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Abstract

In this paper, we focus on a model specification problem in spatial econometric models when an
empiricist needs to choose from a pool of candidates for the spatial weights matrix. We propose
a model selection (MS) procedure for the matrix exponential spatial specification (MESS), when
the true spatial weights matrix may not be in the set of candidate spatial weights matrices. We
show that the selection estimator is asymptotically optimal in the sense that asymptotically it is
as efficient as the infeasible estimator that uses the best candidate spatial weights matrix. The
proposed selection procedure is also consistent in the sense that when the data generating process
involves spatial effects, it chooses the true spatial weights matrix with probability approaching
one in large samples. We also propose a model averaging (MA) estimator that compromises
across a set of candidate models. We show that it is asymptotically optimal. We further flesh
out how to extend the proposed selection and averaging schemes to higher order specifications
and to the MESS with heteroskedasticity. Our Monte Carlo simulation results indicate that the
MS and MA estimators perform well in finite samples. We also illustrate the usefulness of the
proposed MS and MA schemes in a spatially augmented economic growth model.
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1 Introduction

Spatial econometric models have been widely used (i) to model spillover effects in economic growth,

international trade and foreign direct investment (Baltagi et al., 2007, 2008, 2016, 2017; Behrens

et al., 2012; Desmet and Rossi-Hansberg, 2009; Ertur and Koch, 2007, 2011; König et al., 2019; Lee

and Yu, 2012), (ii) to model peer effects, social interactions and production networks (Acemoglu

et al., 2012; Bramoullé et al., 2009; Calvo-Armengol et al., 2009; Hsieh and Lee, 2016; Lee et al.,

2020; Lin, 2010; Patacchini and Zenou, 2016; Pesaran and Yang, 2020), and (iii) to model spatial

externalities (Bailey et al., 2016; Case, 1991; Kelejian and Piras, 2014; Kelejian et al., 2013). One

main problem an empiricist faces in spatial econometric models is how to specify the spatial weights

matrix (or the connectivity matrix) from a pool of candidates. Often it is the case that the spatial

weights matrix is specified in an ad-hoc manner, and an extensive sensitivity analysis is carried out

to justify the choice (Corrado and Fingleton, 2012).

In this paper, we focus on a model specification problem in terms of choosing a spatial weights

matrix from a pool of candidates for the matrix exponential spatial specification (MESS). We

propose a model selection (MS) procedure and show that the selection estimator is asymptotically

optimal in the sense that it is as efficient as the infeasible estimator that uses the best candidate

spatial weights matrix. Also, the proposed selection procedure chooses the true spatial weights

matrix with probability approaching one in large samples when the data generating process involves

spatial effects. We also propose a model averaging (MA) estimator that compromises across a set

of candidate models and show that it also retains the asymptotic optimality.

The spatial econometric literature on model specification has mainly focused on testing the

existence of spatial effects (Anselin, 1988; Anselin et al., 1996; Baltagi and Li, 2001; Baltagi and

Liu, 2016; Baltagi and Yang, 2013; Born and Breitung, 2011; Doğan et al., 2018; Kelejian and

Prucha, 2001; Lee and Yu, 2012; Taşpınar et al., 2018). In terms of choosing across a set of non-

nested spatial effects, Anselin (1986) and Kelejian (2008) propose a J-test for spatial autoregressive

(SAR) specifications. Here, the alternative models involve alternative weights matrices and the

J-test utilizes whether or not the alternatives add to the explanatory power of the null model.

Several improvements have been suggested to the J-test (Burridge, 2012; Burridge and Fingleton,

2010; Kelejian and Piras, 2011). The main shortcoming of the J-test is the fact that rejecting the

null model based on the J-test does not suggest a formal way of choosing between the alternatives.

Jin and Lee (2013) propose Cox-type tests of non-nested hypotheses for spatial autoregressive

specifications and show that the Cox-type and J-type tests for non-nested hypotheses are not

asymptotically equivalent under the null hypothesis. Similar to the J-test, there is no formal way

of choosing amongst a set of alternatives when the Cox-type test rejects the null hypothesis. Han

and Lee (2013) propose a J-test to choose between the MESS and SAR specification. The MESS

and SAR models are non-nested and imply differing rates of decay for the spatial correlations.

In spatial econometrics, the MS problem in terms of choosing among a set of candidate weights

matrices recently received some attention from the frequentist econometrics side.1 Zhang and Yu

1In the spatial econometric literature, there are also some studies using the Bayesian methods for the model
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(2018) formally study the MS problem in terms of choosing a weights matrix for the SAR model.

They propose a MS procedure based on a Mallows type criterion function (Mallows, 1973), and

show that their MS procedure is asymptotically optimal, and it is consistent when the true weights

matrix is in the set of candidates.2 They also propose a MA estimator and formally establish its

asymptotic optimality under certain conditions.

Our focus in this study, on the other hand, is the MS and MA procedures for the MESS models,

and specifically MESS(1, 1) and MESS(p, q). Originally, the MESS was suggested by LeSage and

Pace (2007) as an alternative to the SAR type models because the likelihood estimation is greatly

simplified as its likelihood function does not involve any Jacobian terms. Furthermore, there is no

need to impose restrictions on the parameter space of the spatial parameters in the MESS, i.e., a

MESS model always has a reduced form. The formal results for the maximum likelihood (ML) and

generalized method of moments (GMM) estimation of the MESS models are established in Debarsy

et al. (2015).

These attractive properties of the MESS models also make it more suitable for studying the

MS and MA problems relative to the SAR type models. First, since the likelihood functions of the

MESS type models do not involve any Jacobian terms, closed form expressions are available for some

complicated terms in the Mallows type criterion function that we propose. This feature also allows

us to extend our MS and MA procedures to higher order MESS models. Second, when the model

involves heteroskedasticity of an unknown form in the error terms, our analysis need not be altered

greatly as the (quasi) ML estimator remains consistent given that the spatial weights matrices are

commutative (Debarsy et al., 2015). When the spatial weights matrices are not commutative, we

suggest a robust GMM approach to form the Mallows type MS/MA criterion function. Despite

these advantages of the MESS type models, it is important to note that the formal analysis is more

difficult and complicated for the spatial models as opposed to the linear regression models, because

the MS and MA procedures involve the ML/GMM estimators that are nonlinear functions of the

outcome variable.

The remainder of this paper is organized as follows. Section 2 presents the model under con-

sideration and lays out the details on the likelihood based estimator along with some terms needed

in the construction of our suggested criterion function. Section 3 provides the details on the MS

procedure and formally establishes the asymptotic optimality and the consistency of the selection

estimator. Section 4 introduces our suggested MA procedure and establishes its asymptotic opti-

mality. Section 5 shows how the proposed methods can be extended to higher order specifications,

and to the MESS with heteroskedastic error terms. Section 6 presents the setting for our simulation

study and the results. Section 7 shows how the proposed MS and MA schemes can be applied in

modeling spillover effects in a model of economic growth. We conclude in Section 8 with some

directions for future research. All technical details are collected in an appendix.

selection and model averaging procedures. Among others, see Debarsy and LeSage (2020), Han et al. (2017), LeSage
and Pace (2009), and LeSage (2014).

2See Zhang and Yu (2018, p.2) for a discussion on the problems associated with the commonly used information
criteria AIC and BIC in choosing amongst a set of weights matrices in spatial models.
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2 The matrix exponential specification

We consider the following cross-sectional MESS(1, 1) model

eαW y = Xβ + u, eτMu = ε, (2.1)

where y = (y1, . . . , yn)
′

is the n × 1 vector of an outcome variable, X is the n × k matrix of

non-stochastic exogenous variables with the matching parameter vector β, W and M are the n×n
spatial weights matrices of known constants with zero diagonal elements. We refer u = (u1, . . . , un)

′

as the n×1 vector of regression error terms and ε = (ε1, . . . , εn)
′

as the n×1 vector of idiosyncratic

errors (or innovations). We assume that εi’s are independent and identically distributed (i.i.d.)

with mean zero and variance σ2. The scalar parameters α and τ are called the spatial coefficients

that capture the intensity of interactions between observations. Let C0 = In for any an n×n matrix

C, where In is the n× n identity matrix. Then, the matrix exponential function in (2.1) is defined

as eαC =
∑∞

i=0
αiCi

i! and is always invertible with inverse e−αC (Chiu et al., 1996). Therefore, the

reduced form of the MESS(1,1) always exists and is given by

y = e−αWXβ + e−αW e−τM ε = µ+ ε̃, (2.2)

where µ = E(y) = e−αWXβ and ε̃ = e−αW e−τM ε.

