Web Appendix for “Estimation of Matrix Exponential Unbalanced
Panel Data Model with Fixed Effects”

Ye Yang* Osman Dogan' Siileyman Tagpimar?

This web appendix presents the proofs of the technical results, the details of the empirical
exercise and the additional simulation results. More specifically, Section A includes some lemmas
that are essential for our theoretical results. The proofs of some lemmas are given in Section B.
Sections C and D provide the proofs of the main technical results. Section E provides some details
on our empirical application. Section F presents the details on the identification conditions. Section
G includes the pseudo estimation algorithms. Finally, Section H provides the additional simulation

results.

A Some Useful Lemmas

The following lemmas are useful in the proofs of the theorems in the paper. Lemma can be
found in Kelejian and Prucha (1999). Lemmal[A.3|can be found in Lin and Lee (2010), Lemma[A 4]
can be found in Debarsy et al. (2015), Lemma can be found in Lee (2007a), Lemma can
be found in Lin and Lee (2010). The proofs of Lemma and can be found in section B.

Lemma A.1. Let {Anx} and {Bn} be two sequences of N x N matrices that are uniformly bounded
in both row sum and column sum matriz norms. Let {Cn} be a sequence of conformable matrices

whose elements are uniformly O(h,'). Then,
(i) the sequence {AnBn} are uniformly bounded in both row sum and column sum matriz norms,
(ii) the elements of {An} are uniformly bounded and tr(Ayx) = O(N), and

(iii) the elements of {ANCN} and {CnAN} are uniformly O(h,1).

Lemma A.2. Under our assumptions in the paper, we have

(i) Qc(7) is uniformly bounded in both row sum and column sum matriz norms, uniformly in
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(i) Qx(7) is uniformly bounded in both row sum and column sum matriz norms, uniformly in

TEA,,
(i7i) The elements of Pc(T) has the uniform order O (max{1/n,1/T}), uniformly in T € A,.

(iv) Let {An} be a sequence of N x N matrices that are uniformly bounded in both row sum and
column sum matriz norms and {Cn} be a sequence of N x N matrices whose elements are
uniformly O(h;1).

(a) %tr(Qc(r)An) = +tr (An) + O (max {1/n,1/T}), uniformly in T € A,.

(b) %tr (Qc(T)Cn) = %tr (Cn) + O (1/max{T, h,}) = O(h;') + O (1/ max{T, h,}), uni-
formly in T € A;.

Remark 1. A similar result in Lee (2004, Lemma A.9) shows that 1tr(M,A,) = Ltr(4,) + o(1),
where A, are uniformly bounded in both row and column sums and M, = I, — Xn(X;LXn)_lX;L.
This result follows from 2tr(M,A,) = 1tr(4,)— Ltr ((X;Xn)_lX;Aan). Under the assumption
that limy, 00 %X;Xn exists and is non-singular, Lee (2004) shows that the elements of k x k matrices
(%X,;Xn)*l and %X%Aan are uniformly bounded, where k is the number of columns in X,,. Thus,
it follows that tr ((X,;Xn)_lX,;Aan) = O(1), which implies that *tr(M,A,) = 1tr(A,) + o(1).
This result cannot be used in our case for the terms such as +tr (Qc(1)An) and +tr (Qc(t)Cy)

because C(7) is an N x (n+ T — 1) matriz, i.e., its column dimension depends on n and T.

Lemma A.3. Let {An} be a sequence of N x N matrices such that either ||An||,, or ||Anl; is
bounded. Suppose that the elements of An are O (h;l) uniformly. Assume that the elements of
the innovation vector € have zero mean and finite variance, and are mutually independent. Let ¢y

be an N x 1 vector with elements of uniform order O(h;l/Q). Then,

n

(iii) € Aye = O, (ﬂ , (iv) € Anve —E (€ Ane) = Op ((;]l\i)2> ;

(i) E(dAye) =0 (hﬂ) (i5) Var (€ Aye) = O (hﬂ)

h
1
(v) NAne= 0O, ((}]L\i) 2), if |An||; is bounded.

Lemma A.4. Let A, be any n X n matrix that is uniformly bounded in row sum and column sum

matriz norms and a, = op(1). Then He“”A" - InHoo =o0p(1) and He“"A" - I"Hl = o0p(1).

Lemma A.5. Suppose that {An} and {Bn} are two sequences of N x N matrices that are uniformly
bounded in either row sum or column sum matriz norms. Under our assumptions in the paper,

tr(ANPx (7)By) = O(1), uniformly in 7 € A,.

Lemma A.6. Assume that the elements {€;} in the innovation vector € are independent and iden-
tically distributed with mean zero and finite variance 0. Let E(€}) = n3 and E(e}) = ny. For any
N x N matrices Ay and By of constants, define Ay, = An + AIN and B3, = By + B}V. Then,



(i) E(€ Ane x € Bye) = (4 — 30*wec(An)veep(By) + ot (tr(An)tr(By) + tr(AnB%,)),
(’l"i) E(ANG X GIBNG) = ANUGCD(BN)TB,
(ii3) E(e/BNe X elAN) = ngvech(BN)AN.

Lemma A.7. Assume that the elements {ez} in the innovation vector € are independent and dis-
tributed with mean zero and finite variance o?. Let E(e}) = n;3 and E(e}) = mia. For any N x N
matric Ax = [a;j] and By = [bij] of constants, define Ay, = An + AIN and BY; = By + B;V. Let
cy be an N x 1 wvector of elements ¢; and I' = diag (a%, .. ,012\,). Then,

(i) E(¢ Aye x € Bye) = S0, aibii (ia — 30) + tr(DANn)tr(TBy) + tr(TANTBY),
(ii) E(€ Aye x C/NG) = ZiNzl i i3,
(iii) E(Aye x € Bye) = Axy SN biimis,

(iv) B(¢ Aye) = tr(PAx) = SN | ajo?.

B Proofs of Lemmas

Proof of Lemma A.2.

Proof of (i). The order analysis of these terms becomes tractable, when the identification restric-
tion is imposed as A1 = 0. This is an equivalent way of achieving the identification restriction.
Then, we can write CY = [0y, x (7—1); blkdiag(ln,, . . ., ln;)], where the semicolon sign ; means verti-
cal stack. Let C,(7) = ™), C5(1) = €™}, C11(7) = C,C,, Cia(7) = C,Cy, Cai(7) = C,Cy,
Caz(r) = C\Cy and B(7) = C,,(1)Qc, (1)Cpu(7). Recall that C(r) = e™C = [C,(r) Ci(7)]. By

the formula for the inverse of a partitioned matrix,

B  BWCeCHD)
—C (T)Cra(M)B (1) Coy (1) 4+ Co5 (1)Cha(1)B~H(7)Cra(7)Ciy (1)

Substituting this expression into the definition of Q¢(7), after a little bit of tedious derivation we
obtain Qc () = Qc, (1) — Qc, (T)Co(7)[C,,(1)Qe, (T)Cpu(1)] 7' C,(T) Qe (7)-

Since Cy(7) = [Onlx(T_l);blkdiag(eTMQan, o€, ] for the first element on the right hand
side of the above equation, we have Qc, (7) = blkdiag(K1(7),..., Kr(7)), where Ky(r) = I,,, and
K1) = I, — —eTMtl [T}tlnteTMtleTMflnt]_ll;ueTMt/ for t = 2,...,T. By Assumptions 3 and 4,
e™t is bounded in row sum matrix norm uniformly in 7 € A;. Hence, the elements of e™¢]
TM], e™M1]

g 18
bounded uniformly in 7 € A;. Therefore, ;- lme

is also bounded away from zero uniformly in 7 € A, because it is a sum of squares. Then, the

n; i bounded uniformly in 7 € A;. It

I /
’TMtl [ll 67-M TMtlnt]_llnteTMt

elements of Le
ne ng Nt

has the uniform order O(1/n;), which is equal to



O(1/n) by Assumption 2. Then, n%eTMtl AL, emMi TMtlnt]_ll;LteTMt/ is bounded in row sum and

ne Nt
column sum matrix norms uniformly in 7 € A, for ¢t = 2,...,T. Therefore, K;(7) is uniformly
bounded in both row and column sum matrix norms uniformly in 7 € A, for t = 2,...,T. This

implies that Qc, (7) is uniformly bounded in both row and column sum matrix norms uniformly in
TeEA,.

The second term on the right hand side of the above equation can be partitioned into 7' x T tiles.
The (s,t)th tile can be written as —5 K (7)e™=C;[+ S Cre™i Ky (1)e™i )1 CLe™ Ky (7).
By Assumption 5, e™M:C,[+ 2?21 Cre™i K,(1)e™:Cy] 1 Ce™ i is bounded in row sum and
column sum matrix norms uniformly in 7 € A;. Then, the elements of the (s,)th block has the
uniform order O(1/T"), uniformly in 7 € A;. Hence, the second term on the right-hand side of the
above equation is also bounded in both row and column sum matrix norms uniformly in 7 € A,.

Therefore, Qc(7) is bounded in both row sum and column sum matrix norms uniformly in 7 € A.

Proof of (ii). Let X(7) = [%X, (7)X(7)]~! and denote its (j, k)th element by X;x(7). By Assump-
tion 7, there exists a constant ay such that |X;(7)| < ax uniformly in 7 € A; for large enough N.
Also, by Assumption 7, the elements of X are non-stochastic and bounded. In the previous part, we
showed Qc, (7) is bounded in row sum and column sum matrix norms uniformly in 7 € A,. Also,
by Assumptions 3 and 4, €™ is bounded in row sum and column sum matrix norms uniformly
in 7 € A,. Therefore, the elements of X(7) = Qc(7)e™X are bounded uniformly in 7 € A, by
Lemma [A.T]

Let X1 (7) be the (j, k)th element of X(7). Then there exists a constant ax such that |X;;(7)| <

!

ax uniformly in 7 € A.. Let P;;(7) be the (7, l)th element of Px(1) = +X(7)[+X (T)X()] X (7).

Then Eé\le IPji(7)] < Z] 1ZT 1 Zs 1 !er (T)Xs(1)] < kQaXa_QX uniformly in 7 € A,
foralll =1,...,N. Also lel Piu(m)] < % Zl 1Zr 125 " |X,,S (T)Xs(1)| < k2aspa® for
all 7 = 1,...,N. Then Px(7) is bounded in row sum and column sum matrix norms uniformly

in 7 € A;. Thus, Qx(7) is bounded in row sum and column sum matrix norms uniformly in 7 € A,.

