
∂ω , then

χ(ω) =
(
−X(τ) y(ζ) (Q̇C(τ) + QC(τ)M)eτM(eαWy −Xβ)

)
. (C.6)

Let χj(ω) be the jth row of χ(ω). Then, by the MVT,

ε̂j ≡ ε̃j(ω̂∗) = ε̃j(ω0) + χ
′
j(ω)(ω̂∗ − ω0) = ε̃j(ω0) + ν

′
j(ω̂
∗ − ω0) + op(‖ω̂∗ − ω0‖), (C.7)

for each j = 1, . . . , N , where ω is between ω̂∗ and ω0 elementwise and ν
′
j = plimN→∞ χ

′
j(ω). We

will prove that ν
′
j = Op(1) below. We start from the first k elements of ν

′
j , i.e., −plimX(τ).
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Since τ
p−−→ τ0 by τ̂∗

p−−→ τ0, we know −plimX(τ) = −X(τ0), which indicates that the first k

elements are O(1). Similarly, the (k + 1)th and (k + 2)th elements of ν
′
j are y(ζ0) and (Q̇C(τ0) +

QC(τ0)M)eτ0M(eα0Wy − Xβ0) respectively. Substituting y = e−α0Wφ + G−1(ζ0)ε into these

elements leads to y(ζ0) = Q3(τ0)φ − Q2(τ0)ε and (Q̇C(τ0) + QC(τ0)M)eτ0M(eα0Wy − Xβ0) =

(Q̇C(τ0) +QC(τ0)M)eτ0MCδ0 + (Q̇C(τ0) +QC(τ0)M)ε. By Lemmas A.1 and A.2, and Assumptions

3-4, the elements of Q3(τ0)φ and (Q̇C(τ0) +QC(τ0)M)eτ0MCδ0 are uniformly bounded, and Q2(τ0)

and Q̇C(τ0) + QC(τ0)M are uniformly bounded in both row sum and column sum matrix norms.

Therefore each element of y(ζ0) and (Q̇C(τ0) + QC(τ0)M)eτ0M(eα0Wy − Xβ0) is Op(1), i.e., the

(k + 1)th and (k + 2)th elements of ν
′
j are Op(1) for j = 1, . . . , N .

Note that we can write

ε̃j =
N∑
h=1

qjhεh. (C.8)

Since ε̃ = Op(1), χ
′
j = Op(1) and ω̂∗−ω0 = Op(

1√
N1

), also by the fact that εj is i.i.d for j = 1, . . . , N ,

we have ε̂3j = ε̃3j + 3ε̃2jν
′
j(ω̂
∗ − ω0) + op(‖ω̂∗ − ω0‖). Using (C.8), we have

1

N

N∑
j=1

(̂
ε3j − ε̃3j

)
=

3

N

N∑
j=1

ε̃2jν
′
j(ω̂
∗ − ω0) + op(‖ω̂∗ − ω0‖)

=
3σ2

ε0

N

N∑
j=1

(
N∑
h=1

q2
jhν

′
j)(ω̂

∗ − ω0) + op(‖ω̂∗ − ω0‖)

= op(1),

since 1
N

∑N
j=1 ν

′
j = Op(1).

Proof of (2). Substituting (C.8) into the function in (2) gives

1

N

N∑
j=1

(
ε̃3j − E(ε̃3j )

)
=

1

N

N∑
j=1

N∑
h=1

q3
jh

(
ε3h − E(ε3h)

)
+

3

N

N∑
j=1

N∑
l=1

N∑
m=1
m 6=l

q2
jlqjmε

2
l εm

+
6

N

N∑
j=1

N∑
m=1

N∑
l=1
l 6=m

N∑
h=1
h6=m,l

qjmqjlqjhεmεlεh. (C.9)

For the first term, by Lemma A.2, the elements of QC(τ0) are uniformly bounded, i.e., there exists

a constant q such that |qjh| ≤ q for all j and h. Thus
∑N

j=1 q
3
jh ≤ q2

∑N
j=1 |qjh| <∞. Since {εi} are

i.i.d, by the Weak Law of Large Numbers, the first term converge to 0 in probability as N −−→∞.
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The second term can be expressed as

3

N

N∑
j=1

N∑
l=1

N∑
m=1
m 6=l

q2
jlqjmε

2
l εm =

3

N

N∑
j=1

N∑
l=1

N∑
m=1
m6=l

q2
jlqjm(ε2l − σ2

ε0)εm +
3

N

N∑
j=1

N∑
l=1

N∑
m=1
m 6=l

q2
jlqjmσ

2
ε0εm

=
3

N

N∑
m=1

(ε2m − σ2
ε0)(

N∑
j=1

m−1∑
l=1

q2
jmqjlεl) +

3

N

N∑
m=1

εm

 N∑
j=1

m−1∑
l=1

q2
jlqjm(ε2l − σ2

ε0)


+

3

N

N∑
m=1

N∑
j=1

N∑
l=1
l 6=m

q2
jlqjmσ

2
ε0εm

=
3

N

N∑
m=1

(h1,m + h2,m + h3,m), (C.10)

where h1,m = (ε2m−σ2
ε0)(
∑N

j=1

∑m−1
l=1 q2

jmqjlεl), h2,m = εm(
∑N

j=1

∑m−1
l=1 q2

jlqjm(ε2l −σ2
ε0)) and h3,m =∑N

j=1

∑N
l=1
l 6=m

q2
jlqjmσ

2
ε0εm.

Finally, the third term can be expressed as

6

N

N∑
j=1

N∑
m=1

N∑
l=1
l 6=m

N∑
h=1
h6=m,l

qjmqjlqjhεmεlεh =
18

N

N∑
m=1

εm(
N∑
j=1

m−1∑
l=1

m−1∑
h=1
h6=l

qjmqjlqjhεlεh) =
18

N

N∑
m=1

h4,m (C.11)

where h4,m = εm(
∑N

j=1

∑m−1
l=1

∑m−1
h=1
h6=l

qjmqjlqjhεlεh). Let {Fm} be the increasing sequence of σ-fields

generated by (ε1, . . . , εj , j = 1, . . . ,m) for m = 1, . . . , N . Then E[(h1,m, h2,m, h3,m, h4,m)|Fm−1] =

0, i.e., {(h1,m, h2,m, h3,m, h4,m)
′
,Fm} form a vector martingale difference (M.D.) sequence. By

Assumption 1 and the fact that QC(τ0) is bounded in both row sum and column sum matrix

norms, E |hr,m|1+% < ∞ for r = 1, 2, 3, 4 and % > 0. Hence {h1,m}, {h2,m}, {h3,m} and {h4,m} are

uniformly integrable. By Theorem 19.7 in Davidson (1994), the second and third term converge to

0 in probability.

To prove the consistency of κ̂, similar to the proof for the consistency of ρ̂, we need to show

(3) 1
N

∑N
j=1

(
ε̂4j − ε̃4j

)
p−−→ 0,

(4) 1
N

∑N
j=1

(
ε̃4j − E(ε̃4j )

)
p−−→ 0.

Proof of (3). Using (C.7), we first write ε̂4j = ε̃4j + 4ε̃3jν
′
j(ω̂
∗−ω0) + op(‖ω̂∗ − ω0‖). Summing over
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j for j = 1, . . . , N , we have

1

N

N∑
j=1

(̂
ε4j − ε̃4j

)
=

4

N

N∑
j=1

ε̃3jν
′
j(ω̂
∗ − ω0) + op(‖ω̂∗ − ω0‖)

=
4σ3

ε0

N

N∑
j=1

(

N∑
h=1

q3
jhν

′
j)(ω̂

∗ − ω0) + op(‖ω̂∗ − ω0‖)

= op(1),

since 1
N

∑N
j=1 ν

′
j = Op(1) as shown in the proof of (1).

Proof of (4). Using (C.8) we write

1

N

N∑
j=1

(
ε̃4j − E(ε̃4j )

)
=

1

N

N∑
j=1

N∑
h=1

q4
jh

(
ε4h − E(ε4h)

)
+

3

N

N∑
j=1

N∑
l=1

N∑
m=1
m 6=l

q2
jlq

2
jm(ε2l ε

2
m − σ4

ε0)

+
4

N

N∑
j=1

N∑
l=1

N∑
m=1
m6=l

q3
jlqjmε

3
l εm +

6

N

N∑
j=1

N∑
l=1

N∑
m=1
m 6=l

N∑
h=1
h6=m,l

q2
jlqjmqjhε

2
l εmεh

+
1

N

N∑
j=1

N∑
l=1

N∑
m=1
m6=l

N∑
h=1
h6=m,l

N∑
p=1

p6=m,l,h

qjlqjmqjhqjpεlεmεhεp. (C.12)

The proofs for the first, third, fourth and fifth term are similar to those in the proof of (2) and thus

are omitted. For the second term, we can write ε2l ε
2
m− σ4

ε0 = (ε2l − σ2
ε0)(ε2m− σ2

ε0) + σ2
ε0(ε2m− σ2

ε0) +

σ2
ε0(ε2l − σ2

ε0). Then the second term equals

6

N

N∑
l=1

(ε2l − σ2
ε0)

 N∑
j=1

l−1∑
m=1

q2
jlq

2
jm(ε2m − σ2

ε0)

+
6

N

N∑
l=1

 N∑
j=1

N∑
m=1
m 6=l

q2
jlq

2
jmσ

2
ε0(ε2l − σ2

ε0)


≡ 6

N

N∑
l=1

(g1,l + g2,l), (C.13)

where g1,l = (ε2l − σ2
ε0)
∑N

j=1

∑l−1
m=1 q

2
jlq

2
jm(ε2m − σ2

ε0) and g2,l =
∑N

j=1

∑N
m=1
m 6=l

q2
jlq

2
jmσ

2
ε0(ε2l − σ2

ε0).