We are interested in selecting a tuple of spatial weights matrices (Ws,Ms) from a set of candidate

weights matrices, W = {(Ws,Ms) : s ∈ {1, 2, . . . , S}}, where we allow S to increase as the sample

size n increases.3 The quasi log-likelihood function of (2.1) based on the tuple (Ws,Ms) can be

expressed as

`s = −n
2

ln 2πσ2 − 1

2σ2

∥∥eτMs(eαWsy −Xβ)
∥∥2
, (2.3)

where ‖·‖ denotes the Euclidean norm. Note that (2.3) does not include the Jacobian terms, because

ln |eαWs | = ln
(
eαtr(Ws)

)
= 0 and ln |eτMs | = ln

(
eτtr(Ms)

)
= 0, where | · | denotes the determinant

operator, and tr(·) is the trace operator. This is one of the attractive properties of the MESS over

the SAR type models, because the maximization of (2.3) does not involve the computation of the

n × n log-Jacobian terms.4 As we will show, the simpler form of the MESS quasi log-likelihood

function also simplifies the derivation of some terms in our suggested selection criterion. For a

3Note that W includes all combinations. For example, if we had two candidate weights matrices A and B, then
the subscript s = 1 could correspond to (A,A), s = 2 to (A,B), s = 3 to (B,A), and s = 4 to (B,B).

4Another advantage is that the MESS has an unrestricted parameter space for the spatial coefficients α and τ .
On the other hand, for the SAR type models, the parameter space for the spatial coefficients have to be restricted
for stability. See Kelejian and Prucha (2010) on the parameter space specifications for the SAR type models.
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given (α̂s, τ̂ s) value, the first order conditions of (2.3) with respect to β and σ2 yield

β̂s =
(
X ′eτ̂sM

′
seτ̂sMsX

)−1
X
′
eτ̂sM

′
seτ̂sMseα̂sWsy, (2.4)

σ̂2
s =

1

n

∥∥∥eτ̂sMs(eα̂sWsy −Xβ̂s)
∥∥∥2
. (2.5)

Substituting (2.4) into µ̂s = e−α̂sWsXβ̂s, we obtain

µ̂s = e−α̂sWsX
(
X
′
eτ̂sM

′
seτ̂sMsX

)−1

X
′
eτ̂sM

′
seτ̂sMseα̂sWsy = e−α̂sWse−τ̂sMsP̂se

τ̂sMseα̂sWsy

= P̃sy, (2.6)

where P̂s = eτ̂sMsX
(
X
′
eτ̂sM

′
seτ̂sMsX

)−1
X
′
eτ̂sM

′
s and P̃s = e−α̂sWse−τ̂sMsP̂se

τ̂sMseα̂sWs . We will

use µ̂s in constructing the loss function in the next section, which is the origin of the selection

criterion for the spatial weights matrices.

3 Spatial weights matrix selection

Our goal is to select the spatial weights matrices that minimize a certain criterion function. As such,

we follow the literature on the MS and MA problems (Hansen, 2007; Li, 1987; Wan et al., 2010;

Zhang and Yu, 2018) to determine a selection criterion function in our setting. Let Ls = ‖µ̂s − µ‖
2

be the squared loss function, and let Rs = E ‖µ̂s − µ‖
2 be the associated risk function. Using

µ = y − ε̃, we can express Rs as

Rs = E
∥∥∥P̃sy − y∥∥∥2

+ 2E
((

P̃sy − y
)′
ε̃

)
+ E

(
ε̃
′
ε̃
)

= E
∥∥∥P̃sy − y∥∥∥2

+ 2E
((

P̃sy
)′

(y − µ)

)
− tr(Ω), (3.1)

where Ω = σ2e−αW e−τMe−τM
′
e−αW

′
is the variance of y. We will select the spatial weights matrices

by minimizing a modified version of Rs. To motivate the selection criterion function, assume further

that εi’s are normally distributed, and let z = Ω−
1
2 (y − µ). Then, we have

E
((

P̃sy
)′

(y − µ)

)
= E

((
P̃sΩ

1
2 z + P̃sµ

)′
Ω

1
2 z

)
= E

tr

∂
(

Ω
1
2 P̃sΩ

1
2 z
)

∂z′


= E

(
tr
(

Ω
1
2 P̃sΩ

1
2

)
+ tr

(
∂Ω

1
2 P̃sΩ

1
2 z

∂α̂s

∂α̂s
∂z′

)
+ tr

(
∂Ω

1
2 P̃sΩ

1
2 z

∂τ̂ s

∂τ̂ s
∂z′

))

= E

(
tr
(
P̃sΩ

)
+
∂α̂s
∂y′

Ω
∂P̃s
∂α̂s

y +
∂τ̂ s
∂y′

Ω
∂P̃s
∂τ̂ s

y

)
, (3.2)
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where the second equality follows from Lemma A.1 in Appendix A.5 Based on (3.1) and (3.2), we

propose the following Mallows Cp type selection criterion function,

Cs =
∥∥∥P̃sy − y∥∥∥2

+ 2

(
tr
(
P̃sΩ

)
+
∂α̂s
∂y′

Ω
∂P̃s
∂α̂s

y +
∂τ̂ s
∂y′

Ω
∂P̃s
∂τ̂ s

y

)
, (3.3)

such that E(Cs) = Rs + tr(Ω), where we need to determine ∂P̃s
∂α̂s

, ∂P̃s
∂τ̂s

, ∂α̂s
∂y and ∂τ̂s

∂y . Then, from the

definition of P̃s, it follows that

∂P̃s
∂α̂s

= −WsP̃s + P̃sWs, (3.4)

∂P̃s
∂τ̂ s

= e−α̂sWse−τ̂sMsP̂s(Ms +M
′
s)Ĝse

τ̂sMseα̂sWs , (3.5)

where Ĝs = In− P̂ s and In is the n×n identity matrix. By using the implicit differentiation on ∂`cs
∂α̂s

and ∂`cs
∂τ̂s

, where lcs is the concentrated log-likelihood function associated with (2.3), we can determine
∂α̂s
∂y and ∂τ̂s

∂y . Since the log-likelihood function of the MESS does not involve the Jacobian terms,

the closed-forms for these expressions can be conveniently obtained. As shown in Appendix B, we

have

∂α̂s
∂y

= −
2a1A1 −

∥∥∥Ĝseτ̂sMseα̂sWsy
∥∥∥2

(A2 +A3)

2a2
1 − ‖Ĝseτ̂sMseα̂sWsy‖2 (a2 + a3)

, (3.6)

∂τ̂ s
∂y

= −
2b1B1 − 2

∥∥∥Ĝseτ̂sMseα̂sWsy
∥∥∥2
B2

b21 −
∥∥∥Ĝseτ̂sMseα̂sWsy

∥∥∥2
(2b2 + b3)

, (3.7)

where

a1 = y
′
eα̂sW

′
seτ̂sM

′
sĜse

τ̂sMseα̂sWsWsy, a2 = y
′
W
′
se
α̂sW

′
seτ̂sM

′
sĜse

τ̂sMseα̂sWsWsy,

a3 = y
′
eα̂sW

′
seτ̂sM

′
sĜse

τ̂sMseα̂sWsW 2
s y, A1 = eα̂sW

′
seτ̂sM

′
sĜse

τ̂sMseα̂sWsy,

A2 = eα̂sW
′
seτ̂sM

′
sĜse

τ̂sMseα̂sWsWsy, A3 = W
′
se
α̂sW

′
seτ̂sM

′
sĜse

τ̂sMseα̂sWsy,

5Note that P̃s is derived for a given (α̂s, τ̂s) value. Thus, we assume that this term is a non-random variable in
applying Lemma A.1 in Appendix A.
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b1 = y
′
eα̂sW

′
seτ̂sM

′
s

(
2ĜsMs +

∂Ĝs
∂τ̂ s

)
eτ̂sMseα̂sWsy,

b2 = y
′
eα̂sW

′
seτ̂sM

′
s

(
2ĜsMs +

∂Ĝs
∂τ̂ s

)
Mse

τ̂sMseα̂sWsy,

b3 = y
′
eα̂sW

′
seτ̂sM

′
s

(
2
∂Ĝs
∂τ̂ s

Ms +
∂2Ĝs

∂τ̂2
s

)
eτ̂sMseα̂sWsy,

B1 = eα̂sW
′
seτ̂sM

′
sĜse

τ̂sMseα̂sWsy, B2 = eα̂sW
′
seτ̂sM

′
s

(
2ĜsMs +

∂Ĝs
∂τ̂ s

)
eτ̂sMseα̂sWsy.