Proof of (iii). Recall that in part (i), we showed Qc(r) = c, (7)
e, (F)Cu(NIC,(NQe, (NCUD]ICL(1)Q, (7). Hence, Pelr) = Iy - @cm -
Iv = Qo(r) + Qo (CuNCLNQe () I CuQe, (1) = Pey(r) +
Qc, (7)Co (7)€, () Qe (NCW(D] T, (1) Qe (7).

In  part (i), we showed that Qc,(7)Cpu(7)[C,(T)Qc,(7)Cp(r)]*C,(1)Qc, (1)
can be partitioned to T x T tiles, and the (s,¢)th tile can be written as
— LK (1)e™™:C[ % ST Cre™iK (1)e™: Cy) 7 Ce™i Ky (7). We also concluded that the el-
ements of the (s,t)th block (and therefore the entire term) has the uniform order O(1/T),
uniformly in 7 € A,.

Also, in part (i), we showed that Qc, (7) = blkdiag(K;(7), ..., K7(7)), where K1(7) = I, and
Ki(r) = I, — 2e™¢, [ L I e™i TMtlnt]*ll/ e™i for t = 2,...,T. Our analysis indicated that

nt ne Nt ne

the elements of e e M, [nl lnteTM TMtlm]_ll;lteTMt’ has the uniform order O(1/n). Therefore, the



elements of Pc, (7) has the uniform order O(1/n), uniformly in 7 € A-.
Combining these two terms, the elements of Pc(7) has the uniform order O (max{1/n, 1/T'}),

uniformly in 7 € A,.

Proof of (iv). (a) By definition, Qc(r) = Iy — Pc(7). Then, it follows that +tr (Qc(T)An) =
+tr(Ay) — +tr(Pc(r)Ay).  Note that the elements of Pc(r) has the uniform order
O (max {1/n,1/T}) by part (iii). Then, by Lemmal[A.1] (iii), the elements of P¢c(7) Ay are uniformly
O (max {1/n,1/T}). Thus, +tr (Qc(7)An) = %tr (An)+O (max {1/n,1/T}), uniformly in 7 € A,.
(b) Similarly, we have +tr (Qc(7)Cn) = &tr (Cn) — #tr (Pe(7)Cn). Since the elements of Cy are
uniformly O(h;, '), we have 1tr (Cy) = O(h, ') by Lemma (ii). Since the elements of Pc(7) are
uniformly O (max {1/n,1/T}) and that of Ciy are uniformly O(h;,1), the order of +tr (Pc(7)Cy)
is either uniformly O(1/T) or O(1/h,). Therefore, %tr (Pc(r)Cx) = O (1/ max{T, h,,}) uniformly.
Then, we have +tr (Qc(7)Cn) = +tr (Cn) + O (1/ max{T, h,}) = O(h;') + O (1/ max{T, h,}),
uniformly in 7 € A.

Proof of Lemma A.5.

From the proof of Lemma we know that the elements of X(7) and X(7) = [%X’ (T)X(7)] !
are uniformly bounded in 7 € A,. By the assumption of the lemma, Ay and By are uniformly
bounded in row or column sum norm. Then by Lemma By Ap is also uniformly bounded in
row or column sum norm. By Lemma A.6 of Lee (2004), the elements of %X/ (1) BNANX(T)
are uniformly bounded.  Then tr(AnPx(7)By) = tr[AnX(r)(X (7)X(7)'X'(r)By] =
tr[(%X’ (T)X(T))*l(%xl (1)BNANX(7))] = O(1) uniformly in 7 € A; since there are fixed number

of k independent variables.

C Proofs of theorems

C.1 Proof of Theorem 3.1

Given Assumption 6, we need to prove supcca N% HS*C(C) - E*C(C)H 25 0. Note that we can
express S*¢(¢) — S*¢(¢) as

. 20T, oW W oM ) ' aW A oM >
@ T ¥ W) - g <ye WeTe(()
S*(Q) = 8*(¢) = -E (y/eo‘W,W/e"'M,E(C)> ),
P (OO o) — 1 (¢ () — E( ¢
ri OO (OME(C) - i (€ (OME) — B(E (OME(Q))
So we need to prove the following results:

(i) infeen 372(¢) > ¢ > 0 for some positive number c,
(if) supcea [72°(C) = :(O)] = 0p(1),

(iii) SUPcea NL1 Hy/eaw W e™ ) —E (yleaw W e™ E(C)) H = 0,(1),
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(iv) (OMEQ) ~ B (F(OMe©) | = 0,(1).

Proof of (i). Utilizing €(¢) = Px(7)Qc(7)G(¢) (v — E(y)) + Qx(7)Qc(7)G(¢)y in equation (3.13),
we can express 7:2(C) as:

720 = 3 B (€040) = 3B (v~ Bw) P(O)(w — Blw)) + 5 QC)w)

= ]\%tr( _1/(CO)P(C)G_1(C0)> + ]\1[1E (y’Q(g)y) ,

where Q(¢) = G'(O)Qc(7)Qx(r)Qc(7)G(C) and P(C) = G'(()Qe(7)Px(7)Qc(7)G(Q). Using the
fact that y = E(y) + G™1({o)e, we can further express 7*2(¢) as

4 062 1 /
720 = T (@e(nF(Q) + 3 B) QOE) (€1)

-1

where F({) = G(() (G/(Q))G((O)) G'(¢). For the first term in (C.1)), we have

2 2

%tr(QC(T)F(C» = ]\;0’7m1n( (€)) tr (Qc(7))

! I ! I
> U?()'Ymin(eTM TM),ymin(eaW eaW),ymaX(ea()W eagW)—l,ymaX(eroM eTQM)—l > 0,

because the matrix exponential terms are positive definite. The second term in is non-negative
uniformly in ¢ € A since Qx(7) is positive semi-definite.

Proof of (ii) We can express €(¢) as €(¢) = Qc(7)G(1)y — Qc(T)eTMXB*(T), where B*(C) =
(x/(T)X(T)) X (1)Qc(7)G(¢)y. Thus, we can further express €(¢) as €(¢) = Qe(r)G(r)y —

c(r
Px(7)Qc(m)G(r)y = (Qx(7) +Px(7)) Qc(T)G(r)y — Px(7)Qc(m)G(T)y = Qx(7)Qc(7)G(()y-
Then, we have 3*2(0 = 1\17 A(C)A(C) = N%y/Q(C)y. Also in the proof of (i), we showed that

€

52() = 5t (G (QPOGT(@)) + % (¥ QQy)- Thus,

520~ () = - A;ft( TWPOE®) + 5 (YA -EGQOY).  (C2)

For the first term on the right hand side of (C.2)), we have

2

g ’ 0'2 i ’
i (6 @PQOE (@) = {2 (@7 (@6 (Qe(r)Px(n)Qe(nGOG ™ (G)

0_2
< Nfeovmax (F(0) mmax (Qc(7)) tr (Px(7)) = o(1),
1

because Ymax (F(O) < 'Ymax(eia()W/eiaOW)’YmaX(eiTOM ei‘rOM)’YmaX(eaW eaw)'YmaX(eTM eTM) <

oo by the fact that the norm of matrlx exponential terms are finite, Ymax (Qc(7)) = 1 and
Otr ( 71/(<0)P(<)G71(C0))’ = 0(1). For the second term

tr (Px(7)) = k. Thus, we have sup;ca



on the right hand side of (C.2), we need to prove supca ‘N% (y/Q(C)y - E(y/Q(C)y))‘ = op(1),
which follows from the point—wise convergence of N% (y/Q(C )y — E(y’Q(()y)) in each ¢ € A and

stochastic equicontinuity of y Q(C )y. To prove the point-wise convergence, we have

~ (y QU - Bl Q(0)))

- 7/30X ‘oW Q)G (Go)e + ]\2[1560'9“0W/Q(C)G1(Co)6

+ Ni (€ G™(@)ROG™ (G)e — oAt (G (O)QOG (G)) )
1

By Lemma and e*a‘)W/Q(C)Gfl(CO) and G~V (¢))Q(¢)G({y) are uniformly bounded

in row and column sum norms. Thus, the first two terms on r.h.s. are point-wise convergent by
Lemma [A.3](v), and the last term is point-wise convergent by Lemma [A.3|iv).
To prove the stochastic equicontinuity, note for any two parameter vectors (1, (s € A, it follows

from the mean value theorem that

]\171 (y/Q(Cl)y - Z//Q(CQ):[/) — ]\1[13/ 8Qé€)

(C1 = C2),

where ( is between ¢1 and (2 elementwise. Thus we need to prove that supyca N%y/ a(gég)y = 0p(1)

and sup¢ea N1 y (35 )y = Op(1). We will prove the latter and the former can be proved in a similar

way. First note

8‘350 = G'(OM Qc(7)Qx(1)Qc()G(¢) + G () Qe (1) Qx (N Qe(T) G(C)
+ G ()Qc(M)Qx(nQe(r)G(() + G (O)Qe(r)Qx()Qc(1)G(()
+G'(Q)Qc () Qx (1) Qe (1)MG((),
where Qc¢(7) = SQC — (Qc(7)MP¢(7) + Pe(7)M'Qc (7)) and Qx(7) = %. After some
algebra 8§§(T N = BQ‘C( B)TT X — D(r)X(r), where D() = Qc(7)M — Pe(r)M’. This leads to
@x(r) = 28— gu(r)D(r)Px(r) ~ B (r)D (r)Qx (7).