Here the summation in the first term in the first equation starts from l = 2 but we still write it

as starting from l = 1 to get the convenient expression at the end. Note E[g1,l|Fl−1] = 0 and

{g2,l} are independent. Thus they each forms an M.D. sequence. Also E |gr,l|1+% < ∞ for r = 1, 2

and % > 0, thus {g1,l} and {g2,l} are uniformly integrable. By Theorem 19.7 in Davidson (1994),
6
N

∑N
l=1 gr,l = op(1) for r = 1, 2.
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C.5 Proof of Theorem 4.1

Given Assumption 9, we need to prove supζ∈∆
1
N1

∥∥S†c(ζ)− S†c(ζ)
∥∥ p−−→ 0. Let M(τ) =

IN − eτMX
(
X′(τ)X(τ)

)−1
X′(τ) and N(τ) = IN − M(τ). Then eτM

(
eαWy −Xβ̂

†
(ζ)
)

=

M(τ)G(ζ)y, and eτM
(
eαWy −Xβ†(ζ)

)
= M(τ)G(ζ)y + N(τ)G(ζ)(y − E(y)). Also recall that

ε̂(ζ) = ε̃(β̂
†
(ζ), ζ) = QC(τ)eτM

(
eαWy −Xβ̂

†
(ζ)
)

= Q(ζ)y, where Q(ζ) = QX(τ)QC(τ)G(ζ), and

ε(ζ) = PX(τ)QC(τ)G(ζ) (y − E(y)) + QX(τ)QC(τ)G(ζ)y = P(ζ)(y − E(y)) + Q(ζ)y,

where P(ζ) = PX(τ)QC(τ)G(ζ). Then the proof of supζ∈∆
1
N1

∥∥S†c(ζ)− S†c(ζ)
∥∥ p−−→ 0 is equivalent

to the proof of the following results:

(i) supζ∈∆
1
N1

∥∥∥y′Qe
r(ζ)y − E

(
y
′
Qe
r(ζ)y

)∥∥∥ = op(1) for r = 1, 2,

(ii) supζ∈∆
1
N1

tr
(

ΓG−1′(ζ0)Pe
s(ζ)G−1(ζ0)

)
= o(1), for s = 1, 2, 3, 4,

where Qe
1(ζ) = G

′
(ζ)
(
S
′
(τ)− S

′
(τ)
)
Q(ζ), Qe

2(ζ) = G
′
(ζ)M′(ζ)

(
Q4(τ)−Q4(τ)

)
Q(ζ),

Pe
1(ζ) = G

′
(ζ)
(
S
′
(τ)− S

′
(τ)
)
P(ζ), Pe

2(ζ) = G
′
(ζ)M′(τ)

(
Q4(τ)−Q4(τ)

)
P(ζ), Pe

3(ζ) =

G
′
(ζ)N′(ζ)(Q4(τ)−Q4(τ))Q(ζ), and Pe

4(ζ) = G
′
(ζ)N′(ζ)

(
Q4(τ)−Q4(τ)

)
P(ζ).

Proof of (i). Note that Qe
1(ζ) = eαW

′
W
′
eτM

′
Q(ζ) −G

′
(ζ)S

′
(ζ)Q(ζ). Since S

′
(ζ) is a diagonal

matrix, it is bounded in both row sum and column sum matrix norms uniformly in ζ ∈ ∆. Then by

Lemma A.1, Qe
1(ζ) is uniformly bounded in both row sum and column sum matrix norms uniformly

in ζ ∈ ∆. Similarly Qe
2(ζ) = Q′(ζ)MQC(τ)Q(ζ) −G

′
(ζ)M′(ζ)Q4(τ)Q(ζ) is also bounded in both

row sum and column sum matrix norms uniformly in ζ ∈ ∆. Then Qe
1(ζ) and Qe

2(ζ) have similar

forms to Q(ζ) in the proof of Theorem 3.1(ii). The proof is similar and thus is omitted.

Proof of (ii). Since Pe
1(ζ), Pe

2(ζ) and Pe
4(ζ) contain P(ζ) = PX(τ)QC(τ)G(ζ), by Lemma A.5,

supζ∈∆
1
N1

tr
(

ΓG
′−1(ζ0)Pe

s(ζ)G−1(ζ0)
)

= o(1) for s = 1, 2, 4. Recall Q(ζ) = QX(τ)QC(τ)G(ζ) and

N(τ) = eτMX
(
X′(τ)X(τ)

)−1
X′(τ). Then for Pe

3(ζ), we have

1

N1
tr
(

ΓG−1′(ζ0)Pe
3(ζ)G−1(ζ0)

)
=

1

N1
tr
(
G
′
(ζ)N

′
(ζ)
(
Q4(τ)−Q4(τ)

)
Q(ζ)Var(y)

)
=

1

N1
tr
(
X(τ)(X

′
(τ)X(τ))−1X

′
eτM

′
(Q4(τ)−Q4(τ))QX(τ)QC(τ)G(ζ)

)
=

1

N2
1

tr

(
(

1

N1
X
′
(τ)X(τ))−1X

′
eτM

′
(Q4(τ)−Q4(τ))QX(τ)QC(τ)G(ζ)X(τ)

)
,

where G(ζ) = G(ζ)G−1(ζ0)ΓG−1′(ζ0)G
′
(ζ). By Assumption 7, the elements of

(
1
N1

X′(τ)X(τ)
)−1

are uniformly bounded for large enough N , uniformly in τ ∈ ∆. By Lemma A.1 and A.2,

X
′
eτM

′
(Q4(τ) −Q4(τ))QX(τ)QC(τ)G(ζ) is uniformly bounded in both row sum and column sum

matrix norms, uniformly in ζ ∈ ∆. These results imply that 1
N1

tr
(

ΓG−1′(ζ0)Pe
3(ζ)G−1(ζ0)

)
con-

verges to 0 as N −−→∞, uniformly in ζ ∈ ∆.
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C.6 Proof of Theorem 4.2

By the mean value theorem,
√
N1(ω̂† − ω0) = −

(
1
N1

∂S†(ω)

∂ω′

)−1
1√
N1
S†(ω0), where ω is between ω̂†

and ω0 elementwise. Thus we need to prove:

(i) 1√
N1
S†(ω0)

d−−→ N
(
0, limN→∞Ω†(ω0)

)
,

(ii) 1
N1

(
∂S†(ω)

∂ω′
− ∂S†(ω0)

∂ω′

)
= op(1),

(iii) 1
N1

(
∂S†(ω0)

∂ω
′ − E

(
∂S†(ω0)

∂ω
′

))
= op(1).

Proof of (i). Since the elements of S†(ω0) are linear quadratic forms in ε, we can find an

(k + 2) × 1 vector a = (a
′
1, a2, a3)

′
such that a

′
S†(ω0) = b

′
ε + ε

′
Bε, where b

′
= a

′
1X
′
(τ0) −

a2φ
′
eτ0M

′
(S
′
(τ0) − S

′
(τ0))QC(τ0) − a3δ

′
0C
′
(τ0)(Q4(τ0) − Q4(τ0))QC(τ0) and B = −a2(S

′
(τ0) −

S
′
(τ0))QC(τ0) − a3(Q4(τ0) − Q4(τ0))QC(τ0). Since b and B satisfy the conditions for the CLT in

Kelejian and Prucha (2001) by Lemma A.1 and A.2(i), 1
N1
a
′
S†(ω0) is asymptotically normal. Then,

the Cramér-Wold device leads to (i).

Proof of (ii). Given the explicit expressions for the elements of the hessian matrix H†(ω) in the

main paper, we note that Ṡ
′

(τ) and Q̇4(τ) are diagonal matrices with uniformly bounded elements.