Here, ∂Ĝs
∂τ̂s

= −∂P̃s
∂τ̂s

and ∂2Ĝs
∂τ̂2s

= −e−α̂sWse−τ̂sMs
(
P̂s(Ms +M

′
s)(ĜsMs − ∂P̂s

∂τ̂s
) + (∂P̂s∂τ̂s

−MsP̂s)(Ms +

M
′
s)Ĝs

)
eτ̂sMseα̂sWs . Then, given an estimator Ω̂6, our feasible selection criterion function is conse-

quently given by

Ĉs =
∥∥∥P̃sy − y∥∥∥2

+ 2

(
tr
(
P̃sΩ̂

)
+
∂α̂s
∂y′

Ω̂
∂P̃s
∂α̂s

y +
∂τ̂ s
∂y′

Ω̂
∂P̃s
∂τ̂ s

y

)
. (3.8)

Using Ĉs, the selected model is defined in the following way.

ŝ = argmins∈{1,...,S} Ĉs. (3.9)

Remark 1. Consider the following linear regression model: yi = µi + εi, where µi = x
′
iβ for

i = 1, . . . , n. Let X = (x1, . . . , xn)
′

and consider our criterion function in (3.3). In the context

of this model, (i) P̃s reduces to P , where P = X(X
′
X)−1X

′
, (ii) Ω reduces to σ2In and (iii)

∂α̂s
∂y′

Ω∂P̃s
∂α̂s

y + ∂τ̂s
∂y′

Ω∂P̃s
∂τ̂s

y = 0. Thus, our criterion function in (3.3) reduces to the Mallows Cp

formula (Mallows, 1973) given by ‖Py−y‖2 + 2kσ2. Let µ̂ = Py = X(X
′
X)−1X

′
y be an estimator

of µ = (µ1, . . . , µn)
′
, and y0

i be i.i.d.(µi, σ
2) for i = 1, . . . , n. Define Erri = E(y0

i − µ̂i)
2 and

Err∗i = E(y0
i − µi)2. Then,

Erri = E(y0
i − µ̂i + µi − µi)2 = E(y0

i − µi)2 + E(µ̂i − µi)2 − 2E(µ̂i − µi)(y0
i − µi)

= Err∗i +R− 2Cov(µ̂i, yi),

where R = E(µ̂i − µi)2 is the risk function. Hence, R = (Erri − Err∗i ) + 2Cov(µ̂i, yi), where the

first term is the prediction accuracy. In order to unbiasedly estimate R, we need to account for the

covariance term 2Cov(µ̂i, yi) as well, and the second term in (3.3) serves to this purpose (Mallows,

1973).

Let (W ∗,M∗) be the true spatial weights matrices. We will first assume that W does not

6Following Zhang and Yu (2018), we use the plug-in estimator of Ω̂ given by Ω̂ = σ̂2
se
−α̂sWse−τ̂sMse−τ̂sM

′
se−α̂sW

′
s

in our analysis, where σ̂2
s, α̂s and τ̂s are the estimators of σ2

s , αs and τs, respectively.
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include (W ∗,M∗), and establish the asymptotic optimality of our selection procedure defined

in (3.9). Assume that α̂s and τ̂ s have the probability limits α∗s and τ∗s , respectively. Denote

P ∗s = P̃s|α̂s=α∗s ,τ̂s=τ∗s , µ
∗
s = P ∗s y, R

∗
s = E ‖µ∗s − µ‖

2 and ζn = infs∈{1,...,S}R
∗
s. Let γmin(A) and

γmax(A) be the minimum and maximum eigenvalues of a matrix A, respectively. For notational

convenience, let infs (sups) denote the infimum (supremum) over s ∈ {1, . . . , S}. We make the

following assumptions.

Assumption 1. The spatial weights matrices {W} and {M} are bounded in both row and column

sum norms.

Assumption 2. The parameter space for α and τ is a compact subset of R2 and includes α∗ and

τ∗.

Assumption 3. (i) The matrix X has full column rank and its elements are uniformly bounded

constants. (ii) For all values of τ in its compact parameter space, (a) limn→∞X
′
eτM

′
eτMX/n

exists and is non-singular, and (b) γmin(eτM
′
eτM ) is bounded away from zero uniformly.

Assumption 4. εi’s are i.i.d. with mean zero and variance σ2, and E(ε4Gi ) exists, where G is

defined in Assumption 5.

Assumption 5. There exists a positive integer G ≥ 1 such that
∑S

s=1(R∗s)
−G = o(1).

Assumption 6. ‖µ‖2 = O(n).

Assumption 7. ζ−1
n sups

∣∣∣∂α̂s
∂y′

Ω̂∂P̃s
∂α̂s

y
∣∣∣ = op(1) and ζ−1

n sups

∣∣∣∂τ̂s
∂y′

Ω̂∂P̃s
∂τ̂s

y
∣∣∣ = op(1).

Assumption 8. ζ−1
n k = o(1) and nζ−1

n sups γmax(P̃s − P ∗s ) = op(1).

Assumption 1 is a standard assumption adopted in the spatial econometric literature (Kelejian

and Prucha, 1998, 2010; Lee, 2003). It allows for limiting the spatial correlations between units so

that the asymptotic analysis becomes manageable. Assumption 2 ensures that eαW and eτM are

bounded in both row and column sum norms. This can be seen from
∥∥eαW∥∥ =

∥∥∥∑∞i=0
αiW i

i!

∥∥∥ ≤∑∞
i=0

|α|i‖W‖i
i! = e|α|‖W‖ is bounded if |α| is bounded, where ‖ · ‖ is either the maximum row

sum norm or the maximum column sum norm. Similarly,
∥∥eτW∥∥ is bounded if |τ | is bounded.

Assumption 3 is a standard assumption adopted for the MESS, see e.g., Debarsy et al. (2015).

Assumption 4 is also a standard assumption adopted in the literature on spatial econometrics, see

e.g., Kelejian and Prucha (1998, 2010) and Lee (2003, 2004). It is used to show that some quadratic

forms of the error terms required in the analysis are bounded in probability. This assumption is

also common in the literature on the model selection optimality (Li, 1987; Zhang and Yu, 2018).

We use this moment condition to bound linear and quadratic terms of ε̃ in probability by Whittle’s

inequality (Whittle, 1960). Assumption 6 requires that µ
′
µ/n = O(1), which is also a common

condition assumed in the model selection and model averaging literature (Liang et al., 2011; Zhang

and Yu, 2018).
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To understand Assumption 7, we can use (3.4) and (3.6) to express ∂α̂s
∂y′

Ω̂∂P̃s
∂α̂s

y as

∂α̂s
∂y′

Ω̂
∂P̃s
∂α̂s

y = −

(
2a1A1 −

∥∥∥Ĝseτ̂sMseα̂sWsy
∥∥∥2

(A2 +A3)

)′
Ω̂
(
−WsP̃sy + P̃sWsy

)
2a2

1 −
∥∥∥Ĝseτ̂sMseα̂sWsy

∥∥∥2
(a2 + a3)

. (3.10)

Our Assumptions 1 and 2 ensure that Ω̂ = Op(1). All other terms in (3.10) are either linear or

quadratic terms in y. These terms are Op(n) under some regularity conditions, e.g., see Debarsy et

al. (2015). Hence, it follows that ∂α̂s
∂y′

Ω̂∂P̃s
∂α̂s

y = Op(n). Thus, Assumption 7 will be satisfied if ζ−1
n =

o(1/n). The second part of Assumption 7 can be justified similarly. The first part of Assumption

8 is a common assumption in the literature on model averaging (Liu and Okui, 2013; Zhang and

Yu, 2018). So long as n increases faster than k, our Assumptions 1–3 ensures that ζ−1
n k = o(1)

in our setting.7 The second part of Assumption 8 shows that the term ζ−1
n sups γmax(P̃s − P ∗s )

converges to zero in probability at a rate faster than n. This is also a common assumption in the

model averaging literature (Zhang et al., 2014). Under our Assumptions 1–3, it can be shown that∥∥∥P̃s − P ∗s ∥∥∥ = op(1), where ‖ · ‖ can be either the maximum row sum norm or the maximum column

sum norm, which implies that sups γmax(P̃s − P ∗s ) = op(1).8 Hence, Assumption 8 requires that

ζ−1
n = o(1/n), which is consistent with the order required by Assumption 7.