Recall that ¢ = Xy + Cd. Then y = e W ($ + e M), Denote Qf(¢) = Q' (O)D(C)Q(C)
and Q(¢) = Qx(7)Qc(7)G(¢). Under our assumptions, Lemmas and ensure that Qf(¢) is

bounded in row and column sum norms. This leads to

v Py — 2 Q1 =~ - (6 & M e W QI Qe W (54 T
T 1
’ ’ 4 / /
= —]\271¢ e W @T(Qe—aowgb - EQZ) e~ oW QT(C)G—I(CO)E _ ]\2[16 G_I(CO)QJf((:)G—I(CO)e
=0p(1)



uniformly in ¢ € A by Lemma [A.3| Thus, it follows that sup;ca N%y/ agioy = 0p(1).
Proof of (iii). Using €(¢) = Px(7)Qc(7)G(¢) (y — E(y)) + Qx(7)Qc(7)G(()y in (3.13) and €(¢) =
Qx(7)Qc(7)G(¢)y from the proof of (ii), we have

L oW s M S " oW ! TM
lee We™ €(() N1E<ye We e(C))
1 ’ 4 ’ 4 ’ 4 ’ 4
= 5, (Ve WM QU — By e We™M Q(()y))

2

g 1/ / I / _

— 206 (G (Go)e™™ We™M PG () ) -
Ny

where P(¢) = Px(7)Qc(7)G(¢). The uniform convergence of the first term can be shown similar to

that of N% (y/Q(C)y — E(y/Q(C)y)> in the proof of part (ii), and thus is omitted. By Lemma [A.5]

the second term is o(1) uniformly in ¢ € A.

Proof of (iv). Using the expressions for €(¢) and €({) from the proof of (iii) again, we have

1 . 1 _ _
oE (OMEQ) — B (£ (M)

0'2 ’ ,
N J\lfl (v @ (©OMQ©Qy - By Q' (ML) - o (G (@F (OMPO)G ()

0_2 , ’
_ ]\Teotr (Gfl (Co)P (C)MSQ(OG%@O)) ’

1

where M® = M 4+ M. The uniform convergence of the first term can be shown similar to that of
N% (y/Q(C)y — E(y,Q(C)y)) in the proof of (ii) and thus is omitted. By Lemma |A.5 the second
and third term are o(1) uniformly in ¢ € A.

C.2 Proof of Theorem 3.2

Ak * (0 -1 —_ ~%
The mean value theorem gives vV N1(6 — 6p) = — (N%ai;gse)) ﬁs*(eo), where 6 is between 0

and 6y elementwise (Jennrich, 1969, Lemma 3). We need to prove the following results:

(i) —A=S5*(0p) % N [0, limy—se0 Q*(60)],

(i) & (252 - 22090) = o,(1),

(iff) (658*9(,90) ~B (QS;;?O))) = 0,(1).

Proof of (i). Note that elements of S*(fy) in (3.16) are linear-quadratic forms in e. Let a =

5

2l

(CLll,CLQ,Cbg,CM)/ for an k£ x 1 constant vector a; and constants as,ag and as. Then we can express
a' S*(0y) as b'e + € Be — oytr(B), where b = U%QOCLIIX,(TO) - %¢/GTOM/S/(T())Qc(To) and B =
2?20 Qc(m0) — %Q@(TO)S(TO) — %Qc(To)MQ(c(To). Since b and B satisfy the conditions for the
CLT in Kelejian and Prucha (2001)) by Lemma and (i), N%a/S *(o) is asymptotically normal.
Thus, the Cramér-Wold device leads to (i).




Proof of (ii). The explicit expressions of the elements of the Hessian matrix H*(#) are given in
the main paper. By Assumptions 3-4, S(7) is bounded in row sum and column sum matrix norms.
Since y = e W (¢ + e 70M¢)  all terms in the Hessian matrix can be written in forms of functions
in LemmalA.3| and thus N%H*(Qo) =0,(1). As2 L= 62, 57 =5 +o,(1) for r = 2,4,6. Note
ol appears in H*(#) multiplicatively, which implies N%H*(B, L, Q,T) = 11 H*(B,0%,a,7) + 0p(1),

where an error appears that can be neglected asymptotically. Then the proof of (ii) is equivalent

to the proof of

We first consider the random elements in H*(). We can write e¥W = (e®W — e®W) + e®oW,

e™ = (e™ _ e7oM) 4 ™M and 3 = (3 — By) + Bo, and then expand the terms in ~ L m+(9).

By Lemma and and the reduced form of y, le Ay = Op(1) and ]\1,1X Ay = O,(1),

where A is an N x N matrix that is uniformly bounded. Also note Heaw—e"‘OWH

L=
(@ 20IW _ [y)emaW || < [|(e@0W _ 1| [le®oW| = 0,(1) by Lemma [A.4} and sim-
ilarly ||e™ TOMHOO = op(l). Then from the expanded forms of the random elements of

+ (H*(B, 02, @, ?) H*(GO)), we infer that these elements are o,(1). For the nonrandom, i.e.,
the trace terms in N (H*(B,0%,a,7) — H*(6p)), the convergence results follow from the continu-
ous mapping theorem (see Proposition 2.27 in White (2001))) since T — 79 = o0,(1).

Proof of (iii). Note each element of N% (655 0(,9 ) _E <%éfo))) is a linear or quadratic function

of € by the reduced form of y. By Lemma |A.3 N% (65(;9(,90) —-E (8S$£90)>) = o0p(1).

C.3 Proof of Theorem 3.3

Since 5*, p and K are consistent, substituting them into Q*(#) does not cause any bias as an
estimator for Q*(6p). For ;5\*, however, the incidental parameter problem makes it inconsistent
when T is fixed, which leads to bias. The bias is derived as following. From (3.3) in the main
paper, g(ﬁ,() = (C%T)(C(T))il C'(1)e™(e®Wy — Xj3). Also note e® Wy — XB = e®Wy —
XBo+ (W —e®W)y — X(5" — fy) and e*WVy — Xy = Cé + e ™Me. Let § = (5 ,( ).

Applying the mean value theorem to C5 " with respect to the 7* element, we have

7

CS* _ e—?*MPC(?*)e?*M(ea*Wy N XB*)
= (e_TOMpc(To)eTOM + f(?)(?* - 7'0)) (ea*wy - XE*)
— Oy + e_TOMP(c<To)€ + e_TOM]P(C(TO)eTOM <(ec’i*W _ eaoW)y . X(B* . ,30))

+E6M) (¥ Wy~ XF)E - ), (C3)
where 7 lies between 7° and 7y and £(7) = th? = e ™™M(D(F)Qc(7) — M)e™ —
Me "™P¢(7)e™.
Note Hea*w — eaoWH = H(e(a*_"‘o)w — IN)eO‘OWH < He(a*_o‘o)w - INH HeaoWH



0p(1) by Lemma Using Lemmas and we can express the terms in Q*@*) that are

linear in C'd in the following way:

L e+ o0p1), (C.4)

1
—a 'Cs = —a 'Coy + —a e TMPg(7p)e + op(1) = N
1

Ny Ny N1

where a is a suitable vector. Thus, the terms that are linear in O3 can be consistently estimated.
The only quadratic term in ¢ = X g+ Cdp is ﬁafod)l Q4(70) Q3(70) ¢, which is contained in Q7 (6p).
Then, the only quadratic term in dg is ﬁazoééd Q4(10)Q3(70)Cdo. Recall that Qo(7) = Qs(7)e™ ™.
Then, using , we obtain

~k

— 5 CQ3( ")Q3(T7)Cé

N18*2
o 1 .y .
N /\*2 500 QB(A*)Q:&( )C(S(] + N — 3¢ P(C(TO) ToM Qg(TO)Q3(7'0)e OMP{C(T{))E i 0p(1)
10 o
1 ro 1 ,
= No? 8C" Qs (70) Q3 (70)Cdo + Etr (P(C(TO)QQ(TO)QQ(T())> + 0,(1). (C.5)

Thus, the bias term, which has the same dimension of Q*(fy), is a matrix of zeros except the
(v, @) element, which is N%tr (IF’C (T())QIQ(T())QQ(T())>. Since the bias term only involves 79, we can

formulate a consistent estimator based on the plug-in estimator by the continuous mapping theorem.

C.4 Proof of Theorem 3.4

Let {¢;}, {¢;} and {¢;} be the jth element of ¢, ¢ = Qc(7p)e and € = Qc(7*)e™ M(e® Wy — XB*)
respectively for j = 1,..., N. Let g5 be the (j, h)th element of Qc(o) for j,h=1,...,N.

To prove the consistency of p, note that ¢* — o = 0,(1) and 7° — 79 = 0,(1), thus the
denominator of p is consistent, i.e., it converges in probability to its population counterpart. It’s
(e

left to prove that the numerator of p is consistent, i.e., % Z;\le € — E(€§)) = 0 or equivalently,

) ¥ LLE - 0
@ 42 (8-E@) 2o

Proof of (1). For simplicity of exposition, we denote w = (8,¢)" and write €(8,¢) as é(w) =
Qe(r)e™(e®Wy — X3). Let x(w) = 2 then

@) = (=X(1) 90 (Qc(r) +Qe(rM)e™(eWy - x8)). (C.6)

Let x;j(w) be the jth row of x(w). Then, by the MVT,

G = (@) = &(wo) + x;(@)@" —wo) = &(wo) + 1;(@" — wo) + 0 (|&" — woll), (C.7)
for each j = 1,..., N, where @ is between @* and wy elementwise and 1/;» = plimy_, X;' (w). We

will prove that 1/;- = Op(1) below. We start from the first k£ elements of V;, i.e.,, —plimX(7).

10



Since 7 —— 79 by 7F —— 75, we know — plimX(7) = —X(ry), which indicates that the first k
elements are O(1). Similarly, the (k + 1)th and (k + 2)th elements of V; are y(¢o) and (Qc(m) +
Qc(ro)M)e™oM(e®Wy — X 34) respectively. Substituting y = e *W¢ + G~1((y)e into these
elements leads to y((o) = Q3(70)¢ — Qa(70)e and (Qc (7o) + Qc(r0)M)e™M(e®Wy — X 5y) =
(Qc(70) + Qe (10)M)e™MCd, + (Qc(10) + Qe (10)M)e. By Lemmas and and Assumptions
3-4, the elements of Q3(79)¢ and (Qc(10) + Qc(70)M)e™M (4, are uniformly bounded, and Qs (7o)
and Qc(70) + Qc(79)M are uniformly bounded in both row sum and column sum matrix norms.
Therefore each element of y(() and (Qc(79) + Qc(r0)M)e™M (e Wy — X 3y) is O,(1), i.e., the
(k+ 1)th and (k + 2)th elements of u;- are Op(1) for j=1,...,N.