By Lemma A.3, we know that 1
N1
H†(ω0) = Op(1), which implies 1

N1
H†(ω) = Op(1). Then similar

to the proof of Theorem 3.2(ii), we can prove 1
N1

(
∂S†(ω)

∂ω′
− ∂S†(ω0)

∂ω′

)
= op(1) using Lemma A.2, A.3

and A.4 and the reduced form of y, given by y = e−α0W(φ+ e−τ0Mε).

Proof of (iii). Substituting the reduced form of y into 1
N1

(
∂S†(ω0)

∂ω′
− E

(
∂S†(ω0)

∂ω′

))
, we know each

element is a linear or quadratic function of ε. For example, for H†ττ (ω0),

1

N1

(
H†ττ (ω0)− E(H†ττ (ω0))

)
= − 1

N1
(ε
′
QC(τ0)M

′
D(ζ0)QC(τ0)ε− E(ε

′
QC(τ0)M

′
D(ζ0)QC(τ0)ε))

+
1

N1
(δ
′
0C
′
(M

′Q4(τ0) +Q4τ (τ0)− D(ζ0))QC(τ0)ε− E(δ
′
0C
′
(M

′Q4(τ0) +Q4τ (τ0)− D(ζ0))QC(τ0)ε))

+
1

N1
(ε
′
(M

′Q4(τ0) +Q4τ (τ0)− D(ζ0))QC(τ0)ε− E(ε
′
(M

′Q4(τ0) +Q4τ (τ0)− D(ζ0))QC(τ0)ε))

= op(1),

by Lemma A.3. For the rest of the elements, the proof is similar to that of H†ττ (ω0) and thus are

omitted.

C.7 Proof of Theorem 4.3

From the generic detailed expression of Ω†(ω0) we know that the ζ elements, i.e., Ω†αα(ω), Ω†ατ (ω)

and Ω†ττ (ω) are quadratic in δ, which are of the form: δ
′C′(τ)Ξ

′
a(τ)ΓΞb(τ)C(τ)δ, for Ξa(τ), Ξb(τ) =

S(τ) or Q(τ). Similar to the homoskedastic case, we can apply the mean value theorem to Cδ̂
†
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with respect to the τ̂ † element and get

Cδ̂
†

= Cδ0 + e−τ0MPC(τ0)ε+ e−τ0MPC(τ0)eτ0M
(

(eα̂
†W − eα0W)y −X(β̂

†
− β0)

)
+ ξ(τ)(eα̂

†Wy −Xβ̂
†
)(τ̂ † − τ0),

where τ lies between τ̂ † and τ0 and ξ(τ) = ∂e−τMPC(τ)eτM

∂τ |τ=τ are the same as those in the proof of

Theorem 3.3. Substituting Cδ̂
†

into the quadratic terms, we have

1

N1
δ̂
†′
C
′
(τ̂ †)Ξ

′
a(τ̂
†)ΓΞb(τ̂

†)C(τ̂ †)δ̂
†

=
1

N1
δ
′
0C
′
(τ0)Ξ

′
a(τ0)ΓΞb(τ0)C(τ0)δ0 +

1

N1
ε
′
PC(τ0)Ξ

′
a(τ0)ΓΞb(τ0)PC(τ0)ε+ op(1)

=
1

N1
δ
′
0C
′
(τ0)Ξ

′
a(τ0)ΓΞb(τ0)C(τ0)δ0 +

1

N1
tr
(

ΓPC(τ0)Ξ
′
a(τ0)ΓΞb(τ0)PC(τ0)

)
+ op(1).

Thus the bias matrix Bias†δ(τ0,Γ) can be written as

Bias†δ(τ0,Γ) =

0 0 0

0 Bias†δ,αα(τ0,Γ) Bias†δ,ατ (τ0,Γ)

0 Bias†δ,τα(τ0,Γ) Bias†δ,ττ (τ0,Γ)

 ,

where

Bias†δ,αα(τ0,Γ) =
1

N1
tr
(

ΓPC(τ0)S
′
(τ0)ΓS(τ0)PC(τ0)

)
,

Bias†δ,ατ (τ0,Γ) = Bias†δ,τα(τ0,Γ) =
1

N1
tr
(

ΓPC(τ0)S
′
(τ0)ΓQ(τ0)PC(τ0)

)
, and

Bias†δ,ττ (τ0,Γ) =
1

N1
tr
(

ΓPC(τ0)Q
′
(τ0)ΓQ(τ0)PC(τ0)

)
.

C.8 Proof of Theorem 4.4

Note ε̃(ζ) = QC(τ)ε(ζ) = QC(τ)eτM(eαWy −Xβ). Let ε̃j and ε̂j be the jth element of ε̃ = ε̃(ζ0)

and ε̂ = ε̃(ζ̂
†
) respectively. Similar to (C.7), by the mean value theorem, ε̂j ≡ ε̃j(ω̂†) = ε̃j + ν

′
j(ω̂
†−

ω0) + op

(∥∥∥ω̂† − ω0

∥∥∥). Then, in vector form,

ε̂ = ε̃+ V (ω̂ − ω0) + op

(∥∥∥ω̂† − ω0

∥∥∥) ,
where V = (ν1, . . . , νN )

′
, with νj being the same as those defined below (C.7). Define Π̇(τ) =

∂Π(τ)
∂τ = −2Π(τ)

(
Q̇C(τ)�QC(τ)

)
Π(τ). Then we can easily see that

∥∥∥Π̇(τ)
∥∥∥

1
and

∥∥∥Π̇(τ)
∥∥∥
∞

are

bounded in a neighborhood of τ0. Let Πjh(τ0) and Π̇jh(τ0) be the (j, h)th element of Π(τ0) and

Π̇(τ0). By the mean value theorem, Πjh(τ̂ †) = Πjh(τ0) + Π̇jh(τ)(τ̂ † − τ0) = Πjh(τ0) + Π̇jh(τ0)(τ̂ † −
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τ0) + op(
∥∥∥τ̂ † − τ0

∥∥∥), where τ lies between τ̂ † and τ0. In matrix form, it becomes

Π(τ̂ †) = Π(τ0) + Π̇(τ0)(τ̂ † − τ0) + op

(∥∥∥τ̂ † − τ0

∥∥∥) .
Let Σ̂ = (σ̂2

1, . . . , σ̂
2
N )
′

= Π(τ̂ †)(̂ε � ε̂) and Σ̃ = Π(τ0)(ε̃ � ε̃). Note that the elements of ε̃ are

Op(1), the elements of Π(τ0) and Π̇(τ0) are O(1), the elements in the rows of V are Op(1), and

ω̂† − ω0 = Op(1/
√
N1). Then, by MVT, we have:

Σ̂ = Σ̃ + 2Π(τ0)
(
ε̃� V (ω̂† − ω0)

)
+ Π̇(τ0)(ε̃� ε̃)(τ̂ † − τ0) + op

(∥∥∥τ̂ † − τ0

∥∥∥) . (C.14)

Proof of (i). Let c = (c11, . . . , cNN )
′

be the N×1 vector containing the diagonal element of matrix

C. Let Σ = E(ε� ε) = (σ2
1, . . . , σ

2
N )
′
. Then

1

N

(
tr(Γ̂C)− tr(ΓC)

)
=

1

N
c
′
(Σ̂− Σ) =

1

N
c
′
(Σ̂− Σ̃) +

1

N
c
′
(Σ̃− Σ). (C.15)

So we need to prove that the two terms in (C.15) are op(1). For the first term, by (C.14),

1

N
c
′
(Σ̂− Σ̃) =

2

N
c
′
(

Π(τ0)(ε̃� V (ω̂† − ω0))
)

+
1

N
c
′
Π̇(τ0)(ε̃� ε̃)(τ̂ † − τ0) + op

(∥∥∥τ̂ † − τ0

∥∥∥)
=

2

N

N∑
j=1

cjj

(
N∑
h=1

Πjh(τ0)ε̃hν
′
j

)
(ω̂† − ω0) +

1

N

N∑
j=1

cjj

(
N∑
h=1

Π̇jh(τ0)
N∑
k=1

q2
hkσ

2
k

)
(τ̂ † − τ0)

+ op

(∥∥∥τ̂ † − τ0

∥∥∥) = op(1),

where qhk is defined as the (h, k)th element of QC(τ0). Here, the last equality holds since cjj

are uniformly bounded, Πjh(τ0) and Π̇jh(τ0) are O(1), ε̃h are Op(1) and ω̂† − ω0 = op(1) for

j, h = 1, . . . , N . For the second term of (C.15), we have

Σ̃ = Π(τ0)(ε̃� ε̃) = Π(τ0) ((QC(τ0)ε)� (QC(τ0)ε))

= Π(τ0) ((QC(τ0)�QC(τ0))(ε� ε) + ψ) = ε� ε+ Π(τ0)ψ, (C.16)

where ψ is an N × 1 vector with jth element ψj =
∑N

k=1 εkhjk, where hjk = 2qjk
∑k−1

l=1 qjlεl, k ≥ 2

and hjl = 0. In the third equality of (C.16) we break (QC(τ0)ε) � (QC(τ0)ε) = (
∑N

k=1 qjkεk)
2

into the sum of (QC(τ0) � QC(τ0))(ε � ε) =
∑N

k=1 q
2
jkε

2
k and cross-multiplications ψ. Since ψj is

(ε1, . . . , εN ) measurable, {εkhjk} form an M.D. sequence. Thus

1

N
c
′
(Σ̃− Σ) =

1

N
c
′
(ε� ε− Σ) +

1

N
c
′
Π(τ0)ψ = op(1), (C.17)

where the first term is op(1) by Lemma A.3(iv) and the second term is op(1) by Theorem 19.7 for

WLLN in Davidson (1994).