Theorem 1. Assume that Assumptions 1–8 hold. Then, for any η > 0, it follows that

lim
n→∞

P

(∣∣∣∣ Lŝ
infs∈{1,...,S} Ls

− 1

∣∣∣∣ > η

)
= 0. (3.11)

The proof of Theorem 1 is given in Appendix E.1. Theorem 1 indicates that the squared loss

function of our selected µ̂ŝ estimator is asymptotically identical to the squared loss function of

the infeasible estimator that uses the best candidate spatial weight matrix. That is, the selection

estimator µ̂ŝ is asymptotically optimal in the sense that it is as efficient as the infeasible estimator

that uses the best candidate spatial weights matrix.

Next, we assume that W includes (W ∗,M∗) and show that our selection procedure defined in

(3.9) is selection consistent. Let S be the index set of spatial weight matrices excluding the true

tuple (W ∗,M∗), i.e., S = {s ∈ {1, . . . , S} : (Ws,Ms) 6= (W ∗,M∗)}. Define ζ∗n = infs∈S R
∗
s. Then,

our selection consistency result requires the following assumption.

7Note that we can write R∗s as R∗s = E ‖µ∗s − µ‖2 = tr(P ∗s ΩP ∗
′

s ) + ‖H∗sµ‖2, where H∗s = In − P ∗s . Using some
arguments given in the proof of Theorem 1, it can be shown that R∗s = O(n+ k). Thus, ζ−1

n k = O(k/(n+ k)) = o(1)
if n/k →∞.

8Note that we can write eα̂sW =
(
eα̂sW − eα

∗
sW
)

+ eα
∗
sW and eτ̂sM =

(
eτ̂sM − eτ

∗
sM
)

+ eτ
∗
sM . Also∥∥∥eα̂sW − eα

∗
sW
∥∥∥
1

=
∥∥∥(e(α̂s−α∗s)W − In

)
eα
∗
sW
∥∥∥
1
≤
∥∥∥(e(α̂s−α∗s)W − In

)∥∥∥
1

∥∥∥eα∗sW∥∥∥
1

= op(1) by Lemmas A.3 and A.4

in Appendix A, where ‖ · ‖1 is the maximum column sum matrix norm. Similarly,
∥∥∥eτ̂sM − eτ∗sM∥∥∥

1
= op(1). These

observations can be used to show that
∥∥∥P̃s − P ∗s ∥∥∥

1
= op(1).
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Assumption 9. If S is not empty, then we have (i) sups

∣∣∣∂α̂s
∂y′

Ω̂∂P̃s
∂α̂s

y
∣∣∣ /ζ∗n = op(1) and sups

∣∣∣∂τ̂s
∂y′

Ω̂∂P̃s
∂τ̂s

y
∣∣∣ /ζ∗n =

op(1), (ii) n sups γmax(P̃s − P ∗s )/ζ∗n = op(1), and (iii) kn−1/2 = o(1) and ζ∗−1
n n = o(1).

The first and second part in Assumption 9 provide the counterparts of those conditions stated

in Assumptions 7 and 8. The third part requires that (i) k may increase at a rate slower than n1/2,

and (ii) ζ∗n may increase at a rate faster than n. These rates play an important role in bounding

certain terms in our proof of selection consistency result.

Theorem 2. Assume that Assumptions 1–4, 6 and 9 hold. Then, P ((Wŝ,Mŝ) = (W ∗,M∗)) → 1

as n→∞.

The proof of Theorem 2 is provided in Appendix E.2. Theorem 2 indicates that our selection

procedure in (3.9) is selection consistent in the sense that it chooses the true tuple of weights

matrices with probability approaching to one in large samples.

4 Model averaging procedure

Instead of selecting the asymptotically optimal model, we can use a model averaging scheme that

compromises across a set of candidate models for the MESS(1,1). Compared with the model

selection procedure in Section 3, the model averaging method can provide insurance against se-

lecting an inappropriate model, and can reduce the risk associated with the loss function (Hansen,

2014). Denote the vector of model weights by w = (w1, . . . , wS)
′
, and the set of model weights

vectors by N =
{
w ∈ [0, 1]S :

∑S
s=1ws = 1

}
. Let P̃ (w) =

∑S
s=1wsP̃s be the weighted average of{

P̃1, . . . , P̃S

}
. Then, the model average estimator for µ is given by

µ̂(w) =
S∑
s=1

wsµ̂s =
S∑
s=1

wsP̃sy = P̃ (w)y. (4.1)

The associated squared loss and its expectation are L(w) = ‖µ̂(w)− µ‖2 andR(w) = E ‖µ̂(w)− µ‖2,

respectively. Then, we consider the following model weights choice criterion function,

C(w) =
∥∥∥P̃ (w)y − y

∥∥∥2
+ 2

(
tr
(
P̃ (w)Ω

)
+

S∑
s=1

ws

(
∂α̂s
∂y′

Ω
∂P̃s
∂α̂s

y +
∂τ̂ s
∂y′

Ω
∂P̃s
∂τ̂ s

y

))
. (4.2)

Similar to Cs in (3.3), we can show that E (C(w)) = R(w) + tr(Ω) by using Lemma A.1 in Ap-

pendix A. The first term in (4.2) is a measure of goodness of fit. The second term is an unbiased

estimator of 2Cov (µ̂(w), y), which can be called as the degrees of freedom of model averaging.

Given an estimator Ω̂, our feasible model weights choice criterion function can be expressed as

Ĉ(w) =
∥∥∥P̃ (w)y − y

∥∥∥2
+ 2

(
tr
(
P̃ (w)Ω̂

)
+

S∑
s=1

ws

(
∂α̂s
∂y′

Ω̂
∂P̃s
∂α̂s

y +
∂τ̂ s
∂y′

Ω̂
∂P̃s
∂τ̂ s

y

))
. (4.3)
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The optimal model weights vector is thus given by

ŵ = argminw∈N Ĉ(w). (4.4)

We can express Ĉ(w) in a convenient form. Define Q =
(
P̃1y − y, . . . , P̃Sy − y

)
and

q =


tr(P̃1Ω̂) + ∂α̂1

∂y′
Ω̂∂P̃1
∂α̂1

y + ∂τ̂1
∂y′

Ω̂∂P̃1
∂τ̂1

y

tr(P̃2Ω̂) + ∂α̂2

∂y′
Ω̂∂P̃2
∂α̂2

y + ∂τ̂2
∂y′

Ω̂∂P̃2
∂τ̂2

y

...

tr(P̃SΩ̂) + ∂α̂S
∂y′

Ω̂∂P̃S
∂α̂S

y + ∂τ̂S
∂y′

Ω̂∂P̃S
∂τ̂S

y

 . (4.5)

Then, we can express (4.3) as Ĉ(w) = w
′
Q
′
Qw + 2w

′
q, which indicates that the optimization

problem in (4.4) is a quadratic programming (or a quadratic optimization) problem. Optimization

of a quadratic form subject to some constraints is a well-studied area of numerical optimization,

and numerical solvers are available in popular statistical software such as Python, R and Matlab.

Next, we will show that our MA estimator that uses (4.4) is asymptotically optimal in the

sense that its associated squared loss is asymptotically equivalent to the smallest squared loss.

Let R∗(w) = E
∥∥∑

s=1wsµ̂s|α̂s=α∗s ,τ̂s=τ∗s − µ
∥∥2

and ζ̃n = infw∈N R
∗(w). To show the asymptotic

optimality of the averaging estimator µ̂(ŵ), we adopt the following assumption.

Assumption 10. (i) There exists a positive integer G such that Sζ̃−2G
n

∑S
s=1(R∗s)

G = o(1), (ii)

ζ̃−1
n sups

∣∣∣∂α̂s
∂y
′ Ω̂

∂P̃s
∂α̂s

y
∣∣∣ = op(1) and ζ̃−1

n sups

∣∣∣∂τ̂s
∂y
′ Ω̂

∂P̃s
∂τ̂s

y
∣∣∣ = op(1), (iii) ζ̃−1

n k = o(1) and nζ̃−1
n sups γmax(P̃s−

P ∗s ) = op(1).

The first part of Assumption 10 is a key assumption and is common in the model averaging

literature (Liu and Okui, 2013; Wan et al., 2010). Similar to our analysis in model selection, this

part allows us to determine the probability orders of terms that are linear and quadratic in ε̃ through

the generalized Chebyshev’s inequality and Whittle’s inequality. It implicitly assumes a trade-off

between the number of models allowed and the fit of individual models. The rest of Assumption

10 provides conditions that are counterparts to those adopted in Assumptions 7 and 8.