Note that we can write

N
gj = quheh' (08)
h=1

Since € = Op(1), X;' = 0p(1) and @* —wy = Op(\lﬁ), also by the fact that ¢; is i.i.d for j =1,..., N,

we have ?5’ = 6;3 + 3€?V;(E\u* —wp) + op([|@* — wpl|). Using (IC.g), we have

N
1
(& -&) = Z (@" — wo) + op([|0* — woll)
J=1 ] 1
2 N N
DN @) (@ — wo) + 0p([|D* — woll)
j=1 h=1
:Op(l)v

since NZ] 17/3 = Op(1).
Proof of (2). Substituting (C.8]) into the function in (2) gives

j=1m=1

1 N 1 N N 3 N N
N2 (@ —E@) = 5 2 (6 —Ee) + 2 DD D dagmeten
321 ]:1 h=1 j=11=1 m=1
m=#l
6 NN N N
+ N Z Z Z Z 4imq;5195hEmELER- (C.9)
i

hem,

For the first term, by Lemma H the elements of Qc¢(79) are uniformly bounded, i.e., there exists
a constant g such that |g;,| < g for all j and h. Thus ZJ 1 q]h <@ Zjvzl lgjn| < oo. Since {¢;} are
i.i.d, by the Weak Law of Large Numbers, the first term converge to 0 in probability as N — oc.
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The second term can be expressed as

g NN N g NN N g NN N
2 2 2 2 2 2
N 22 D Gidmeten =5 > > Y dtgm(el —ok)em+ 5 > D Y didmOioem
j=1I=1 m=1 j=1I=1 m=1 j=1I=1 m=1
m#l m#l m#l
3 N N m-—1 3 N N m-—1
2 2 2 2
= 2 (6 =)D D Gt + 5 D em [ DD Gidim(et — 0%)
m=1 j=1 I=1 m=1 j=1 I=1
g N NN ,
Y DD Gimoiem
=1j=1 I=1
l#m

I
2] e
=

(hl,m + hQ,m + h3,m)7 (ClO)

3
I

where hl,m = (G%—Uzo)(Zjvﬂ Zﬁ;l qf-mquez), hQ,m = Z] 1 Zl 1 qjl%m< € _0620)) and h3,m =
N N 2 2
Zj:l D=1 45195mO p€m-
l#m

Finally, the third term can be expressed as

G N N NN 18 N m-1m-1 N
N Z Z Z Z UmasIginemeieh = 57 Z %(Z 4jmjidjn€icn) Z (C.11)
j=1m=110=1 h=1 m=1 J=11=1 h=1 m=1
l#m h#m,l h#l

where hy y, = em(ZN D) Eh ! qjmq]lqjheleh) Let {F,,,} be the increasing sequence of o-fields

generated by (e1,...,€,j = 1,..., m) for m = 1,...,N. Then E[(h1m, h2.m, "3 m, ham)|Fm-1] =
0, i.e., {(A1im,h2.msh3.m,ham) > Fm} form a vector martingale difference (M.D.) sequence. By
Assumption 1 and the fact that Qc(79) is bounded in both row sum and column sum matrix
norms, B[R ,|'T¢ < oo for r = 1,2,3,4 and ¢ > 0. Hence {h1m}, {hom}, {h3.m} and {hyn,} are
uniformly integrable. By Theorem 19.7 in Davidson (1994)), the second and third term converge to
0 in probability.

To prove the consistency of &, similar to the proof for the consistency of p, we need to show
(3) sz 1(6 —e>—>0
N (= ~ P
(4) %5, (¢ -EBE@) "o

Proof of (3). Using ((C.7]), we first write E;l = E? + 46;’1/; (0" — wo) + 0p(J|J&* — wol|). Summing over

12



jforj=1,..., N, we have

1 Y 4 N
~4 ~ o
N2 68 =y L@ )+ o7 -l
40_30 N N s
= 2 20O )@ —wo) + 0p([E" — woll)
7j=1 h=1
:Op(l)v

since % Z] 1 1/3 =0p(1 ) as shown in the proof of (1).
Proof of (4). Using (C.8)) we write

1 N 1 N N 3 N N N
N Z (& -E@) = N Z @y (en — E(ep)) + N Z Z Z Ciom (€l €ny — 00)
Jj=1 j=1h=1 j=11=1 %:%
4 N N N 6 N N N N
+ N Z Z Z Q?ZQJmGl €m + N Z Z Z Z 45195mY5h€] EmER
j=11=1 m=1 j=11=1 m=1 h=1
m#l m#l h#m,l
1 N N N N N
T N Z Z Z Z Z q19jm4jhqjp€l€mEREp- (C.12)
j=11=1m=1 h=1 p=1
m#lL h#m,l p£m,lh

The proofs for the first, third, fourth and fifth term are similar to those in the proof of (2) and thus
are omitted. For the second term, we can write ere2, — ok = (67 — %)) (€2, — 0%) + 02)(€2, — 0%) +

02)(e? — 02). Then the second term equals

6 N 6 N N N
2
N Z Z Z qﬂq]m m + N Z Z Z q]lq]m eO - UeO)
=1 Jj=1m=l1 =1 \ j=1m=1
#1
6 N
ENZ 911+ 92,1), (C.13)
N N
where g1; = (612 )Z] 1 Zm 1qjlq]m( € — 0g) and 92,1 = Zj:l Zm;% q]?zqumaezo(ezz —0%)-
m

Here the summation in the first term in the first equation starts from [ = 2 but we still write it
as starting from [ = 1 to get the convenient expression at the end. Note E[g;;|F—1] = 0 and
{92,} are independent. Thus they each forms an M.D. sequence. Also E | 9r,l|1+9 <ooforr=1,2
and o > 0, thus {g1,;} and {g2;} are uniformly integrable. By Theorem 19.7 in Davidson (1994),
L Z;L gry = 0p(1) for r =1, 2.
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C.5 Proof of Theorem 4.1

Given Assumption 9, we need to prove SngeAN% [|57(¢) —S‘TC(C)H L5 0. Let M(r) =
1 ~

Iy — e™Mx (X’(T)X(T)) X'(r) and N(r) = Iy — M(r). Then e"M< aW, _ XﬂT(g)) _

M(7)G(¢)y, and e™ (eawy—XBT(C)) = M(7)G({)y + N(7)G(¢)(y — ( )). Also recall that

20 = #(B'(0),¢) = Qe(r)e™ (e2Wy — X5'(Q)) = Q(Q)y, where Q(C) = Qu(r)Qc(1)G(C), and

€(¢) = Px(7)Qc(7)G(¢) (v — E(y)) + Qx(7)Qc(1)G(Q)y = P(¢) (v — E(y)) + Q(Q)y,

where P(¢) = Px(7)Qc(7)G(¢). Then the proof of sup e N% |Ste(¢) — S’TC(C)H 2 0 is equivalent

to the proof of the following results:

v QY —E (5/Qs(0)y) | = opl1) for r = 1,2

(i) supcea w;
(i) supcea p-tr (rG—l’(go)Pg(g)G—l(go)) = o(1), for s =1,2,3,4,

where Qf(¢) = G'©) (S'7) ~8() QO Q) = GOM () (Qu(r) = Qu() QAC),
Pi(() = G(Q) (s<> S'(M)PQ), P3O = G(OM (1) (Qu(r) - Qu(n) P(C), P5(O) =
G ION Qi) D) Q(C), and P5(0) = G'(ON'(0) (Qa(r) — Qu(r)) F(©).

!/ /

Proof of (i). Note that Qf(¢) = oW W™ Q(¢) — G'(OS(O)Q(¢). Since S'(¢) is a diagonal
matrix, it is bounded in both row sum and column sum matrix norms uniformly in ¢ € A. Then by
Lemma QS (¢) is uniformly bounded in both row sum and column sum matrix norms uniformly
in ¢ € A. Similarly Q5(¢) = Q (()MQc(7)Q(¢) — G’ (OM'(¢)Q4(7)Q(¢) is also bounded in both
row sum and column sum matrix norms uniformly in ¢ € A. Then Qf(¢) and Q$(¢) have similar
forms to Q(¢) in the proof of Theorem 3.1(ii). The proof is similar and thus is omitted.

Proof of (ii). Since P{((), P5(¢) and P§(¢) contain P(¢) = Px(7)Qc(7)G((), by Lemma
supcen tr (TG~ (@)PE(OG (o) ) = o(1) for s = 1,2,4. Recall Q(¢) = Qx(r)Qc(r)G(C) and

N(7) = e™X (X/ (T)X(T)) X' (7). Then for P§(¢), we have

1 (PE Y @PSOG (@) = -t (G ON (©) (Qulr) - Qu(r) QO Var(y))

Nitr (X( )X (T)X(T))_IX/eTM/(Qz;(T) - @4(7))QX(7—)QC(T)Q(Q)
1
- ]\%tr ((]\1[1XI(T)X(T))_lX/eTMI(Q4(T) - Q4(T))QX(T)QC(T)Q(OX(T)) ’

where G(¢) = G(()G(¢0)I'G"(¢)G'(¢). By Assumption 7, the elements of( X' (1)X(7 )>_1
are unlformly bounded for large enough N, uniformly in 7 € A. By Lemma [A] and [A2]
X'e™ (Q4(1) — Qu(7))Qx(7)Qc(7)G(¢) is uniformly bounded in both row sum and column sum
matrix norms, uniformly in ¢ € A. These results imply that Niltr (I’G_ll(CO)Pg(()G_l(CO)) con-
verges to 0 as N — oo, uniformly in ¢ € A.
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C.6 Proof of Theorem 4.2

o\ —1
By the mean value theorem, /Ny (@ — wp) = — <N%8gl(lw)> ﬁST(wo), where @ is between &f

and wq elementwise. Thus we need to prove:

(i) =5 (wp) — N (0, limy 00 2 (wp)) ,

. 05t (@ ST (w
) 5 (%5~ 25 = ap(1),

(iff) (8352‘,“0) -E (85;5?0))) = 0,(1).

Proof of (i). Since the elements of ST(wg) are linear quadratic forms in e, we can find an
(k 4+ 2) x 1 vector a = (a},as,a3) such that a'ST(wy) = b'e + € Be, where b = a,X (19) —
a2¢' €™M (S’ (1) — §'(1))Qc(70) — a38,C (70)(Qa(r0) — Qu(10))Qc(ro) and B = —ax(S'(ro) —
S'(10))Qc(10) — as(Q4(m0) — Qu(70))Qc(7o). Since b and B satisfy the conditions for the CLT in
Kelejian and Prucha (2001) by Lemmaand (i), N%a/ST (wp) is asymptotically normal. Then,
the Cramér-Wold device leads to (i).