17

Ye Yang

Ye Yang



Proof of (ii). Note that tr(ΓAΓB) = Σ
′
(A�B′)Σ. Then

1

N
tr(Γ̂AΓ̂B)− 1

N
tr(ΓAΓB) =

1

N
Σ̂
′

(A�B′)Σ̂− 1

N
Σ
′
(A�B′)Σ

=
1

N
(Σ̂
′

(A�B′)Σ̂− Σ̃
′
(A�B′)Σ̃) +

1

N
(Σ̃
′
(A�B′)Σ̃− Σ

′
(A�B′)Σ). (C.18)

For the first term in (C.18), note 1
N [Σ̂

′

(A � B′)Σ̂ − Σ̃
′
(A � B′)Σ̃] = G1 + G2 + G3, where G1 =

1
N (Σ̂ − Σ̃)

′
(A � B′)(Σ̂ − Σ̃), G2 = 1

N (Σ̂ − Σ̃)
′
(A � B′)Σ̃ and G3 = 1

N Σ̃
′
(A � B′)(Σ̂ − Σ̃). By the

assumption of this theorem, A and B are uniformly bounded, thus A�B is also uniformly bounded.

Since ε̃ = Op(1), V = Op(1) and ω̂† − ω0 = Op(1/
√
N1), by (C.14), Gr = op(1) for r = 1, 2, 3. The

proof is similar to that of 1
N c
′
(Σ̂ − Σ̃) = op(1) in the proof of (i) and thus is omitted. Therefore,

the first term is op(1).

For the second term in (C.18), we have 1
N [Σ̃

′
(A�B′)Σ̃−Σ

′
(A�B′)Σ] = G4 +G5 +G6, where

G4 = 1
N (Σ̃−Σ)

′
(A�B′)(Σ̃−Σ), G5 = 1

N (Σ̃−Σ)
′
(A�B′)Σ and G6 = 1

NΣ
′
(A�B′)(Σ̃−Σ). For

G5, by (C.16), we have

G5 =
1

N
(ε� ε− Σ)

′
(A�B′)Σ +

1

N
ψ
′
Π(τ0)(A�B′)Σ = op(1),

by Lemma A.3(iv) and Theorem 19.7 for WLLN in Davidson (1994). Similarly, G6 = op(1).

For G4, again by (C.16) we can write it as

G4 =
1

N
ψ
′
Π(τ0)(A�B′)(ε� ε− Σ) +

1

N
(ε� ε− Σ)

′
(A�B′)Π(τ0)ψ

+
1

N
(ε� ε− Σ)

′
(A�B′)(ε� ε− Σ) +

1

N
ψ
′
Π(τ0)(A�B′)Π(τ0)ψ

= G4a +G4b +G4c +G4d. (C.19)

Consider G4a. For simplicity, let us denote S = Π(A�B′) with elements {sjk}. Then,

G4a =
1

N

N∑
j=1

N∑
k=1

sjkψj(ε
2
k − σ2

k)

=
1

N

N∑
j=1

N∑
k=1

N∑
l=1

N∑
m=1
m6=l

sjkqjlqjm(ε2k − σ2
k)εlεm

=
1

N

N∑
k=1

[(ε2k − σ2
k)

N∑
j=1

k−1∑
l=1

k−1∑
m=1
m 6=l

sjkqjlqjmεlεm] +
2

N

N∑
l=1

[εl

N∑
j=1

l−1∑
k=1

l−1∑
m=1
m 6=l

sjkqjlqjmεm(ε2k − σ2
k)]

+
2

N

N∑
m=1

[εm

N∑
j=1

m−1∑
k=1

sjkqjkqjm(ε3k − E(ε3k))] +
2

N

N∑
m=1

[εm

N∑
j=1

N∑
k=1
k 6=m

sjkqjkqjm(E(ε3k)− ε3k)],

(C.20)
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which is the average of M.D. sequence. By Theorem 19.7 in Davidson (1994), (C.20) is op(1).

Similarly, G4b is also op(1).

For G4c, recall Σ = E(ε � ε). Then E(G4c) = 1
N tr((A � B′)Var(ε � ε)) = 0 because Var(ε � ε)

is a diagonal matrix and A�B′ has zero diagonals. By Lemma A.3(iv), G4c = 1
N (ε� ε− Σ)

′
(A�

B
′
)(ε� ε− Σ) = op(1).

For the last term in (C.19), note each element of ψ is a sum of M.D. sequence as shown in the

proof of (i). Also note that QC(τ0) is a symmetric matrix, which implies qij = qji for i, j = 1, . . . , N .

Utilizing these facts, we can derive the following equation:

E(ψψ
′
) = 2(QC(τ0)ΓQC(τ0))� (QC(τ0)ΓQC(τ0))− 2(QC(τ0)�QC(τ0))Γ2(QC(τ0)�QC(τ0)).

Thus,

E
(
ψ
′
Π(τ0)(A�B′)Π(τ0)ψ

)
= 2tr

(
(A�B′)Π(τ0)Λ(Γ)Π(τ0)

)
− 2tr

(
(A�B)Γ2

)
= 2tr

(
(A�B′)Π(τ0)Λ(Γ)Π(τ0)

)
, (C.21)

where Λ(Γ) = (QC(τ0)ΓQC(τ0))�(QC(τ0)ΓQC(τ0)), and the second term equals zero because A�B′

has zero diagonals and Γ2 is a diagonal matrix.

Now let Z = Π(τ0)(A � B′)Π(τ0) with elements {zjk}. It can be easily shown that {zjk} are

uniformly bounded. Let |zlm| ≤ z <∞. Then

Var(ψ
′
Π(τ0)(A�B′)Π(τ0)ψ)

= 8
N∑
j=1

N∑
k=1

N∑
l=1

N∑
m=1

N∑
h=1

N∑
p=1
p 6=h

N∑
s=1

N∑
r=1
r 6=s

zjkzlmqjhqjpqlhqlpqksqkrqmsqmrE(ε2hε
2
pε

2
sε

2
r)

≤ 8q2zc
N∑
m=1

(
N∑
j=1

|sjk|)(
N∑
j=1

|qkr|)(
N∑
j=1

|qlp|)(
N∑
j=1

|qlh|)(
N∑
j=1

|qjp|)(
N∑
j=1

|qms|)(
N∑
j=1

|qmr|)

= O(N),

since E(ε2hε
2
pε

2
sε

2
r) is equal to E(ε2hε

2
s)E(ε2pε

2
r) or E(ε2hε

2
r)E(ε2pε

2
s) due to the fact that h 6= p and s 6= r,

and one of them is less than a finite constant c. Then, by Chebyshev’s inequality,

P

(
1

N

∣∣∣ψ′Π(τ0)(A�B′)Π(τ0)ψ − E(ψ
′
Π(τ0)(A�B′)Π(τ0)ψ)

∣∣∣ ≥M)
≤ 1

M2

1

N2
Var

(
ψ
′
Π(τ0)(A�B′)Π(τ0)ψ

)
= o(1).

It follows that 1
Nψ

′
Π(τ0)(A � B

′
)Π(τ0)ψ − 1

NE
(
ψ
′
Π(τ0)(A�B′)Π(τ0)ψ

)
= op(1). Thus G4 =
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2
N tr

(
(A�B′)Π(τ0)Λ(Γ)Π(τ0)

)
+ op(1). Combining the results for G1 to G6, we have

1

N
tr(Γ̂AΓ̂B)− 1

N
tr(ΓAΓB) =

6∑
r=1

Gr =
2

N
tr ((A�B)Π(τ0)Λ(Γ)Π(τ0)) + op(1),

which completes the proof.