Theorem 3. Assume that Assumptions 1–4, 6 and 10 hold. Then, for any η > 0, it follows that

lim
n→∞

P

(∣∣∣∣ L(ŵ)

infw∈N L(w)
− 1

∣∣∣∣ > η

)
= 0. (4.6)

The proof of Theorem 3 is provided in Appendix E.3. Similar to the model selection procedure

presented in Section 3, Theorem 3 indicates that the model averaging estimator is also asymptot-

ically optimal. Since infw∈N L(w) ≤ infs Ls, the model averaging procedure can be superior over

the model selection procedure in the sense that it could possibly reduce the squared loss.
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5 Extensions

Before we consider some extensions of our model specification, it is easy to see that our results are

also valid for two special cases of MESS(1, 1), namely, MESS(1, 0) and MESS(0, 1). In Appendix C,

we provide the required quantities for the model selection and averaging procedures for these special

cases. Next, we consider two important extensions of our model, and show how our suggested

criterion functions can be formulated for these extensions. In the first extension, we consider a

higher-order MESS model and derive the associated selection and weight choice criterion functions.

In the second extension, we show how our analysis should be modified when the disturbance terms

are heteroskedastic. We also show how to derive the selection and weight choice criterion functions

in a heteroskedasticity-robust GMM framework.

5.1 The higher-order MESS

A high-order MESS model, namely MESS(p, q), can be formulated in the following way

e
∑p
i=1 αiWiy = Xβ + u, e

∑q
j=1 τjMju = ε, (5.1)

where {Wi}pi=1 and {Mi}qi=1 are the spatial weights matrices, and {αi}pi=1 and {τi}qi=1 are the

unknown scalar spatial parameters. Here, we have µ = E(y) = e−
∑p
i=1 αiWiXβ and

Ω = σ2e−
∑p
i=1 αiWie−

∑q
j=1 τjMje−

∑q
j=1 τjM

′
je−

∑p
i=1 αiW

′
i .

Let W i
s and M j

s be the ith and jth spatial weights matrices of the MESS(p, q) in the sth model

with corresponding coefficients αis and τ js . Then, the quasi log-likelihood function for the model s

can be expressed as

`s = −n
2

ln 2πσ2 − 1

2σ2

∥∥∥e∑q
j=1 τjM

j
s (e

∑p
i=1 αiW

i
sy −Xβ)

∥∥∥2
. (5.2)

The estimator for µs is

µ̂s = e−
∑p
i=1 α̂

i
sW

i
sX

(
X
′
e
∑q
j=1 τ̂

j
sM

j′
s e

∑q
j=1 τ̂

j
sM

j
sX

)−1

X
′
e
∑q
j=1 τ̂

j
sM

j′
s e

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy

= e−
∑p
i=1 α̂

i
sW

i
se−

∑q
j=1 τ̂

j
sM

j
s P̂se

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy = P̃sy, (5.3)

where P̂s = e
∑q
j=1 τ̂

j
sM

j
sX

(
X ′e

∑q
j=1 τ̂

j
sM

j′
s e

∑q
j=1 τ̂

j
sM

j
sX

)−1

X ′e
∑q
j=1 τ̂

j
sM

j′
s . The feasible selection cri-

terion function then takes the following form,

Ĉs =
∥∥∥P̃sy − y∥∥∥2

+ 2

tr
(
P̃sΩ̂

)
+

p∑
i=1

∂α̂is
∂y′

Ω̂
∂P̃s

∂α̂is
y +

q∑
j=1

∂τ̂ js
∂y′

Ω̂
∂P̃s

∂τ̂ js
y

 . (5.4)
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Since `s in (5.2) is free of the Jacobian terms, the closed forms of the quantities required for the

computation of (5.4) can be obtained conveniently. These expressions are

∂P̃s

∂α̂is
= −W i

sP̃s + P̃sW
i
s , (5.5)

∂P̃s

∂τ̂ js
= e−

∑p
i=1 α̂

i
sW

i
se−

∑q
j=1 τ̂

j
sM

j
s P̂s

(
M j
s +M j′

s

)(
In − P̂s

)
e
∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
s , (5.6)

and

∂α̂is
∂y

= −
2c1C1 −

∥∥∥Ĝse∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy
∥∥∥2

(C2 + C3)

2c2
1 −

∥∥∥Ĝse∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy
∥∥∥2

(c2 + c3)
, (5.7)

∂τ̂ js
∂y

= −
2d1D1 − 2

∥∥∥Ĝse∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy
∥∥∥2
D2

d2
1 −

∥∥∥Ĝse∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy
∥∥∥2

(2d2 + d3)
, (5.8)

where

c1 = y
′
e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s Ĝse

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sW i

sy,

c2 = y
′
W i′
s e

∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s Ĝse

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sW i

sy,

c3 = y
′
e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s Ĝse

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
s (W i

s)
2y,

C1 = e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s Ĝse

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy,

C2 = e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s Ĝse

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sW i

sy,

C3 = W i′
s e

∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s Ĝse

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy,

d1 = y
′
e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s

(
2ĜsM

j
s +

∂Ĝs

∂τ̂ js

)
e
∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy,

d2 = y
′
e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s

(
2ĜsM

j
s +

∂Ĝs

∂τ̂ js

)
M j
s e

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy,

d3 = y
′
e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s

(
2
∂Ĝs

∂τ̂ js
M j
s +

∂2Ĝs

∂τ̂ j2s

)
e
∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy,

13



D1 = e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s Ĝse

∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy and

D2 = e
∑p
i=1 α̂

i
sW

i′
s e

∑q
j=1 τ̂

j
sM

j′
s

(
2ĜsM

j
s +

∂Ĝs

∂τ̂ js

)
e
∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
sy,

for i = 1, 2, . . . , p and j = 1, 2, . . . , q. Here, ∂Ĝs
∂τ̂ js

= −∂P̃s
∂τ̂ js

is given by the negative of (5.6) and

∂2Ĝs
∂τ̂ j2s

= e−
∑p
i=1 α̂

i
sW

i
se−

∑q
j=1 τ̂

j
sM

j
s
(
P̂s(M

j
s +M j′

s )
(
(In−P̂s)M j

s− ∂P̂s
∂τ̂ js

)
+(∂P̂s

∂τ̂ js
−M j

s P̂s)(M
j
s +M j′

s )(In−

P̂s)
)
e
∑q
j=1 τ̂

j
sM

j
s e

∑p
i=1 α̂

i
sW

i
s .

Next, we consider the model averaging procedure. The model averaging estimator is given by

µ̂(w) = P̃ (w)y =
∑S

s=1wsP̃sy, and the feasible weights choice criterion function takes the following

form,

Ĉ(w) =
∥∥∥P̃ (w)y − y

∥∥∥2
+2

tr
(
P̃ (w)Ω̂

)
+

S∑
s=1

ws

 p∑
i=1

∂α̂is
∂y′

Ω̂
∂P̃s

∂α̂is
y +

q∑
j=1

∂τ̂ js
∂y′

Ω̂
∂P̃s

∂τ̂ js
y

 . (5.9)

We conjecture that our results in Theorems 1–3 can be extended to the MESS(p, q) model under

some regularity assumptions extended from those we adopted for the MESS(1, 1) model.

5.2 The MESS with an unknown form of heteroskedasticity

In this section, we consider the MESS(1,1) with heteroskedastic error terms, i.e., εi ∼ (0, σ2
i ). Let

Σ = Diag(σ2
1, . . . , σ

2
n) be the diagonal n × n matrix. The quasi MLE of the MESS(1,1) can be

consistent under heteroskedasticity when the spatial weights matrices W and M are commutative,

i.e., WM = MW (Debarsy et al., 2015).9 Thus, we can use the quasi ML approach discussed in

Sections 3 and 4 for the MS and MA procedures. Under heteroskedasticity, the variance of y becomes

Ω = e−αW e−τMΣe−τM
′
e−αW

′
. The rest of the discussions in Sections 3 and 4 follow similarly. Thus,

our results in Theorems 1–3 can be extended to the MESS(1,1) with the heteroskedastic error terms.

It is also possible to consider the GMM approach to extend our results in Theorems 1–3 to

the heteroskedastic case. A consistent GMM estimator (GMME) can be based on a set of linear

and quadratic moment functions. Let F be an n × kf instrumental variable matrix, and Pi be an

n×n matrix with zero diagonal elements for i = 1, . . . , kp. Then, the linear moment conditions are

given by F
′
ε(γ), and the quadratic moments functions are given by ε

′
(γ)Piε(γ) for i = 1, . . . , kp.