Proof of (ii). Given the explicit expressions for the elements of the hessian matrix H'(w) in the

5

main paper, we note that S (7) and §4 (1) are diagonal matrices with uniformly bounded elements.
By Lemma we know that NLIHT(wo) = O,(1), which implies NLIHT(E;) = Op(1). Then similar

to the proof of Theorem 3.2(ii), we can prove - (&ZL(’G) _ BS;‘S;JO)> = 0p(1) using Lemma|A.2} (A.3

and and the reduced form of y, given by y = e W (¢ 4 e~ 70M¢),

Proof of (iii). Substituting the reduced form of y into N% (BS;U(:?JO) —E (6S;j°)>>, we know each

element is a linear or quadratic function of €. For example, for Hif(wo),

]\1[1 (HiT(wo) — E(Hf_T(wo))) = —]\171(6’(@@(70)1\/1/@((0)@@(70)6 — (¢ Qc(70)M D(¢o)Qc(70)e))

+ ;1(650%1\4’ Q4(70) + Qur(70) — D(C0))Qe(70)e — E(6,C" (M Q4 (70) + Qur(70) — D(Co))Qc(70)e))

+ ]\1,1(6/(1\/1,@4(70) + Q4r(70) — D(¢0)) Qe (10)e — E(€ (M Q4(10) + Qur(10) — D(C0))Qc(70)e))

= op(1),

by Lemma For the rest of the elements, the proof is similar to that of HJT(wo) and thus are

omitted.

C.7 Proof of Theorem 4.3

From the generic detailed expression of Qf(wy) we know that the ¢ elements, i.e., Qe (w), QL (w)

’

and Q6 (w) are quadratic in &, which are of the form: §'C'(7)Z, (7)TZy(7)C(7)d, for Zo(7), Zp(7) =

S(7) or Q(r). Similar to the homoskedastic case, we can apply the mean value theorem to s
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with respect to the 7' element and get

C8' = Oy + e TMPe(1p)e + 6 TOMPg (rp)e ™M ((eaTW —e®Wyy - X (B - Bo))
v/ af Sty o~
+E(M) (e Wy - XB)(F - ),
where 7 lies between 7' and 7y and £(7) = %h —7 are the same as those in the proof of

Theorem 3.3. Substituting CgT into the quadratic terms, we have

L5 ¢hz ehre,heEhs!
Ny
1 . ! — 1 —
= E%C (To):a(To)F:b(To)C(To)50 + EE ]P)@(T()) (T())FZ{,(To)P(c(TQ)G + Op(l)

/

1 o —_ —_ 1 —_ —
= ~~00C (10)Z4(70)TEp(70)C(70)d0 + ~~tr (TPe(70)Z,(70)TEp(70)Pe(ro) ) + 0p(1).
1 1

Thus the bias matrix Bias:g(m, I') can be written as

0 0 0
Biasg(To,F): 0 BiaSj;aa(To,F) Bias(T;m(ToaD )
0 Biasl _(r,T) Bias}_(r,T)

where

1 —
Bias}, ., (70,T) = A (I‘IP’@(TO)S (70)T'S (70)Pe (10)

1
Nl

. 1
Bias| _(ro,T) = N (PPe(7)Q (r)T

Pc (7 )§ (10)T 5(7‘0)1?’((:(7‘0)>, and

(TO)PC(TO)) :

BiasgaT(To, r) = Biasg,m (10,T) =

©ll /—\ UJH

C.8 Proof of Theorem 4.4

Note €(¢) = Qc(7)e(¢) = Qc(r)e™ (e O‘Wy — X3). Let €; and €; be the jth element of € = €((p)
and € = €(Z ) respectively. Similar to (C.7), by the mean value theorem, €; = &;(© M = € + 1/; @ —
wo) + op (H — w0H>. Then, in vector form,

)

=+ V(@—wo) +o0p (H@T —on) ;

where V = (v1,..., yN)/, with v; being the same as those defined below (C.7). Define H(T) =
ag(TT) = —2II(7) (QC(T) ® Q(C(T)) II(7). Then we can easily see that HH(T)‘ ) and HH(T)HOO are
bounded in a neighborhood of 75. Let IL,(70) and Hjh(To) be the (j,h)th element of II(7y) and

T1(7p). By the mean value theorem, I, (71) = T, (10) + I (7) (71 — 70) = Mjn(70) + I (m0) (7T —
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), where 7 lies between 71 and 7. In matrix form, it becomes

7'0) + Op(H/’I:T — 70

(7" = (7o) + (7o) (7 — 70) + 0, (H?T a TOH) '

Let & = (6%,...,0%) = IFENHE 0@ and(E = () (¢ © &).
0,(1), the elements of TI(ry) and II(7y) are O{TDythe—eterients in the rows of V are O,(1), and
&' — wo = 0,(1/v/N7). Then, by MVT, we have:

Note that the elements of € are

S = 5 + 2M(rp) (g ovEh - w0)> (1) (6 © &) (7T — 70) + 0p (H?T - TOH) . (C.14)

Proof of (i). Let ¢ = (c11,...,cnn) be the N x 1 vector containing the diagonal element of matrix
C. Let X =E(e®e€) = (07,...,0%)". Then

% ()~ r(r0)) = %cl(i _y) = %cl(i _5) ¢ %cl(i’ N (C.15)

So we need to prove that the two terms in (C.15|) are o,(1). For the first term, by (C.14]),

%C’@ sy 2y (H(To)(éca V@ - wo))) +

2 i) E© ) — )+, (|7 )

N
N N

N N
2 A 1
=5 Y cij <§ Hjh(To)thj> (@' —wo) + N > cij <
j=1 h=1 j=1 h

o=l =00

N
jn(r0) Y quLkO'I%> (7 —70)
1 k=1

where gy, is defined as the (h,k)th element of Qc(7g). Here, the last equality holds since c;;
are uniformly bounded, IT;j,(m9) and ILj (7o) are O(1), &, are Op(1) and o —wy = 0,(1) for
j,h=1,...,N. For the second term of (C.15]), we have

by

I(10)(€ ® &) = I(70) ((Qc(70)e) © (Qc(T0)e))
I(70) ((Qc(m0) © Qc(70)) (€ © €) +9) = € © € + 11(70) ¢, (C.16)

where 1) is an N x 1 vector with jth element 1; = Zszl exhjk, where hji, = 2q;y, Zf:ll g€, k> 2

and hj; = 0. In the third equality of (C.16) we break (Qc(70)e) ©® (Qc(m0)e) = (N qjker)?
into the sum of (Qc(79) ® Qc(70))(e ® €) = Zszl quke% and cross-multiplications 1. Since 1); is

(€1,...,€en) measurable, {e;h;;} form an M.D. sequence. Thus
-2 = o= ) + LT = op(1) (€17)
ve = yc(eoe ¢ Hm)d = op(1), .

where the first term is 0,(1) by Lemma [A.3(iv) and the second term is 0p(1) by Theorem 19.7 for
WLLN in Davidson (1994)).
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Proof of (ii). Note that tr(TATB) = ¥’ (A® B')X. Then

- 1 /
N )
= S’(A@B’)i—z’(@ (C.18)

For the first term in (C.18), note N[ (A ®B)E - ¥ (A6 B)Y] = Gy + Go + Gs, where Gy =
LE-2AeB)E-%),G=+E -2 (A0 B)E and G3 = +3(A® B')(E — %). By the
assumption of this theorem, A and B are uniformly bounded, thus A® B is also uniformly bounded.
Since € = 0,(1), V = 0,(1) and &' — wo = 0,(1/v/N1), by (C-14), G, = 0,(1) for r = 1,2,3. The
proof is similar to that of %c’(i — %) = 0,(1) in the proof of (i) and thus is omitted. Therefore,
the first term is op(1).

For the second term in (C.18)), we have N[ "(AoB)E-¥ (A®B)Y ] = G4+ G5+ G§, where
Gi= 42— 2)’(A@B’)(2 - 2), Gs;=24(E-%)(A0B)S and Gs = +X(A@ B')(X - ¥). For

G5) by ' , We have

G =y (c0e~2) (A0 B)S + o )40 B)S = 0,(1),

by Lemma [A.3(iv) and Theorem 19.7 for WLLN in Davidson (1994). Similarly, G = 0,(1).
For G4, again by ((C.16]) we can write it as

Gy = %lﬁlH(To)(A@ B)eoe2)+ (coc—5) (A0 B)(m)y

N
1 ’ i 1 I !
+ N(E Oe—X)(AOB)(e®e—X)+ Nlﬁ II(m9)(A ® B )II(m)v
= Guq + Gap + Gye + Gyq. (C.19)

Consider Gy,. For simplicity, let us denote S = II(A ® B') with elements {s;),}. Then,

G4a— ! Zzsjkd}] _Uk

]1k

1 N N N N
=< SN sikauaimler — op)eiem

mt
1 N N k-1 k-1 N N [I-1 [1-1
=N PCEXADD $jkQj1qjmEL€m] + Z a@y, $ik4jidjmem (€, — 03]
k=1 j=1 1=1 m=1 =1 j=1k=1m=1
m£l m£l
9 N N m-—1 9 N N N
tw D lem YD sintietim(€d — B(el))] + N D lem D siwindim(B(ed) — b)),
m=1  j=1 k=1 m=l j=1 k=1
m

(C.20)
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which is the average of M.D. sequence. By Theorem 19.7 in Davidson (1994), is op(1).
Similarly, Gyp is also 0p(1).

For Gy, recall ¥ = E(e ® €). Then E(Gy.) = §tr((A® B')Var(e ® €)) = 0 because Var(e @ ¢)
is a diagonal matrix and A ® B’ has zero diagonals. By Lemma (iv), Gie = +(e@e— 2 (A®
BY(e®e—3) =o0,(1).

For the last term in , note each element of v is a sum of M.D. sequence as shown in the
proof of (). Also note that Qc(7o) is a symmetric matrix, which implies ¢;; = ¢;; fori,j =1,..., N.