D Proof of Corollary 4.1

The proof for the consistency of Ψ̂
†
(ω̂†) can be proved similar to part (ii) and (iii) in the proof of

Theorem 4.2 and thus is omitted. For the consistency of Ω̂
†
, note the following:

(1) The bias incurred by differences involving only ω, e.g., Ω†(ω̂†, δ0,Γ) − Ω†(ω0, δ0,Γ) and

BiasΓ(τ̂ †,Γ)− BiasΓ(τ0,Γ) disappears asymptotically since ω̂† is consistent;

(2) The asymptotic bias incurred by Ω̂
†
(ω̂†, δ̂

†
,Γ)− Ω̂

†
(ω̂†, δ0,Γ) is captured by Bias†δ(τ̂

†,Γ);

(3) The asymptotic bias incurred by Ω̂
†
(ω̂†, δ̂

†
, Γ̂) − Ω̂

†
(ω̂†, δ̂

†
,Γ) is captured by 2

N1
tr[(Ξa(τ0) �

Ξb(τ0)s)Π(τ0)Λ(Γ)Π(τ0)] for a, b = α, τ and Ξa(τ0),Ξb(τ0) = S(τ0),Q(τ0);

(4) What is left is to prove that the asymptotic bias incurred by Bias†δ(τ̂
†, Γ̂) − Bias†δ(τ̂

†,Γ) is

captured by − 2
N1

tr[(PC(τ0)Ξ
′
a(τ0)� Ξb(τ0)PC(τ0))Π(τ0)Λ(Γ)Π(τ0)].

Note Bias†δ(τ0,Γ) has non-zero entries 1
N1

tr[ΓPC(τ0)Ξ
′
a(τ0)ΓΞb(τ0)PC(τ0)], for a, b = α, τ and

Ξa(τ0),Ξb(τ0) = S(τ0),Q(τ0). Then we have

1

N1
tr[PC(τ̂ †)Ξ

′
a(τ̂
†)Γ̂Ξb(τ̂

†)PC(τ̂ †)Γ̂− PC(τ0)Ξ
′
a(τ0)ΓΞb(τ0)PC(τ0)Γ]

=
1

N1
tr[PC(τ0)Ξ

′
a(τ0)Γ̂Ξb(τ0)PC(τ0)Γ̂− PC(τ0)Ξ

′
a(τ0)ΓΞb(τ0)PC(τ0)Γ] + op(1)

=
2

N1
tr[(PC(τ0)Ξ

′
a(τ0)� Ξb(τ0)PC(τ0))Π(τ0)Λ(Γ)Π(τ0)] + op(1),

where the first equality follows from the mean value theorem and the second equality follows

from Theorem 4.4. Then, together with the previous results, we have Ψ̂
†−1

(ω̂†)Ω̂
†
Ψ̂
†−1

(ω̂†) −
Ψ†−1(ω0)Ω†(ω0)Ψ†−1(ω0)

p−−→ 0.

E Details of the Empirical Application

Table E.1 includes the list of countries, and Table E.2 provides the list of industries. The FDI

data are obtained from the Bureau of Economic Analysis. The GDP is measured in 2015 constant

dollars, and the gross fixed capital formation (investment) are taken from the World Bank’s World

Development Indicators. Following Leamer (1984) and Baltagi et al. (2007), we estimate a country’s

capital stock using the perpetual inventory method. First, we choose a far enough year (1991) from
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the initial year in the dataset (2008) and estimate K1993 = 2
∑1995

t=1991 It, where It is the investment

in year t. Then, we apply a depreciation rate of δ = 7% to compute the capital stock at year t by

Kt = (1− δ)Kt−1 + It. We obtain the educational attainment and labor data from Barro and Lee

(2013). Since their datasets are at the 5-year frequency, we use the linear interpolation method

to fill the missing data in the rest of the years. The skilled and unskilled labor endowments are

then respectively computed as the labor times the percentage and one minus the percentage of

population with at least tertiary education. Finally, the investment profile index is extracted from

the International Country Risk Guide. Table E.3 provides the descriptive statistics for our sample.

The estimation results are given in Table 5 in the main text. The pseudo-R2 measure reported in

the table is computed by R2 = 1− ε̂
′
ε̂/
(

(y − y)
′
(y − y)

)
, where ε̂ = eτ̂M

(
eα̂Wy −Xβ̂ − Cδ̂

)
and

y is the sample mean of y.

Table E.1: List of Countries

Argentina Australia Austria Brazil Canada Chile
China Colombia Costa Rica Czech Republic Denmark Dominican Republic
Ecuador Egypt Finland France Germany Greece
Honduras Hong Kong Hungary India Indonesia Ireland
Israel Italy Japan Malaysia Mexico Netherlands
New Zealand Nigeria Norway Panama Peru Philippines
Poland Portugal Russia Singapore South Africa Spain
Sweden Switzerland Thailand Turkey United Kingdom

Table E.2: List of Industries

Food Chemicals Primary and fabricated metals
Machinery Computers and electronics Electrical equipments
Transportation equipment Other manufacturing Wholesale trade
Finance and insurance

Table E.3: Descriptive statistics of our sample data

Variable Mean Std.Dev. Min Max

LFDI (Log of outward FDI) 6.12 2.24 0.00 12.03
G (Bilateral country size) 30.51 0.09 30.40 30.96
S (Similarity) −2.88 1.08 −6.16 −0.76
k (Relative capital stock) 3.42 1.32 0.40 6.96
hs (Relative skilled labor endowment) 2.80 1.35 −0.09 7.05
hu (Relative unskilled labor endowment) 2.30 1.49 −1.78 4.69
Ψ 104.19 40.06 12.24 211.67
Φ 10.02 10.36 −5.97 35.30
R (Risk) 9.55 1.97 3.04 12.00
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F Details of the Identification Conditions

Assumptions 6 and 9 in the main text state the identification conditions for ζ0 under the ho-

moskedastic and heteroskedastic cases, respectively. However, they are high level assumptions.

In this section we derive some low level conditions that are sufficient for the identification of ζ0.

We will present the derivation for the homoskedastic case only. For the heteroskedastic case, the

derivation follows along the same lines.

Because the M-estimation approach is equivalent to the method of moments approach under

the exact identification case, the identification of ζ0 requires that for ζ 6= ζ0 it must be the case

that Sc∗(ζ) 6= 0. Before we proceed with the derivation, let us restate some existing results. From

equation (C.1), we have

σ∗2ε (ζ) =
1

N1
φ
′
e−α0W

′
G
′
(ζ)QC(τ)QX(τ)QC(τ)G(ζ)e−α0Wφ

+
σ2
ε0

N1
tr

(
QC(τ)G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

)
.

Also recall that y = e−α0W(φ+ e−τ0Mε), φ = Xβ0 + Cδ0, y = E(y) + G−1(ζ0)ε, equation (3.13)

ε(ζ) = PX(τ)QC(τ)G(ζ)
(
y − E(y)

)
+ QX(τ)QC(τ)G(ζ)y

= PX(τ)QC(τ)G(ζ)G−1(ζ0)ε+ QX(τ)QC(τ)G(ζ)y

and equation (3.14)

Sc∗(ζ) =

 α : − 1
σ∗2ε (ζ)

E
(
y
′
eαW

′
W
′
eτM

′
ε(ζ)

)
+ tr

(
QC(τ)eτMWe−τM

)
,

τ : − 1
σ∗2ε (ζ)

E
(
ε
′
(ζ)Mε(ζ)

)
+ tr (QC(τ)M) .

Consider the expectation term in the α component of Sc∗(ζ). Substituting the definition of ε(ζ)
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and then the definition of y, we obtain

E
(
y
′
eαW

′
W
′
eτM

′(
PX(τ)QC(τ)G(ζ)G−1(ζ0)ε+ QX(τ)QC(τ)G(ζ)y

))
= E

(
y
′
eαW

′
W
′
eτM

′
PX(τ)QC(τ)G(ζ)G−1(ζ0)ε

)
+ E

(
y
′
eαW

′
W
′
eτM

′
QX(τ)QC(τ)G(ζ)y

)
= E

(
(φ+ e−τ0Mε)

′
e−α0W

′
eαW

′
W
′
eτM

′
PX(τ)QC(τ)G(ζ)G−1(ζ0)ε

)
+ E

(
(φ+ e−τ0Mε)

′
e−α0W

′
eαW

′
W
′
eτM

′
QX(τ)QC(τ)G(ζ)e−α0W(φ+ e−τ0Mε)

)
= E

(
ε
′
e−τ0M

′
e−α0W

′
eαW

′
W
′
eτM

′
PX(τ)QC(τ)G(ζ)G−1(ζ0)ε

)
+ φ

′
e−α0W

′
eαW

′
W
′
eτM

′
QX(τ)QC(τ)G(ζ)e−α0Wφ

+ E
(
ε
′
e−τ0M

′
e−α0W

′
eαW

′
W
′
eτM

′
QX(τ)QC(τ)G(ζ)e−α0We−τ0Mε

)
= φ

′
e−α0W

′
eαW

′
W
′
eτM

′
QX(τ)QC(τ)G(ζ)e−α0Wφ

+ E
(
ε
′
e−τ0M

′
e−α0W

′
eαW

′
W
′
eτM

′
QC(τ)G(ζ)G−1(ζ0)ε

)
= φ

′
e−α0W

′
eαW

′
eτM

′
e−τM

′
W
′
eτM

′
QX(τ)QC(τ)G(ζ)e−α0Wφ

+ σ2
ε0tr

(
e−τ0M

′
e−α0W

′
eαW

′
eτM

′
e−τM

′
W
′
eτM

′
QC(τ)G(ζ)G−1(ζ0)