Thus, we can formulate a GMME based on the following vector of the linear and quadratic moment

functions10

g(γ) =
1

n

(
ε
′
(γ)P1ε(γ), . . . , ε

′
(γ)Pkpε(γ), ε

′
(γ)F

)′
, (5.10)

9In practice, it is often assumed that the spatial weights matrices for the dependent variable and the error terms
are the same, i.e., W = M . In this case, commutativity is trivially satisfied.

10We do not focus on the selection of moment functions as our aim is the model selection and averaging procedures.
Under certain conditions, Debarsy et al. (2015) show which F and Pi’s can lead to the most efficient GMME.
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where γ = (α, τ, β
′
)
′

and ε(γ) = eτM (eαW y −Xβ). Let α̃s, τ̃s and β̃s be the GMMEs based on the

sth model. Then, we can formulate the estimator of µs as µ̃s = e−α̃sWsXβ̃s. Then, the feasible

version of our selection criterion function is given by

C̃s = ‖µ̃s − y‖2 + 2tr

(
∂µ̃s
∂y′

Ω̂

)
, (5.11)

where ∂µ̃s
∂y′

= P̃s + ∂P̃s
∂α̃s

y ∂α̃s
∂y′

+ ∂P̃s
∂τ̃s

y ∂τ̃s
∂y′

. The expressions for ∂α̃s
∂y′

and ∂τ̃s
∂y′

are stated in Appendix D.

Define s̃ = argmins∈{1,...,S} C̃s as the selected model. Note that we can also define a model weights

choice criterion similar to (5.11) for the MA procedure. Under some assumptions similar to our

adopted ones, we conjecture that the results in Theorems 1–3 can be extended to the robust GMM

case.

6 Monte Carlo simulations

In this section, we investigate the finite sample performance of the proposed MS and MA procedures.

We consider the data generating process described below,

eαW y = β1x1 + β2x2 + u, eτWu = ε. (6.1)

The elements of x1 and x2 are independently drawn from U(0,
√

12) and N(0, 1), respectively. The

candidate spatial weights matrices W1,W2,W3 and W4 are selected as the true weights matrix

in different cases. Here, W1 is a square matrix with its elements interacting with only their left

neighbors. For the left edge units, they interact with their right neighbors. W2 is a square weights

matrix with its elements interacting their left and right neighbors. W3 and W4 are based on

rook and queen contiguity, respectively. To this end, n spatial units are randomly allocated into
√
n ×
√
n square lattice graph. In the rook contiguity case, wij = 1 if the j’th observation is

adjacent (left/right/above or below) to the i’th observation on the graph. In the queen contiguity

case, wij = 1 if the j’th observation is adjacent to, or shares a border with the i’th observation. All

weights matrices are row normalized. Note also that the spatial weights matrices become denser

from W1 to W4. We set (β1, β2)
′

= (2, 1)
′
, and let α and τ take values from {−1.2,−0.2, 0.2, 1.2}.

For the error terms we have three specifications: (i) εi ∼ i.i.d.N(0, 1), (ii) εi ∼ i.i.d.χ2
3, where χ2

3

is the chi-squared distribution with 3 degrees of freedom, (iii) εi = ηix1i where ηi ∼ i.i.d.χ2
3. These

three specifications represent the normal, non-normal and heteroskedastic cases, respectively. In

cases (ii) and (iii), εi is standardized so that its mean is zero and its variance is one. We consider

two sample sizes, n = 169 and n = 400. We set the number of repetitions to 1000 in all cases.

We compute the QMLE and report the root mean squared error (RMSE) for each parameter

under each spatial weights matrix and the selected weights matrix (MS). After implementing the

model selection using our criterion function in (3.8), we compute the average of the loss function

Ls = ‖µ̂s − µ‖
2 over 1000 repetitions under each spatial weights matrix. This measure is denoted by
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“Loss” in the tables. The average loss function value for MS and MA are also reported. We compute

the selection frequency under each spatial weights matrix, which is denoted by “MS accuracy”. In

each iteration, we also compute the model weight assigned to each model by our model averaging

procedure. We then report the average of these model weights over 1000 repetitions. This measure

is denoted by “MA weights” in the tables.

Table 1 shows the simulation results when the true weights matrix is W1 and the error terms

have the normal distribution. As expected, the RMSE is the smallest under W1 for all parameters

in all cases. The smallest loss is obtained by the estimator using W1 in all cases. Specifically,

when α = τ = 0.2 and n = 169, the value of the loss function under W1 is 3.223, which is smaller

than those reported from other spatial weights matrices (21.3 under W2, 29.087 under W3 and

33.987 under W4). The loss for the MS estimator (3.501) and the MA estimator (3.823) are slightly

larger than that of the QMLE using W1. For the selection frequency, out of 1000 samples, the MS

procedure selects W1 985 times (98.5%), W2 12 times (0.012%), W3 3 times (0.003%) and W4 0

times. For the MA weights, our model averaging procedure assigns an average weight of 88.4%

to the true W1, 5.9% to W2, 3.5% to W3 and 2.3% to W4. Overall, these results imply that the

MS procedure is picking the true spatial weights matrix, and the MA procedure is giving largest

model weight to the one with the true spatial weights matrix. These results are consistent with our

theoretical results.

When the spatial coefficients become negative, i.e., α = τ = −0.2, the results remain similar.

The RMSE and loss are still smallest for W1 and the MS accuracy and MA weights are also the

largest under W1. When the spatial parameters get larger in absolute value, i.e., α = τ = 1.2 or

−1.2, the RMSE measures under W1 are similar to other cases for α and τ , and smaller for β1 and

β2, but become larger for all parameters under W2, W3 and W4. The values of loss function become

larger under all spatial weights matrices, but the one associated with W1 remains the smallest.

When α = τ = 1.2 and n = 169, the MS accuracy is 0.998 under W1, and when α = τ = −1.2 and

n = 169, it is 0.968 under W1. When α = τ = 1.2 and n = 169, the MA weight assigned to W1 is

0.915, and when α = τ = −1.2 and n = 169, the MA weight assigned to W1 is 0.865. As n grows

from 169 to 400, the MS and MA procedure provide more precise results in terms of selecting the

true spatial weights matrix. In particular, when α = τ = 0.2 and n = 400, the MS selects W1 1000

times (100%) and the other candidates 0 times. The MA weights grows to 92.7% for W1, with 4%,

2.1% and 1.1% for W2, W3 and W4, respectively.

Table 2 shows the simulation results when the true weights matrix is W4 and the error terms

have the normal distribution. The simulation results are similar to those reported in Table 1. The

RMSE measures obtain the smallest values under W4 (with an exception of τ when n = 169), and

the smallest loss value occurs under W4. The MS accuracy is always the largest under W4, and the

MA procedure assigns the largest weight to W4 in all cases. When the true weights matrices are

W2 and W3 and the error terms have the normal distribution, we observe similar simulation results

to those reported Tables 1 and 2. For the sake of brevity, we provide those simulation results in

the accompanying web appendix.
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Table 3 reports the simulation results when the true wights matrix is W1 and the error terms

are non-normal, i.e., standardized χ2
3. In general, the simulation results in this table are similar to

those reported Table 1. The table reports the smallest RMSE and loss measures under W1. Our

MS procedure assigns the largest MS accuracy to W1, and the MA procedure assigns the largest

model weight to W1 in all cases. When the true weights matrices are W2, W3 and W4 and and

the error terms are non-normal, we receive similar simulation results, which are provided in the

accompanying web appendix. Table 4 reports the simulation results when the true weights matrix

is W1 and the error terms are heteroskedastic. The results in this table are similar to those reported

for the normal and non-normal cases. These results indicate that our MS and MA procedure can

be extended to the heteroskedastic errors case, as argued in Section 5.2. The results when W2,

W3 and W4 are true weights matrices and the error terms are heteroskedastic are similar, and are

provided in the accompanying web appendix.