Utilizing these facts, we can derive the following equation:

E(¥y") = 2(Qc(70)I'Qc(10)) ® (Qc(10)IQc(10)) — 2(Qc(10) © Qc(70))I*(Qc(70) © Qe (7))
Thus,
E (zp’n(To)(A ® B’)H(mw) — 2tr ((A ® B’)H(TO)A(F)H(TO)) —2tr (A B)I?)
= 2tr ((A ® B’)H(TO)A(F)H(TO)) , (C.21)

where A(T') = (Qc(70)I'Qc(70)) ®(Qc (70)TQc(79)), and the second term equals zero because A® B’
has zero diagonals and I'? is a diagonal matrix.

Now let Z = II(79)(A ® B')II(7) with elements {z;;}. It can be easily shown that {z;;} are
uniformly bounded. Let |zp,| < Z < co. Then

Var(¢) TI(7o) (A © B (7

N N N N N N N N
=8 Z Z Z Z Zj : z : z :ijzlmthijthlekaQkTQmSerE(GZEZ6262)

r=1

;és

g

7=1 k=1 l=1 m=1 h=1p=1 s=1
p#h
N N N N N N N
87°z¢ ) (D IsikD (D \qu(Z ) Q_ lanD) Qi) lams) (Y lamr])
m=1 j=1 j=1 j=1 j=1 j=1 j=1 j=1
= O(N),

since E(ejezerer) is equal to E(eje2)E(ezez) or E(ee2)E(ere2) due to the fact that h # p and s # 7,

and one of them is less than a finite constant ¢. Then, by Chebyshev’s inequality,

P (1§ [T © B - BT (4 © B > M)

< #WVEM‘ (¢ (o) (A © B (m)) = o

It follows that ¢'TI(r0)(A © B )(ro)e) — LE (qp’n(fo)(A@ B/)H(To)d)) = 0,(1). Thus G4 =

19



Ztr ((A ® BI)H(T())A(F)H<T0)> + 0,(1). Combining the results for G; to Gg, we have

6
%tr(fAfB) - %tr(FAFB) -y G, = %tr ((A® B)TI(r)A(T)II(70)) + 0p(1),

r=1

which completes the proof.

D Proof of Corollary 4.1

The proof for the consistency of @T(@T) can be proved similar to part (i7) and (éi7) in the proof of

Theorem 4.2 and thus is omitted. For the consistency of Q , note the following:

(1) The bias incurred by differences involving only w, e.g., Qf (@', 8,T) — Qf(wp,d,I') and

Biasp (T f ,I') — Biasp(7p, I') disappears asymptotically since &' is consistent;
(2) The asymptotic bias incurred by QT(@T,ST, r)— (AZ (AT 00, ") is captured by Bias}(?T, r);

(3) The asymptotic bias incurred by @T(@T,ET, r)— Qo @',6,T) is captured by —tr[(_a(m) ©)
Zp(70)%)IL(70) A(T)II(79)] for a,b = o, 7 and Z4(70), Zs(70) = S(70), Q(Tg),

(4) What is left is to prove that the asymptotic bias incurred by Biasz;(?Jr T — Blasé( 71.1) is
captured by —Nlltr[(IP’(c(To)E;(To) ©® Ep(710)Pc (70)) L (m0)A(T)II(79p)].

Note BiaSjS(To,F) has non-zero entries N%tr[FP@(TO)E;(TO)FE;,(TO)IPC(TO)], for a,b = «a,7 and
Za(10), Z6(70) = S(70), é(T{)). Then we have

P (P, (F)EE,(PBCEE — Pe(m), ()l Sy () Pe (o)1)

= ]\1,1t1“[1P’<c(To) o (10)TZ(10)Pe(10)T — Pe(70) =, (10)T = (10)Pe (10)T] + 0p(1)

= - tr[(Pc(70)E, (10) © Ep(70)Pe(70)) L (10) A(T)TL(70)] + 0(1),

where the first equality follows from the mean value theorem and the second equality follows
from Theorem 4.4. Then, together with the previous results, we have i (@ )QT\I/T 1( -
W1 (wp) QT (wo) T (wp) — 0.

E Details of the Empirical Application

Table includes the list of countries, and Table provides the list of industries. The FDI
data are obtained from the Bureau of Economic Analysis. The GDP is measured in 2015 constant
dollars, and the gross fixed capital formation (investment) are taken from the World Bank’s World
Development Indicators. Following Leamer (1984)) and Baltagi et al. (2007)), we estimate a country’s

capital stock using the perpetual inventory method. First, we choose a far enough year (1991) from
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the initial year in the dataset (2008) and estimate Kjgg3 = 2 Ztli%%m I;, where I; is the investment

in year t. Then, we apply a depreciation rate of § = 7% to compute the capital stock at year ¢ by
K; = (1—-06)K;—1 + I;. We obtain the educational attainment and labor data from Barro and Lee
(2013)). Since their datasets are at the 5-year frequency, we use the linear interpolation method
to fill the missing data in the rest of the years. The skilled and unskilled labor endowments are
then respectively computed as the labor times the percentage and one minus the percentage of
population with at least tertiary education. Finally, the investment profile index is extracted from
the International Country Risk Guide. Table provides the descriptive statistics for our sample.
The estimation results are given in Table 5 in the main text. The pseudo-R? measure reported in
the table is computed by R? =1 —<e ((y -9 (y— y)), where € = e™ (eawy — XB — C’ZS\) and

7 is the sample mean of y.

Table E.1: List of Countries

Argentina Australia Austria Brazil Canada Chile

China Colombia Costa Rica Czech Republic Denmark Dominican Republic
Ecuador Egypt Finland France Germany Greece

Honduras Hong Kong Hungary India Indonesia Ireland

Israel Italy Japan Malaysia Mexico Netherlands

New Zealand Nigeria Norway Panama Peru Philippines

Poland Portugal Russia Singapore South Africa Spain

Sweden Switzerland Thailand Turkey United Kingdom

Table E.2: List of Industries

Food Chemicals Primary and fabricated metals
Machinery Computers and electronics Electrical equipments
Transportation equipment Other manufacturing Wholesale trade

Finance and insurance

Table E.3: Descriptive statistics of our sample data

Variable Mean Std.Dev. Min Max
LFDI (Log of outward FDI) 6.12 224  0.00 12.03
G (Bilateral country size) 30.51 0.09 30.40  30.96
S (Similarity) —2.88 1.08 —6.16 —0.76
k (Relative capital stock) 3.42 1.32 0.40 6.96
h*® (Relative skilled labor endowment) 2.80 1.35 —0.09 7.05
h* (Relative unskilled labor endowment) 2.30 149 —-1.78 4.69
v 104.19 40.06 12.24 211.67
) 10.02 10.36 =597  35.30
R (Risk) 9.55 1.97 3.04  12.00
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F Details of the Identification Conditions

Assumptions 6 and 9 in the main text state the identification conditions for {y under the ho-
moskedastic and heteroskedastic cases, respectively. However, they are high level assumptions.
In this section we derive some low level conditions that are sufficient for the identification of (p.
We will present the derivation for the homoskedastic case only. For the heteroskedastic case, the
derivation follows along the same lines.

Because the M-estimation approach is equivalent to the method of moments approach under
the exact identification case, the identification of (y requires that for { # (p it must be the case

that S*({) # 0. Before we proceed with the derivation, let us restate some existing results. From

equation ((C.1)), we have

720 = 3-0'e WV @ (OQe(nQx()A(NG (e s
o2 , -1,
+ T (06 (€ @e@)  €'0).
Also recall that y = e "W (¢ 4+ e 70M¢), ¢ = X By + Cdp, y = E(y) + G ({p)e, equation (3.13)

€(¢) =Px(7)Qc(m)G(¢) (¥ — E(y)) + Qx(1)Qc(1)G({)y
= Px(7)Qc(7)G(¢)G " (Co)e + Qx(T)Qc(T)G(()y

and equation (3.14)

a: —E*%(OE y/e"‘w/W,eTM/E(C)> + tr (Qc(r)e™We ™) |

Svc* —
© T —%E E/(C)ME(C)) +tr (Qc(m)M).

Consider the expectation term in the o component of S“(¢). Substituting the definition of &(()
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and then the definition of y, we obtain

B (4 oo™ W'e™ (P (1) Qe (1) G(O) G (Go)e + Qx(1)Qe(1)G(O)) )
=B (e We™ Py (N Qc(r)G(OG (Go)e) + E (e W'e™ Qx(r)Qc(r)G(()y)
=B ((p+e ™Mo e W oW W'e™ Py (1)Qc (1) GO G (Go)e
+E ((¢+e Mo e 00W W W™ @y (1) Qc (1) G((e W (6 + eTMe))
=E (e'e_TOM/e_O‘OWleaW/W'eTM/IP’x(T)Qc(T)G(C)G_l(Co)E)
+ gb,e_aowleaw/Wle"'MlQX(T)Qc(T)G(C)e_aowqﬁ

+E (e/e_TOM/e_aowleaW/W/eTM/QX(T)QC (T)G(C)e_aowe_TOMe>

!

=g¢e
+E (oM om0 W eaW W o™ Qe (1) G ()G (Go)e
=de
+otr (e TM e e0W @ W eTM o= TM W6 (1) G(() G (o))
= ¢'e V' Q' ()8 (N Qx(r)Qe(r)G (e WV
+odtr (G ()G (O (NQe(NGOG ™ ()
= ¢'e" W G(OS (NQx(r)Qe(r) G (e >V

+ ok (8n0e(ne() (€ @ew)  6'©)

aowleanWleTMl@X (T)Q(C (T)G(C)e_aow¢

agW eaW e‘rM ef‘rM W’e‘rM QX(T)Q(C(T)G(C)eiaOW(z)

where S(7) = e™We™™ and G(() = e™Me*W. Notice that the second term in the o compo-
nent can be written as tr (Qc(7)e™We ™) = tr (Q¢(7)S(7)) = tr (S/(T)@((:(T)). Multiplying

the first term with —E*%

@) and adding the second term, the o component becomes

— U*;(OE (y/eo‘W,W/eTMIE(C)) + tr (@C(T)eTMWe*"'M)
1

= g (607 G OS (MM G(e o)

- a;;(og)“ <s’<f>@c<T>G<<> (¢@e@) G’(Q) +tr (S'()Qe(r))
=~ (60 G (08 ()Qx(n)Ce )G Vo)
2

wur (8 00e(r) (1 - 2560 (€ @e@)  60)).
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Hence, the identification of (g follows, if for ¢ # (o, we have

- g (Fe Y G (O (NRKIReNG e o) (F.1)

Oc

+or (8 0e(r) (v - 22600 (¢ we@)  €0)) #o

Notice that when ¢ = (o (which implies 7:2({y) = %)), we have Qx(70)Qc(70)G({p)e V¢ = 0
’ -1 ’
and Iy - 785G (G0) (G ()G(G)  G'(¢o) = 0.