)
= φ

′
e−α0W

′
G
′
(ζ)S

′
(τ)QX(τ)QC(τ)G(ζ)e−α0Wφ

+ σ2
ε0tr

(
G−1′(ζ0)G

′
(ζ)S

′
(τ)QC(τ)G(ζ)G−1(ζ0)

)
= φ

′
e−α0W

′
G
′
(ζ)S

′
(τ)QX(τ)QC(τ)G(ζ)e−α0Wφ

+ σ2
ε0tr

(
S
′
(τ)QC(τ)G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

)
where S(τ) = eτMWe−τM and G(ζ0) = eτ0Meα0W. Notice that the second term in the α compo-

nent can be written as tr
(
QC(τ)eτMWe−τM

)
= tr (QC(τ)S(τ)) = tr

(
S
′
(τ)QC(τ)

)
. Multiplying

the first term with − 1
σ∗2ε (ζ)

and adding the second term, the α component becomes

− 1

σ∗2ε (ζ)
E
(
y
′
eαW

′
W
′
eτM

′
ε(ζ)

)
+ tr

(
QC(τ)eτMWe−τM

)
= − 1

σ∗2ε (ζ)

(
φ
′
e−α0W

′
G
′
(ζ)S

′
(τ)QX(τ)QC(τ)G(ζ)e−α0Wφ

)
− σ2

ε0

σ∗2ε (ζ)
tr

(
S
′
(τ)QC(τ)G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

)
+ tr

(
S
′
(τ)QC(τ)

)
= − 1

σ∗2ε (ζ)

(
φ
′
e−α0W

′
G
′
(ζ)S

′
(τ)QX(τ)QC(τ)G(ζ)e−α0Wφ

)
+ tr

(
S
′
(τ)QC(τ)

(
IN −

σ2
ε0

σ∗2ε (ζ)
G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

))
.
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Hence, the identification of ζ0 follows, if for ζ 6= ζ0, we have

− 1

σ∗2ε (ζ)

(
φ
′
e−α0W

′
G
′
(ζ)S

′
(τ)QX(τ)QC(τ)G(ζ)e−α0Wφ

)
(F.1)

+ tr

(
S
′
(τ)QC(τ)

(
IN −

σ2
ε0

σ∗2ε (ζ)
G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

))
6= 0.

Notice that when ζ = ζ0 (which implies σ∗2ε (ζ0) = σ2
ε0), we have QX(τ0)QC(τ0)G(ζ0)e−α0Wφ = 0

and IN −
σ2
ε0

σ∗2ε (ζ0)
G(ζ0)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ0) = 0.

Next, consider the expectation term in the τ component of Sc∗(ζ). Substituting the definition

of ε(ζ) and then the definition of y, we obtain

E
(
ε
′
(ζ)Mε(ζ)

)
= E

((
PX(τ)QC(τ)G(ζ)G−1(ζ0)ε+ QX(τ)QC(τ)G(ζ)y

)′
M

×
(
PX(τ)QC(τ)G(ζ)G−1(ζ0)ε+ QX(τ)QC(τ)G(ζ)y

))
= E

(
ε
′
G−1′(ζ0)G

′
(ζ)QC(τ)PX(τ)MPX(τ)QC(τ)G(ζ)G−1(ζ0)ε

)
+ E

(
ε
′
G−1′(ζ0)G

′
(ζ)QC(τ)PX(τ)MQX(τ)QC(τ)G(ζ)y

)
+ E

(
y
′
G
′
(ζ)QC(τ)QX(τ)MPX(τ)QC(τ)G(ζ)G−1(ζ0)ε

)
+ E

(
y
′
G
′
(ζ)QC(τ)QX(τ)MQX(τ)QC(τ)G(ζ)y

)
= σ2

ε0tr

(
QC(τ)PX(τ)MPX(τ)QC(τ)G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

)
+ 2σ2

ε0tr

(
QC(τ)PX(τ)MQX(τ)QCG(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

)
+ σ2

ε0tr

(
QC(τ)QX(τ)MQX(τ)QC(τ)G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

)
+ φ

′
e−α0W

′
G
′
(ζ)QC(τ)QX(τ)MQX(τ)QC(τ)G(ζ)e−α0Wφ

= σ2
ε0tr

(
QC(τ)MQC(τ)G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

)
+ φ

′
e−α0W

′
G
′
(ζ)QC(τ)QX(τ)MQX(τ)QC(τ)G(ζ)e−α0Wφ.

Multiplying the first term with − 1
σ∗2ε (ζ)

and adding the second term, and noting that tr (QC(τ)M) =
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tr (QC(τ)MQC(τ)), the τ component can be written as

− 1

σ∗2ε (ζ)
E
(
ε
′
(ζ)Mε(ζ)

)
+ tr (QC(τ)M)

= − 1

σ∗2ε (ζ)

(
φ
′
e−α0W

′
G
′
(ζ)QC(τ)QX(τ)MQX(τ)QC(τ)G(ζ)e−α0Wφ

)
− σ2

ε0

σ∗2ε (ζ)
tr

(
QC(τ)MQC(τ)G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

)
+ tr (QC(τ)MQC(τ))

= − 1

σ∗2ε (ζ)

(
φ
′
e−α0W

′
G
′
(ζ)QC(τ)QX(τ)MQX(τ)QC(τ)G(ζ)e−α0Wφ

)
+ tr

(
QC(τ)MQC(τ)

(
IN −

σ2
ε0

σ∗2ε (ζ)
G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

))
.

Hence, the identification of ζ0 follows, if for ζ 6= ζ0,

− 1

σ∗2ε (ζ)

(
φ
′
e−α0W

′
G
′
(ζ)QC(τ)QX(τ)MQX(τ)QC(τ)G(ζ)e−α0Wφ

)
(F.2)

+ tr

(
QC(τ)MQC(τ)

(
IN −

σ2
ε0

σ∗2ε (ζ)
G(ζ)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ)

))
6= 0.

Note again that when ζ = ζ0 (which implies σ∗2ε (ζ0) = σ2
ε0), we have QX(τ0)QC(τ0)G(ζ0)e−α0Wφ =

0 and IN −
σ2
ε0

σ∗2ε (ζ0)
G(ζ0)

(
G
′
(ζ0)G(ζ0)

)−1
G
′
(ζ0) = 0.

In light of these results, the identification of of ζ0 follows if either (F.1) or (F.2) holds for ζ 6= ζ0.
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G Pseudo Estimation Algorithms

Algorithm 1. M-estimation in the homoskedastic case

Require: y, X, W , M , C, n, T

N ← length(y)

Ensure: C is N × (n+ T − 1)

ζ̂∗ ← SOLVE(Sc∗(ζ) = 0), where Sc∗(ζ) is given in equation (3.10) below:

Sc∗(ζ) =

α : − 1
σ̂∗2ε (ζ)

y
′
eαW

′
W
′
eτM

′
ε̂(ζ) + tr

(
QC(τ)eτMWe−τM

)
,

τ : − 1
σ̂∗2ε (ζ)

ε̂
′
(ζ)Mε̂(ζ) + tr (QC(τ)M) .

Calculate: β̂∗ = β̂
∗
(ζ̂∗) using ζ̂∗ and equation (3.8) below:

β̂
∗
(ζ) =

(
X
′
eτM

′
QC(τ)eτMX

)−1
X
′
eτM

′
QC(τ)eτMeαWy.

Calculate: σ̂∗ε = σ̂∗ε (ζ̂
∗) using ζ̂∗ and equation (3.9) below:

σ̂∗2ε (ζ) = ε̂
′
(ζ )̂ε(ζ)/N1,

where ε̂(ζ) = ε̃(β̂
∗
(ζ), ζ).

Calculate: Ψ∗(θ̂∗), where θ̂∗ = (β̂∗
′
, σ̂∗2ε , ζ̂

∗′)
′
.

Calculate: ρ̂ and κ̂ using equations (3.21) and (3.24) below:

ρ̂ =

∑N
j=1 ε̂

3
j

σ̂∗3ε
∑N

j=1

∑N
h=1 q̂

3
jh

,

κ̂ =

∑N
j=1 ε̂

4
j − 3σ̂∗4ε

∑N
j=1

∑N
h=1

∑N
l=1 q̂

2
jhq̂

2
jl

σ̂∗4ε
∑N

j=1

∑N
h=1 q̂

4
jh

.