In Tables 1 to 4, we consider the cases where the set of candidate weights matrices includes the

true spatial weights matrix. In Table 5, we consider a case where the true spatial weights matrix

is not in the set of candidate weights matrices. To that end, we set the true spatial weights matrix

to the sum of W2 and W4, which is not in the set of candidate weights matrices. The results in

the table show that the losses are relatively small for W2, W3 and W4 in most cases, except for the

case in which α = τ = 1.2, where the loss for W3 is bigger than W1. This is reasonable because the

true spatial weights matrix is given by W2 +W4. Since the set of candidate weights matrices does

not include the true spatial weights matrix, the MA has smaller loss than MS in most cases, except

when α = τ = 1.2 and n = 400. The MS procedure assigns relatively large MS accuracy to W2 and

W4 as expected. Similarly, the MA procedure assigns relatively large weights to W2 and W4.
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Table 1: Simulation results when W1 is the true matrix and error terms are normal

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.034 0.046 0.063 0.082 0.034
τ=0.2 RMSE of τ 0.087 0.094 0.137 0.201 0.086
β1=2 RMSE of β1 0.074 0.079 0.078 0.082 0.074
β2=1 RMSE of β2 0.079 0.079 0.083 0.084 0.079

Loss 3.223 21.300 29.087 33.987 3.501 3.823
MS accuracy 0.985 0.012 0.003 0.000
MA weights 0.884 0.059 0.035 0.023

α=0.2 n=400 RMSE of α 0.023 0.035 0.046 0.057 0.023
τ=0.2 RMSE of τ 0.056 0.064 0.091 0.152 0.056
β1=2 RMSE of β1 0.049 0.055 0.067 0.066 0.049
β2=1 RMSE of β2 0.049 0.050 0.059 0.063 0.049

Loss 3.058 42.377 59.593 68.753 3.058 3.593
MS accuracy 1.000 0.000 0.000 0.000
MA weights 0.927 0.040 0.021 0.011

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.033 0.046 0.075 0.124 0.038
τ=−0.2 RMSE of τ 0.089 0.095 0.143 0.247 0.094
β1=2 RMSE of β1 0.080 0.080 0.105 0.118 0.080
β2=1 RMSE of β2 0.072 0.082 0.075 0.082 0.072

Loss 3.350 21.397 30.946 36.992 3.952 4.232
MS accuracy 0.973 0.022 0.004 0.001
MA weights 0.870 0.070 0.026 0.035

α=−0.2 n=400 RMSE of α 0.023 0.034 0.044 0.080 0.023
τ=−0.2 RMSE of τ 0.056 0.063 0.091 0.191 0.056
β1=2 RMSE of β1 0.050 0.057 0.055 0.055 0.050
β2=1 RMSE of β2 0.049 0.050 0.052 0.056 0.049

Loss 3.156 42.508 61.742 73.335 3.214 3.755
MS accuracy 0.999 0.001 0.000 0.000
MA weights 0.922 0.045 0.015 0.018

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 0.031 0.472 7.283 6.186 0.036
τ=1.2 RMSE of τ 0.085 0.401 7.182 6.294 0.087
β1=2 RMSE of β1 0.064 0.848 1.221 0.898 0.075
β2=1 RMSE of β2 0.048 0.423 0.624 0.503 0.052

Loss 8.637 1372.106 1784.061 1777.567 11.431 38.715
MS accuracy 0.998 0.002 0.000 0.000
MA weights 0.915 0.032 0.026 0.027

α=1.2 n=400 RMSE of α 0.021 0.430 4.906 3.148 0.021
τ=1.2 RMSE of τ 0.054 0.283 4.923 3.172 0.054
β1=2 RMSE of β1 0.043 0.825 0.843 0.612 0.043
β2=1 RMSE of β2 0.035 0.444 0.447 0.333 0.035

Loss 9.722 3153.266 3706.969 3620.566 9.722 43.844
MS accuracy 1.000 0.000 0.000 0.000
MA weights 0.937 0.028 0.020 0.014

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.030 0.359 6.061 12.592 0.617
τ=−1.2 RMSE of τ 0.084 0.696 5.884 12.302 0.755
β1=2 RMSE of β1 0.062 0.668 1.079 1.407 0.203
β2=1 RMSE of β2 0.047 0.459 0.680 0.812 0.129

Loss 8.197 1032.113 1576.411 1886.296 57.850 76.213
MS accuracy 0.968 0.022 0.002 0.008
MA weights 0.865 0.054 0.021 0.061

α=−1.2 n=400 RMSE of α 0.018 0.420 6.802 12.104 0.018
τ=−1.2 RMSE of τ 0.054 0.411 6.540 11.777 0.054
β1=2 RMSE of β1 0.040 0.922 1.218 1.300 0.040
β2=1 RMSE of β2 0.030 0.405 0.625 0.715 0.030

Loss 6.356 2942.293 3756.055 4063.768 6.356 49.286
MS accuracy 1.000 0.000 0.000 0.000
MA weights 0.933 0.024 0.012 0.032
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Table 2: Simulation results when W4 is the true matrix and error terms are normal

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.173 0.145 0.097 0.081 0.088
τ=0.2 RMSE of τ 0.177 0.208 0.161 0.182 0.193
β1=2 RMSE of β1 0.081 0.080 0.079 0.079 0.080
β2=1 RMSE of β2 0.080 0.080 0.080 0.078 0.079

Loss 7.307 6.461 5.376 2.838 4.099 3.629
MS accuracy 0.048 0.101 0.147 0.704
MA weights 0.085 0.121 0.140 0.653

α=0.2 n=400 RMSE of α 0.177 0.153 0.091 0.056 0.063
τ=0.2 RMSE of τ 0.158 0.184 0.133 0.115 0.130
β1=2 RMSE of β1 0.051 11.774 0.051 0.050 0.050
β2=1 RMSE of β2 0.051 0.051 0.050 0.050 0.050

Loss 11.774 10.497 7.706 2.738 4.073 3.689
MS accuracy 0.018 0.054 0.108 0.820
MA weights 0.061 0.080 0.119 0.740

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.179 0.157 0.118 0.095 0.111
τ=−0.2 RMSE of τ 0.121 0.143 0.187 0.186 0.186
β1=2 RMSE of β1 0.079 0.079 0.078 0.078 0.078
β2=1 RMSE of β2 0.073 0.074 0.074 0.072 0.074

Loss 7.827 7.261 5.485 3.425 4.835 4.329
MS accuracy 0.069 0.083 0.286 0.562
MA weights 0.105 0.105 0.274 0.516

α=−0.2 n=400 RMSE of α 0.176 0.152 0.123 0.070 0.083
τ=−0.2 RMSE of τ 0.110 0.134 0.129 0.124 0.126
β1=2 RMSE of β1 0.050 0.049 0.050 0.049 0.049
β2=1 RMSE of β2 0.052 0.051 0.051 0.051 0.051

Loss 12.686 11.441 8.536 3.493 4.824 4.407
MS accuracy 0.029 0.047 0.151 0.773
MA weights 0.077 0.077 0.159 0.687

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 1.071 0.936 0.368 0.064 0.100
τ=1.2 RMSE of τ 1.248 1.396 0.892 0.178 0.227
β1=2 RMSE of β1 0.180 0.151 0.193 0.082 0.083
β2=1 RMSE of β2 0.114 0.110 0.122 0.067 0.067

Loss 110.078 94.680 211.664 3.569 4.577 6.702
MS accuracy 0.000 0.009 0.001 0.990
MA weights 0.027 0.058 0.029 0.886

α=1.2 n=400 RMSE of α 1.043 0.911 0.315 0.043 0.043
τ=1.2 RMSE of τ 1.293 1.434 0.842 0.112 0.112
β1=2 RMSE of β1 0.148 0.125 0.204 0.054 0.054
β2=1 RMSE of β2 0.082 0.076 0.083 0.046 0.046

Loss 250.292 209.017 486.556 3.775 3.775 6.916
MS accuracy 0.000 0.000 0.000 1.000
MA weights 0.020 0.039 0.018 0.923

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 1.094 0.805 1.230 0.144 0.402
τ=−1.2 RMSE of τ 0.241 0.516 0.318 0.219 0.265
β1=2 RMSE of β1 0.280 0.213 0.325 0.090 0.112
β2=1 RMSE of β2 0.150 0.147 0.179 0.071 0.080

Loss 325.396 220.216 364.073 18.729 57.196 45.227
MS accuracy 0.032 0.110 0.017 0.841
MA weights 0.058 0.062 0.081 0.800

α=−1.2 n=400 RMSE of α 1.087 0.791 1.160 0.090 0.160
τ=−1.2 RMSE of τ 0.239 0.529 0.190 0.134 0.146
β1=2 RMSE of β1 0.282 0.128 0.281 0.057 0.061
β2=1 RMSE of β2 0.154 0.086 0.141 0.047 0.049

Loss 689.363 456.370 711.128 14.968 25.696 32.130
MS accuracy 0.003 0.015 0.003 0.979
MA weights 0.025 0.026 0.051 0.898
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Table 3: Simulation results when W1 is the true matrix and error terms are non-normal (χ2
3)