Next, consider the expectation term in the 7 component of S°*(¢). Substituting the definition
of €(¢) and then the definition of y, we obtain

E (¢ (OME(Q) = B ((Px(1)Qc(MG(OG ™ (Go)e + Qx(Qe(r)G(C)y) M
% (Px(7)Qc (1) G ()G (Go)e + Qu(7)Qe ()G ()y))
= B (¢'GY(6)G (OQe(r)Px(r)MPx(7)Qc (TGO G (Go)e)
+E (€ GV (G)G (Qc()Px(r)MQx (1) Qe (1) G(C)y)
+E (4 G'(OQc(1)Qx (1)MPx(1)Qc (1) GO G (Go)e
+E (4 G'(O)Qc(r)Qx(1)MQx(7)Qc (1) G()y)
— ot (Qe(r)Pulr)MPx(r)Qe ()G <>( @ew) ¢©)
G’(C))
+ ofir (Qe(r)Qx(nMENE()E() (€ @) €'0)
+¢'e W G (OQc(r)Qx (IMQx (1) Qe (1) G e W g
— o (Qe(M2e(nG(O) (€ @WE (@) €'0)
+¢'e W G ((Qc(r)Qx (NMQx (1) Qe (1) G((e > Wo,

-1

202 (QC(T)PX(T)MQX(T)@CG(O (6'G()

Multiplying the first term with _5*2#(() and adding the second term, and noting that tr (Qc(7)M) =
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tr (Qc(7)MQc (7)), the 7 component can be written as

1 s _
~ g P (FOMEQ) + o (@e(rM)
=~ (¢ G (ORI MTAI ()G 0)
o? / -1
- 20 (QelMQe(G(O) (6'GIG@)  G(6)) + tr(@e(rMc(r)
= g (607 G (00 CrMEA(T) Qe GO
0'2 ’ - ’
+1n (QetrMee(r) (1y - 258560 (G @) 610))-
Hence, the identification of {j follows, if for ¢ # (o,
- g (™Y @ 00 ()MEL() Qe ()G (e Y o) (F2)

2 -1

+1n (QetrMOe(r) (1y - 252560 (S G(@)  6©)) o

Note again that when ¢ = (p (which implies 7:2({y) = 02,), we have Qx(70)Qc(70)G({p)e " *W ¢ =

0-2 / -1 ’
0 and Iy - -505G(G) (G (G)G(&))  G'(¢) =o.
In light of these results, the identification of of (; follows if either (F.1)) or (F.2) holds for ¢ # (p.
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G Pseudo Estimation Algorithms

Algorithm 1. M-estimation in the homoskedastic case

Require: y, X, W, M, C, n, T

N « length(y)
Ensure: Cis N x (n+T —1)

C SOLVE(S“*(¢) = 0), where S*(() is given in equation (3.10) below:
a: —A*Q( )y ‘oW W o™ €(¢) + tr (Qc(r)e™We ™) |

T e (OMEQ) + tr (Qc(r)M).
Calculate: 3* = B*(C*) using ¢* and equation (3.8) below:
A~ , ’ —1 , /
B = (X ™MQe(me™X)  X'e™ Qe(r)e™e Wy,
Calculate: 7 = 8:((*) using ¢* and equation (3.9) below:
522(0) = (R /M,

~%

where €(¢) = €(8 (), ¢)-
Calculate: U*(6*), where 0% = (3*,572, ¢ ).

9 6 9

S57(¢) =

Calculate: p and K using equations (3.21) and (3.24) below:

N /\3
D= Z] 16
_AS N A37
. Z] 12
,\4 A4 ~2 ~2
//%:Zj 1 j : Z] IZh IZZ IQthjl

R 6:123‘:1 thl dn
Calculate: Q" = Q*(6*) — Bias*(7") using equation (3.19) and Theorem 3.3.
Calculate: \Il**l((/?\*)ﬁ*\li*/*l(g*).

Algorithm 2. M-estimation in the heteroskedastic case

Require: y, X, W, M, C, n, T
N « length(y)
Ensure: Cis N x (n+T —1)
Ct SOLVE(S<T(¢) = 0), where S°7(() is given in equation (4.9) below:
D CE 0 (8 -8'm)a0.
ri = (e*Wy— XB'(Q)) e™ (Qu(r) = Qu(r)) E(0):

Calculate: BT = BT(ET) using ZT and equation (4.8) below:

310 = (X'e™ Qe(r)e™x) X' e™ Qe(r)e™e Wy,

Calculate: U1(@1), where &f = (B, ¢T)".
Calculate: O = QT(@T,ST,F) Blasé( 71T — Bias}(?T, T') using equation (4.14), Theorem 4.3 and 4.4.
Calculate: UI=1@HQTwI—1(&H).
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H Additional Simulation Results

In this section, we provide the simulation results for two additional specifications for the variance

. ; . .. X1,it|+|X2,it|
terms: (1 O'2 = ]. — /‘&2 + K 1xt Wlth K1 = 08 and R9 = 15 and 11 0'-2 = ‘ L > . The
( ) it 1 2nT> 1 2 ’ ( ) it L (X X2, )

results based on these cases are similar to our main results based on Uft = exp(0.1 4+ 0.35X2 ).
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Table H.1: Heteroskedastic case with 7;; ~ N(0,1) and 02 =1 — k} 4+ ko2t

W=Rook, M=Queen

W=Queen, M:Rook

QMLE ME RME QMLE ME RME
n=>50,T=3
Bio=—1 —1.0009(.089) —0.9998(.089)[.086] —0.9998(.089)[.084] —0.9992(.073) —1.0005(.073)[.075] —1.0007(.073)[.070]
Bao = 2 1.9966(.085) 1.9954(.085)[.079] 1.9955(.085)[.078] 1.9985(.067) 1.9981(.067)[.067] 1.9982(.067)[.065]
ap=—2 —1.9949(.051) —2.0001(.051)[.052] —2.0002(.051)[.049] —1.9926(.065) —1.9988(.065)[.067] —1.9992(.066)[.065]
70=—1 —09745(.185) —1.0123(.181)[.184] —1.0108(. 181)[ 182] —1.0432(.167) —1.0211(.152)[.160] —1.0228(.152)[.156]
od=1 0.5240(.089) 0.8240(.140)[.130] 0.5103(.084) 0.8088(.133)[.129] —
n=>50,T=7
Bio=—1 —0.9976(.050) —0.9981(.050)[.048] —0.9981(.050)[.048] —0.9997(.043) —0.9998(.043)[.041] —0.9998(.043)[.041]
Bao =2 1.9993(.046) 1.9996(.046)[.045] 1.9996(.046)[.045] 1.9985(.040) 1.9994(.040)[.040] 1.9995(.040)[.041]
ap=—2 —1.9937(.032) —1.9998(.032)[.033] —2.0000(.032)[.033] —1.9953(.037) —2.0020(.037)[.036] —2.0024(.037)[.037]
=-1 —0.9534(.111) —0.9985(.109)[.103] 70.9989( 109)[.106] —0.9947(.084) —1.0096(.081)[.081] —1.0108(.081)[.082]
od=1 0.6522(.059) 0.7877(.072)[.076] 0.6488(.058) 0.7811(.069)[.074] -
n=100, T =3
Bio=—1 —1.0037(.066) —1.0045(.066)[.064] —1.0045(.066)[.065] —1.0001(.055) —1.0001(.055)[.056] —1.0001(.055)[.056]
Bao = 2 1.9991(.059) 1.9986(.059)[.059] 1.9986(.059)[.058] 2.0013(.050) 2.0006(.050)[.050] 2.0005(.050)[.049]
ap=—2 —1.9963(.040) —1.9991(.040)[.041] —1.9991(.040)[.041] —1.9925(.052) —1.9968(.052)[.049] —1.9979(.052)[.049]
7=-1 —1.0016(.134) —0.9973(.130)[.130] 71.0005( 130)[.132] —1.0289(.104) —1.0095(.099)[.101] —1.0102(.099)[.100]
J% =1 0.5427(.063) 0.8572(.100)[.100] 0.5378(.061) 0.8362(.096)[.095] -
n=100,7=7
Bio=—1 —1.0003(.033) —1.0005(.033)[.033] —1.0005(.033)[.033] —0.9997(.029) —0.9997(.029)[.029] —0.9998(.029)[.029]
B2 =2 1.9985(.033) 1.9985(.033)[.033] 1.9985(.033)[.032] 2.0015(.031) 2.0010(.031)[.030] 2.0009(.031)[.030]
ap=—-2 —1.9967(.022) —1.9995(.022)[.022] —1.9996(.022)[.022] —1.9941(.027) —1.9978(.027)[.026] —1.9985(.027)[.026]
p=-1 —0.9811(.074) —1.0012(.074)[.070] —1.0015(. 074)[ 071] —1.0111(.061) —1.0059(.058)[.057] —1.0055(.058)[.058]
od=1 0.6603(.043) 0.7850(.051)[.053] 0.6578(.043) 0.7872(.052)[.054] -
n=>50,T=3
Bio=—-1 —1.0029(.087) —1.0026(.086)[.082] —1.0029(.087)[.081] —0.9967(.087) —0.9964(.086)[.081] —0.9962(.086)[.084]
B =2 2.0024(.089) 2.0008(.087)[.084] 2.0010(.087)[.082] 1.9965(.079) 1.9980(.078)[.080] 1.9979(.078)[.075]
ap=—2 —1.9927(.063) —1.9985(.062)[.059] —1.9988(.064)[.060] —1.9911(.068) —1.9959(.068)[.069] —1.9965(.068)[.069]
0= 1.2345(.262)  1.0777(.223)[.222] 1.0759( 228)[.223]  1.1182(.163)  1.0245(.151)[.156]  1.0296(.157)[.158]
o2=1 0.5273(.087) 0.8341(.138)[.133] 0.5125(.086) 0.8156(.137)[.132]
n=>50,T="7
Bio=—1 —0.9977(.045) —0.9977(.045)[.044] —0.9978(.045)[.045] —1.0015(.040) —1.0009(.040)[.042] —1.0009(.040)[.041]
B =2 2.0005(.041) 1.9994(.041)[.040] 1.9994(.041)[.039] 2.0018(.039) 2.0010(.039)[.040] 2.0009(.039)[.040]
g 2 —1.9962(.030) —2.0014(.030)[.032] —2.0018(.030)[.031] —1.9913(.037) —1.9972(.037)[.035] —1.9978(.038)[.036]
=1 1.1170(.126) 1.0232(.118)[.112] 1.0190(. 117)[ 113] 1.0599(.087) 1.0093(.085)[.081] 1.0094(.085)[.082]
o2 =1 0.6481(.061) 0.7842(.073)[.075] 0.6509(.061) 0.7847(.073)[.075] -
n=100, T =3
Bio=—1 —0.9991(.057) —0.9985(.057)[.057] —0.9987(.057)[.056] —0.9997(.059) —0.9994(.059)[.057] —0.9994(.059)[.055]
Bao = 2 1.9972(.061) 1.9977(.061)[.059] 1.9978(.060)[.057] 1.9977(.053) 1.9985(.053)[.053] 1.9985(.053)[.053]
ap=—2 —1.9976(.039) —1.9998(.039)[.038] —1.9996(.039)[.039] —1.9894(.051) —1.9942(.051)[.051] —1.9943(.051)[.052]
=1 L1701(.176)  1.0246(.145)[.149]  1.0273(. 147)[.152] 1.0694(.102)  1.0134(.096)[.100]  1.0135(.096)[.100]
o2=1 0.5332(.060) 0.8468(.094)[.099] 0.5442(.059) 0.8474(.092)[.097] —
n=100,7T =7
Bio=—-1 —0.9980(.031) —0.9981(.031)[.031] —0.9981(.031)[.031] —0.9992(.029) —0.9995(.029)[.029] —0.9995(.029)[.029]
B2 =2 1.9990(.030) 1.9993(.030)[.030] 1.9993(.030)[.030] 2.0002(.032) 1.9998(.032)[.030] 1.9998(.032)[.030]
ap=—2 —1.9974(.022) —2.0000(.022)[.021] —1.9999(.022)[.022] —1.9954(.028) —1.9992(.028)[.027] —1.9995(.028)[.027]
=1 1.0583(.075) 1.0128(.072)[.073] 1.0119(.073)[.074] 1.0438(.060) 1.0034(.058)[.057] 1.0038(. 058)[ 059]
od=1 0.6594(.043) 0.7843(.052)[.053] - 0.6614(.044) 0.7922(.053)[.054]