Calculate: Ω̂∗ = Ω∗(θ̂∗)− Bias∗(τ̂∗) using equation (3.19) and Theorem 3.3.

Calculate: Ψ∗−1(θ̂∗)Ω̂∗Ψ∗
′−1(θ̂∗).

Algorithm 2. M-estimation in the heteroskedastic case

Require: y, X, W , M , C, n, T

N ← length(y)

Ensure: C is N × (n+ T − 1)

ζ̂† ← SOLVE
(
Sc†(ζ) = 0

)
, where Sc†(ζ) is given in equation (4.9) below:

S†c(ζ) =


α : −y′G′(ζ)

(
S
′
(τ)− S

′
(τ)
)
ε̂(ζ),

τ : −
(
eαWy −Xβ̂

†
(ζ)
)′

eτM
′ (
Q4(τ)−Q4(τ)

)
ε̂(ζ).

Calculate: β̂† = β̂†(ζ̂†) using ζ̂† and equation (4.8) below:

β̂
†
(ζ) =

(
X
′
eτM

′
QC(τ)eτMX

)−1
X
′
eτM

′
QC(τ)eτMeαWy.

Calculate: Ψ†(ω̂†), where ω̂† = (β̂†
′
, ζ̂†
′
)
′
.

Calculate: Ω̂
†

= Ω†(ω̂†, δ̂
†
, Γ̂)− Bias†δ(τ̂

†, Γ̂)− Bias†Γ(τ̂ †, Γ̂) using equation (4.14), Theorem 4.3 and 4.4.

Calculate: Ψ†−1(ω̂†)Ω̂†Ψ†
′−1(ω̂†).
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H Additional Simulation Results

In this section, we provide the simulation results for two additional specifications for the variance

terms: (i) σ2
it = 1−κ2

1 +κ2
i×t
nT , with κ1 = 0.8 and κ2 = 1.5, and (ii) σ2

it =
|X1,it|+|X2,it|

1
n

∑n
i=1(|X1,it|+|X2,it|)

. The

results based on these cases are similar to our main results based on σ2
it = exp(0.1 + 0.35X2,it).
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Table H.1: Heteroskedastic case with ηit ∼ N(0, 1) and σ2
it = 1− κ21 + κ2

i×t
nT

W=Rook, M=Queen W=Queen, M=Rook

QMLE ME RME QMLE ME RME

n = 50, T = 3

β10 = −1 −1.0009(.089) −0.9998(.089)[.086] −0.9998(.089)[.084] −0.9992(.073) −1.0005(.073)[.075] −1.0007(.073)[.070]
β20 = 2 1.9966(.085) 1.9954(.085)[.079] 1.9955(.085)[.078] 1.9985(.067) 1.9981(.067)[.067] 1.9982(.067)[.065]
α0 = −2 −1.9949(.051) −2.0001(.051)[.052] −2.0002(.051)[.049] −1.9926(.065) −1.9988(.065)[.067] −1.9992(.066)[.065]
τ0 = −1 −0.9745(.185) −1.0123(.181)[.184] −1.0108(.181)[.182] −1.0432(.167) −1.0211(.152)[.160] −1.0228(.152)[.156]
σ2

0 = 1 0.5240(.089) 0.8240(.140)[.130] − 0.5103(.084) 0.8088(.133)[.129] −

n = 50, T = 7

β10 = −1 −0.9976(.050) −0.9981(.050)[.048] −0.9981(.050)[.048] −0.9997(.043) −0.9998(.043)[.041] −0.9998(.043)[.041]
β20 = 2 1.9993(.046) 1.9996(.046)[.045] 1.9996(.046)[.045] 1.9985(.040) 1.9994(.040)[.040] 1.9995(.040)[.041]
α0 = −2 −1.9937(.032) −1.9998(.032)[.033] −2.0000(.032)[.033] −1.9953(.037) −2.0020(.037)[.036] −2.0024(.037)[.037]
τ0 = −1 −0.9534(.111) −0.9985(.109)[.103] −0.9989(.109)[.106] −0.9947(.084) −1.0096(.081)[.081] −1.0108(.081)[.082]
σ2

0 = 1 0.6522(.059) 0.7877(.072)[.076] − 0.6488(.058) 0.7811(.069)[.074] −

n=100, T = 3

β10 = −1 −1.0037(.066) −1.0045(.066)[.064] −1.0045(.066)[.065] −1.0001(.055) −1.0001(.055)[.056] −1.0001(.055)[.056]
β20 = 2 1.9991(.059) 1.9986(.059)[.059] 1.9986(.059)[.058] 2.0013(.050) 2.0006(.050)[.050] 2.0005(.050)[.049]
α0 = −2 −1.9963(.040) −1.9991(.040)[.041] −1.9991(.040)[.041] −1.9925(.052) −1.9968(.052)[.049] −1.9979(.052)[.049]
τ0 = −1 −1.0016(.134) −0.9973(.130)[.130] −1.0005(.130)[.132] −1.0289(.104) −1.0095(.099)[.101] −1.0102(.099)[.100]
σ2

0 = 1 0.5427(.063) 0.8572(.100)[.100] − 0.5378(.061) 0.8362(.096)[.095] −

n=100, T = 7

β10 = −1 −1.0003(.033) −1.0005(.033)[.033] −1.0005(.033)[.033] −0.9997(.029) −0.9997(.029)[.029] −0.9998(.029)[.029]
β20 = 2 1.9985(.033) 1.9985(.033)[.033] 1.9985(.033)[.032] 2.0015(.031) 2.0010(.031)[.030] 2.0009(.031)[.030]
α0 = −2 −1.9967(.022) −1.9995(.022)[.022] −1.9996(.022)[.022] −1.9941(.027) −1.9978(.027)[.026] −1.9985(.027)[.026]
τ0 = −1 −0.9811(.074) −1.0012(.074)[.070] −1.0015(.074)[.071] −1.0111(.061) −1.0059(.058)[.057] −1.0055(.058)[.058]
σ2

0 = 1 0.6603(.043) 0.7850(.051)[.053] − 0.6578(.043) 0.7872(.052)[.054] −

n = 50, T = 3

β10 = −1 −1.0029(.087) −1.0026(.086)[.082] −1.0029(.087)[.081] −0.9967(.087) −0.9964(.086)[.081] −0.9962(.086)[.084]
β20 = 2 2.0024(.089) 2.0008(.087)[.084] 2.0010(.087)[.082] 1.9965(.079) 1.9980(.078)[.080] 1.9979(.078)[.075]
α0 = −2 −1.9927(.063) −1.9985(.062)[.059] −1.9988(.064)[.060] −1.9911(.068) −1.9959(.068)[.069] −1.9965(.068)[.069]
τ0 = 1 1.2345(.262) 1.0777(.223)[.222] 1.0759(.228)[.223] 1.1182(.163) 1.0245(.151)[.156] 1.0296(.157)[.158]
σ2

0 = 1 0.5273(.087) 0.8341(.138)[.133] − 0.5125(.086) 0.8156(.137)[.132] −

n = 50, T = 7

β10 = −1 −0.9977(.045) −0.9977(.045)[.044] −0.9978(.045)[.045] −1.0015(.040) −1.0009(.040)[.042] −1.0009(.040)[.041]
β20 = 2 2.0005(.041) 1.9994(.041)[.040] 1.9994(.041)[.039] 2.0018(.039) 2.0010(.039)[.040] 2.0009(.039)[.040]
α0 = −2 −1.9962(.030) −2.0014(.030)[.032] −2.0018(.030)[.031] −1.9913(.037) −1.9972(.037)[.035] −1.9978(.038)[.036]
τ0 = 1 1.1170(.126) 1.0232(.118)[.112] 1.0190(.117)[.113] 1.0599(.087) 1.0093(.085)[.081] 1.0094(.085)[.082]
σ2

0 = 1 0.6481(.061) 0.7842(.073)[.075] − 0.6509(.061) 0.7847(.073)[.075] −

n=100, T = 3

β10 = −1 −0.9991(.057) −0.9985(.057)[.057] −0.9987(.057)[.056] −0.9997(.059) −0.9994(.059)[.057] −0.9994(.059)[.055]
β20 = 2 1.9972(.061) 1.9977(.061)[.059] 1.9978(.060)[.057] 1.9977(.053) 1.9985(.053)[.053] 1.9985(.053)[.053]
α0 = −2 −1.9976(.039) −1.9998(.039)[.038] −1.9996(.039)[.039] −1.9894(.051) −1.9942(.051)[.051] −1.9943(.051)[.052]
τ0 = 1 1.1701(.176) 1.0246(.145)[.149] 1.0273(.147)[.152] 1.0694(.102) 1.0134(.096)[.100] 1.0135(.096)[.100]
σ2

0 = 1 0.5332(.060) 0.8468(.094)[.099] − 0.5442(.059) 0.8474(.092)[.097] −

n=100, T = 7

β10 = −1 −0.9980(.031) −0.9981(.031)[.031] −0.9981(.031)[.031] −0.9992(.029) −0.9995(.029)[.029] −0.9995(.029)[.029]
β20 = 2 1.9990(.030) 1.9993(.030)[.030] 1.9993(.030)[.030] 2.0002(.032) 1.9998(.032)[.030] 1.9998(.032)[.030]
α0 = −2 −1.9974(.022) −2.0000(.022)[.021] −1.9999(.022)[.022] −1.9954(.028) −1.9992(.028)[.027] −1.9995(.028)[.027]
τ0 = 1 1.0583(.075) 1.0128(.072)[.073] 1.0119(.073)[.074] 1.0438(.060) 1.0034(.058)[.057] 1.0038(.058)[.059]
σ2

0 = 1 0.6594(.043) 0.7843(.052)[.053] − 0.6614(.044) 0.7922(.053)[.054] −
Notes: We report the empirical mean (standard deviation) [average asymptotic standard error].
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Table H.2: Heteroskedastic case with ηit ∼ N(0, 1) and σ2
it =

|X1,it|+|X2,it|
1
n

∑n
i=1(|X1,it|+|X2,it|)

W=Rook, M=Queen W=Queen, M=Rook

QMLE ME RME QMLE ME RME

n = 50, T = 3

β10 = −1 −1.0078(.091) −1.0064(.091)[.093] −1.0064(.091)[.089] −0.9954(.081) −0.9966(.081)[.081] −0.9969(.081)[.078]
β20 = 2 1.9964(.097) 1.9952(.097)[.084] 1.9954(.097)[.092] 1.9982(.085) 1.9977(.085)[.073] 1.9980(.085)[.078]
α0 = −2 −1.9937(.055) −1.9994(.055)[.055] −1.9989(.055)[.055] −1.9880(.071) −1.9949(.071)[.072] −1.9947(.072)[.070]
τ0 = −1 −0.9640(.184) −1.0017(.181)[.182] −1.0041(.181)[.180] −1.0473(.167) −1.0252(.153)[.158] −1.0306(.153)[.152]
σ2

0 = 1 0.5986(.097) 0.9412(.153)[.150] − 0.5974(.098) 0.9469(.155)[.150] −

n = 50, T = 7

β10 = −1 −1.0008(.055) −1.0014(.055)[.054] −1.0014(.055)[.054] −0.9983(.048) −0.9984(.048)[.047] −0.9984(.048)[.047]
β20 = 2 2.0031(.056) 2.0034(.056)[.050] 2.0034(.056)[.055] 1.9965(.048) 1.9977(.048)[.045] 1.9977(.048)[.048]
α0 = −2 −1.9941(.036) −2.0013(.036)[.036] −2.0015(.036)[.035] −1.9893(.039) −1.9972(.039)[.039] −1.9971(.040)[.039]
τ0 = −1 −0.9587(.105) −1.0040(.104)[.103] −1.0040(.104)[.103] −0.9959(.078) −1.0106(.076)[.079] −1.0102(.076)[.079]
σ2

0 = 1 0.8109(.075) 0.9793(.090)[.094] − 0.8227(.077) 0.9906(.093)[.093] −

n = 100, T = 3

β10 = −1 −0.9951(.067) −0.9960(.067)[.068] −0.9961(.067)[.066] −1.0015(.063) −1.0015(.063)[.061] −1.0016(.063)[.060]
β20 = 2 2.0011(.070) 2.0006(.070)[.062] 2.0005(.070)[.067] 2.0030(.054) 2.0023(.054)[.054] 2.0023(.054)[.054]
α0 = −2 −1.9956(.043) −1.9988(.043)[.043] −1.9989(.043)[.042] −1.9948(.054) −1.9995(.054)[.052] −1.9998(.054)[.052]
τ0 = −1 −1.0050(.136) −1.0007(.132)[.130] −1.0017(.133)[.130] −1.0293(.109) −1.0101(.103)[.100] −1.0129(.104)[.099]
σ2

0 = 1 0.6166(.072) 0.9740(.114)[.113] − 0.6326(.071) 0.9835(.111)[.108] −

n = 100, T = 7

β10 = −1 −1.0019(.037) −1.0020(.037)[.037] −1.0020(.037)[.037] −1.0003(.032) −1.0003(.032)[.033] −1.0003(.032)[.033]
β20 = 2 2.0005(.042) 2.0006(.042)[.037] 2.0006(.042)[.042] 2.0008(.037) 2.0003(.037)[.034] 2.0003(.037)[.037]
α0 = −2 −1.9979(.023) −2.0012(.023)[.024] −2.0012(.023)[.023] −1.9951(.028) −1.9994(.028)[.029] −1.9995(.028)[.028]
τ0 = −1 −0.9805(.072) −1.0006(.072)[.070] −1.0006(.072)[.070] −1.0103(.055) −1.0051(.053)[.057] −1.0041(.053)[.057]
σ2

0 = 1 0.8326(.055) 0.9898(.065)[.066] − 0.8305(.054) 0.9939(.065)[.068] −

n = 50, T = 3

β10 = −1 −0.9966(.089) −0.9971(.088)[.087] −0.9976(.088)[.086] −1.0068(.088) −1.0067(.087)[.087] −1.0066(.087)[.086]
β20 = 2 2.0055(.097) 2.0036(.097)[.089] 2.0038(.097)[.091] 1.9987(.096) 2.0002(.096)[.086] 2.0007(.096)[.091]
α0 = −2 −1.9920(.061) −1.9983(.060)[.063] −1.9991(.061)[.062] −1.9900(.071) −1.9957(.071)[.072] −1.9975(.072)[.071]
τ0 = 1 1.2271(.257) 1.0662(.217)[.228] 1.0678(.226)[.226] 1.1259(.169) 1.0305(.154)[.157] 1.0311(.158)[.155]
σ2

0 = 1 0.5954(.092) 0.9421(.146)[.147] − 0.5947(.095) 0.9465(.151)[.146] −

n = 50, T = 7

β10 = −1 −0.9987(.051) −0.9987(.051)[.050] −0.9986(.051)[.050] −1.0007(.048) −1.0000(.048)[.047] −1.0000(.048)[.046]
β20 = 2 2.0017(.049) 2.0005(.049)[.045] 2.0006(.049)[.048] 2.0013(.051) 2.0002(.051)[.045] 2.0002(.051)[.048]
α0 = −2 −1.9944(.034) −2.0003(.034)[.034] −1.9998(.034)[.035] −1.9912(.038) −1.9982(.038)[.038] −1.9983(.038)[.038]
τ0 = 1 1.1104(.116) 1.0178(.110)[.112] 1.0171(.109)[.111] 1.0630(.081) 1.0127(.079)[.080] 1.0125(.079)[.080]
σ2

0 = 1 0.8084(.076) 0.9783(.092)[.093] − 0.8122(.076) 0.9792(.091)[.092] −

n = 100, T = 3

β10 = −1 −1.0028(.061) −1.0019(.060)[.061] −1.0021(.060)[.060] −1.0014(.062) −1.0012(.062)[.060] −1.0011(.062)[.060]
β20 = 2 1.9973(.073) 1.9984(.073)[.063] 1.9984(.073)[.068] 1.9995(.061) 2.0001(.061)[.057] 2.0001(.061)[.059]
α0 = −2 −1.9961(.041) −1.9987(.041)[.040] −1.9987(.041)[.040] −1.9933(.054) −1.9984(.054)[.054] −1.9986(.054)[.054]
τ0 = 1 1.1842(.185) 1.0329(.151)[.153] 1.0340(.153)[.154] 1.0781(.106) 1.0205(.100)[.103] 1.0176(.100)[.101]
σ2

0 = 1 0.6109(.072) 0.9705(.114)[.111] − 0.6193(.069) 0.9644(.107)[.108] −

n = 100, T = 7

β10 = −1 −0.9993(.036) −0.9995(.035)[.035] −0.9995(.035)[.035] −1.0001(.030) −1.0005(.030)[.032] −1.0005(.030)[.031]
β20 = 2 1.9982(.038) 1.9986(.038)[.034] 1.9986(.038)[.037] 1.9990(.037) 1.9986(.037)[.034] 1.9987(.037)[.037]
α0 = −2 −1.9955(.023) −1.9987(.023)[.023] −1.9987(.023)[.023] −1.9958(.029) −2.0001(.029)[.029] −1.9997(.029)[.029]
τ0 = 1 1.0540(.074) 1.0089(.071)[.072] 1.0090(.072)[.072] 1.0453(.059) 1.0046(.057)[.058] 1.0048(.057)[.057]
σ2

0 = 1 0.8362(.053) 0.9947(.063)[.066] − 0.8258(.057) 0.9892(.069)[.068] −
Notes: We report the empirical mean (standard deviation) [average asymptotic standard error].
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