Notes: We report the empirical mean (standard deviation) [average asymptotic standard error].
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Table H.2: Heteroskedastic case with 7 ~ N(0,1)

2
and o7 = =
it = o (X ae [+ X246 ])

[ X1,5t |+ X2, it

W=Rook, M=Queen

W=Queen, M=Rook

QMLE ME RME QMLE ME RME
n=250,T=3
Bio=—1 —1.0078(.091) —1.0064(.091)[.093] —1.0064(.091)[.089] —0.9954(.081) —0.9966(.081)[.081] —0.9969(.081)[.078]
Bao = 1.9964(.097) 1.9952(.097)[.084] 1.9954(.097)[.092] 1.9982(.085) 1.9977(.085)[.073] 1.9980(.085)[.078]
ap=—2 —1.9937(.055) —1.9994(.055)[.055] —1.9989(.055)[.055] —1.9880(.071) —1.9949(.071)[.072] —1.9947(.072)[.070]
T0=—1 —0.9640(.184) —1.0017(.181)[.182] —1.0041(. 181)[ 180] —1.0473(.167) —1.0252(.153)[.158] —1.0306(.153)[.152]
o2 =1 0.5986(.097) 0.9412(.153)[.150] 0.5974(.098) 0.9469(.155)[.150] -
n=>50,T=7
Bio=—1 —1.0008(.055) —1.0014(.055)[.054] —1.0014(.055)]. 054} —0.9983(.048) —0.9984(.048)[.047] —0.9984(.048)[.047]
Bao = 2 2.0031(.056) 2.0034(.056)[.050] 2.0034(.056)[.055] 1.9965(.048) 1.9977(.048)[.045] 1.9977(.048)[.048]
ag = — —1.9941(.036) —2.0013(.036)[.036] —2.0015(.036)[.035] —1.9893(.039) —1.9972(.039)[.039] —1.9971(.040)[.039]
0= — —0.9587(.105) —1.0040(.104)[.103] —1.0040(. 104)[ 103]  —0.9959(.078) —1.0106(.076)[.079] —1.0102(.076)[.079]
0(2) =1 0.8109(.075) 0.9793(.090)[.094] 0.8227(.077) 0.9906(.093)[.093] -
=100,7 =3
Bio=—-1 —0.9951(.067) —0.9960(.067)[.068] —0.9961(.067)[.066] —1.0015(.063) —1.0015(.063)[.061] —1.0016(.063)[.060]
B =2 2.0011(.070) 2.0006(.070)[.062] 2.0005(.070)[.067] 2.0030(.054) 2.0023(.054)[.054] 2.0023(.054)[.054]
ag=—2 —1.9956(.043) —1.9988(.043)[.043] —1.9989(.043)[.042] —1.9948(.054) —1.9995(.054)[.052] —1.9998(.054)[.052]
=-1 —1.0050(.136) —1.0007(.132)[.130] —1.0017(. 133)[ 130] —1.0293(.109) —1.0101(.103)[.100] —1.0129( 104)[.099]
o3 =1 0.6166(.072) 0.9740(.114)[.113] 0.6326(.071) 0.9835(.111)[.108]
n=100,T=7
B0 =—-1 —1.0019(.037) —1.0020(.037)[.037] —1.0020(.037)[.037] —1.0003(.032) —1.0003(.032)[.033] —1.0003(.032)[.033]
B0 = 2 2.0005(.042) 2.0006(.042)[.037] 2.0006(.042)[.042] 2.0008(.037) 2.0003(.037)[.034] 2.0003(.037)[.037]
ap=—2 —1.9979(.023) —2.0012(.023)[.024] —2.0012(.023)[.023] —1.9951(.028) —1.9994(.028)[.029] —1.9995(.028)[.028]
7 =-1 —0.9805(.072) —1.0006(.072)[.070] —1.0006(.072)[.070] —1.0103(.055) —1.0051(.053)[.057] —1.0041(.053)[.057]
o2=1 0.8326(.055) 0.9898(.065)[.066] = 0.8305(.054) 0.9939(.065)[.068] .
n=2>50,T=3
Bio=—1 —0.9966(.089) —0.9971(.088)[.087] —0.9976(.088)[.086] —1.0068(.088) —1.0067(.087)[.087] —1.0066(.087)[.086]
Bao = 2 2.0055(.097) 2.0036(.097)[.089] 2.0038(.097)[.091] 1.9987(.096) 2.0002(.096)[.086] 2.0007(.096)[.091]
ap=—2 —1.9920(.061) —1.9983(.060)[.063] —1.9991(.061)[.062] —1.9900(.071) —1.9957(.071)[.072] —1.9975(.072)[.071]
=1 1.2271(.257) 1.0662(.217)[.228] 1.0678( 226)[.226] 1.1259(.169) 1.0305(.154)[.157] 1.0311(.158)[.155]
od=1 0.5954(.092) 0.9421(.146)[.147) 0.5947(.095) 0.9465(.151)[.146]
n=50,T=7
Bio=—1 —0.9987(.051) —0.9987(.051)[.050] —0.9986(.051)[.050] —1.0007(.048) —1.0000(.048)[.047] —1.0000(.048)[.046]
B =2 2.0017(.049) 2.0005(.049)[.045] 2.0006(.049)[.048] 2.0013(.051) 2.0002(.051)[.045] 2.0002(.051)[.048]
ap=—2 —1.9944(.034) —2.0003(.034)[.034] —1.9998(.034)[.035] —1.9912(.038) —1.9982(.038)[.038] —1.9983(.038)[.038]
=1 1.1104(.116) 1.0178(.110)[.112] 1.0171(.109)[.111] 1.0630(.081) 1.0127(.079)[.080] 1.0125(.079)[.080]
o2=1 0.8084(.076) 0.9783(.092)[.093] — 0.8122(.076) 0.9792(.091)[.092] —
n=100,T =3
B0 =—-1 —1.0028(.061) —1.0019(.060)[.061] —1.0021(.060)[.060] —1.0014(.062) —1.0012(.062)[.060] —1.0011(.062)[.060]
Bao = 2 1.9973(.073) 1.9984(.073)[.063] 1.9984(.073)[.068] 1.9995(.061) 2.0001(.061)[.057] 2.0001(.061)[.059]
ap=—2 —1.9961(.041) —1.9987(.041)[.040] —1.9987(.041)[.040] —1.9933(.054) —1.9984(.054)[.054] —1.9986(.054)[.054]
=1 1.1842(.185) 1.0329(.151)[.153] 1.0340( 153)[.154] 1.0781(.106) 1.0205(.100)[.103] 1.0176(.100)[.101]
U(Q) =1 0.6109(.072) 0.9705(.114)[.111] 0.6193(.069) 0.9644(.107)[.108] -
=100,T =7
Bio=-1 —0.9993(. 36) —0.9995(.035)[.035]  —0.9995(.035)[.035] —1.0001(.030) —1.0005(.030)[.032] —1.0005(.030)[.031]
Bao = 2 1.9982(.038) 1.9986(.038)[.034] 1.9986(.038)[.037] 1.9990(.037) 1.9986(.037)[.034] 1.9987(.037)[.037]
ag=—2 —1.9955(.023) —1.9987(.023)[.023] —1.9987(.023)[.023] —1.9958(.029) —2.0001(.029)[.029] —1.9997(.029)[.029]
=1 1.0540(.074) 1.0089(.071)[.072] 1.0090(. 072)[ 072] 1.0453(.059) 1.0046(.057)[.058] 1.0048(.057)[.057]
o3 =1 0.8362(.053) 0.9947(.063)[.066] 0.8258(.057) 0.9892(.069)[.068] -

Notes: We report the empirical mean (standard deviation) [average asymptotic standard error].
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