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.032 0.047 0.061 0.084 0.034
τ=0.2 RMSE of τ 0.087 0.095 0.132 0.187 0.087
β1=2 RMSE of β1 0.076 0.080 0.079 0.084 0.075
β2=1 RMSE of β2 0.080 0.080 0.084 0.087 0.080

Loss 3.221 21.377 29.073 34.087 3.665 3.818
MS accuracy 0.977 0.020 0.002 0.001
MA weights 0.888 0.058 0.031 0.023

α=0.2 n=400 RMSE of α 0.022 0.031 0.047 0.063 0.022
τ=0.2 RMSE of τ 0.056 0.061 0.088 0.164 0.056
β1=2 RMSE of β1 0.050 0.057 0.059 0.056 0.050
β2=1 RMSE of β2 0.048 0.049 0.051 0.051 0.048

Loss 3.009 42.180 63.024 76.411 3.009 3.609
MS accuracy 1.000 0.000 0.000 0.000
MA weights 0.924 0.043 0.022 0.011

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.035 0.054 0.072 0.153 0.037
τ=−0.2 RMSE of τ 0.084 0.093 0.128 0.244 0.084
β1=2 RMSE of β1 0.073 0.076 0.089 0.087 0.073
β2=1 RMSE of β2 0.078 0.109 0.115 0.139 0.078

Loss 3.102 22.662 30.673 35.482 3.503 3.906
MS accuracy 0.982 0.015 0.001 0.002
MA weights 0.882 0.061 0.023 0.034

α=−0.2 n=400 RMSE of α 0.023 0.034 0.047 0.072 0.023
τ=−0.2 RMSE of τ 0.056 0.062 0.089 0.191 0.056
β1=2 RMSE of β1 0.049 0.054 0.054 0.052 0.049
β2=1 RMSE of β2 0.056 0.056 0.058 0.060 0.056

Loss 3.273 45.621 64.126 71.918 3.273 3.956
MS accuracy 1.000 0.000 0.000 0.000
MA weights 0.927 0.039 0.014 0.020

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 0.028 0.858 5.851 5.232 0.057
τ=1.2 RMSE of τ 0.082 0.715 5.779 5.262 0.084
β1=2 RMSE of β1 0.056 0.965 1.069 0.920 0.090
β2=1 RMSE of β2 0.054 0.610 0.597 0.508 0.070

Loss 6.928 1575.414 1802.360 1755.770 14.316 45.112
MS accuracy 0.996 0.003 0.001 0.000
MA weights 0.915 0.043 0.022 0.020

α=1.2 n=400 RMSE of α 0.020 0.449 3.939 4.359 0.020
τ=1.2 RMSE of τ 0.053 0.379 4.041 4.406 0.053
β1=2 RMSE of β1 0.041 0.844 0.763 0.617 0.041
β2=1 RMSE of β2 0.032 0.440 0.410 0.368 0.032

Loss 8.719 3049.622 3430.742 3831.036 8.719 40.668
MS accuracy 1.000 0.000 0.000 0.000
MA weights 0.940 0.027 0.019 0.014

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.030 0.664 6.880 11.470 0.614
τ=−1.2 RMSE of τ 0.086 0.399 6.673 11.590 0.703
β1=2 RMSE of β1 0.064 0.974 1.204 1.419 0.139
β2=1 RMSE of β2 0.048 0.449 0.621 0.762 0.076

Loss 8.593 1627.103 1838.773 2096.612 20.260 57.258
MS accuracy 0.995 0.001 0.002 0.002
MA weights 0.901 0.029 0.015 0.054

α=−1.2 n=400 RMSE of α 0.020 0.423 8.093 11.373 0.020
τ=−1.2 RMSE of τ 0.055 0.334 7.750 11.166 0.055
β1=2 RMSE of β1 0.041 0.846 1.314 1.306 0.041
β2=1 RMSE of β2 0.036 0.445 0.716 0.693 0.036

Loss 9.142 3197.465 4508.588 4673.683 9.142 54.185
MS accuracy 1.000 0.000 0.000 0.000
MA weights 0.936 0.021 0.012 0.031
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Table 4: Simulation results when W1 is the true matrix and error terms are heteroskedastic

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.035 0.051 0.069 0.093 0.036
τ=0.2 RMSE of τ 0.086 0.096 0.138 0.207 0.086
β1=2 RMSE of β1 0.099 0.102 0.102 0.107 0.099
β2=1 RMSE of β2 0.085 0.088 0.093 0.097 0.085

Loss 4.322 22.655 30.453 35.390 4.714 5.015
MS accuracy 0.980 0.020 0.000 0.000
MA weights 0.874 0.067 0.035 0.023

α=0.2 n=400 RMSE of α 0.022 0.030 0.049 0.063 0.022
τ=0.2 RMSE of τ 0.055 0.059 0.090 0.171 0.055
β1=2 RMSE of β1 0.063 0.069 0.071 0.069 0.063
β2=1 RMSE of β2 0.048 0.049 0.052 0.052 0.048

Loss 3.615 42.744 63.779 77.146 3.647 4.170
MS accuracy 0.999 0.001 0.000 0.000
MA weights 0.924 0.041 0.026 0.009

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.035 0.054 0.076 0.154 0.037
τ=−0.2 RMSE of τ 0.087 0.096 0.126 0.241 0.087
β1=2 RMSE of β1 0.098 0.099 0.111 0.109 0.098
β2=1 RMSE of β2 0.077 0.112 0.120 0.143 0.077

Loss 3.968 23.513 31.682 36.454 4.532 4.890
MS accuracy 0.975 0.022 0.001 0.002
MA weights 0.870 0.070 0.024 0.036

α=−0.2 n=400 RMSE of α 0.024 0.035 0.052 0.075 0.024
τ=−0.2 RMSE of τ 0.057 0.063 0.090 0.194 0.057
β1=2 RMSE of β1 0.068 0.071 0.071 0.070 0.068
β2=1 RMSE of β2 0.056 0.057 0.060 0.064 0.056

Loss 4.438 46.739 65.444 73.118 4.476 5.100
MS accuracy 0.999 0.001 0.000 0.000
MA weights 0.926 0.035 0.018 0.021

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 0.034 0.902 6.636 6.885 0.052
τ=1.2 RMSE of τ 0.086 0.940 6.451 6.973 0.099
β1=2 RMSE of β1 0.077 0.906 1.153 0.901 0.108
β2=1 RMSE of β2 0.054 0.338 0.597 0.527 0.062

Loss 12.911 1414.080 1877.172 1964.258 22.366 54.711
MS accuracy 0.994 0.005 0.000 0.001
MA weights 0.907 0.036 0.024 0.034

α=1.2 n=400 RMSE of α 0.020 0.409 3.200 7.221 0.022
τ=1.2 RMSE of τ 0.055 0.317 3.330 7.273 0.063
β1=2 RMSE of β1 0.049 0.853 0.728 0.869 0.049
β2=1 RMSE of β2 0.031 0.402 0.382 0.467 0.035

Loss 10.173 3260.509 3574.774 4340.654 13.610 46.912
MS accuracy 0.999 0.000 0.001 0.000
MA weights 0.943 0.024 0.015 0.018

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.032 0.694 8.035 10.733 0.086
τ=−1.2 RMSE of τ 0.084 0.404 7.901 10.504 0.214
β1=2 RMSE of β1 0.074 0.912 1.218 1.270 0.107
β2=1 RMSE of β2 0.049 0.644 0.775 0.883 0.104

Loss 8.774 1410.008 1706.016 1854.547 21.983 57.736
MS accuracy 0.993 0.002 0.000 0.005
MA weights 0.895 0.025 0.018 0.062

α=−1.2 n=400 RMSE of α 0.021 0.425 8.314 11.379 0.021
τ=−1.2 RMSE of τ 0.056 0.357 7.983 11.100 0.056
β1=2 RMSE of β1 0.048 0.845 1.296 1.270 0.048
β2=1 RMSE of β2 0.036 0.447 0.703 0.674 0.036

Loss 10.699 3192.960 4480.797 4622.047 10.699 60.891
MS accuracy 1.000 0.000 0.000 0.000
MA weights 0.926 0.024 0.015 0.035
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Table 5: Simulation results when W2 +W4 is the true matrix and error terms are normal

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.087 0.079 0.151 0.239 0.130
τ=0.2 RMSE of τ 0.173 0.089 0.138 0.359 0.148
β1=2 RMSE of β1 0.126 0.077 0.078 0.090 0.077
β2=1 RMSE of β2 0.094 0.081 0.084 0.084 0.081

Loss 25.059 6.213 15.484 16.662 8.935 5.733
MS accuracy 0.014 0.736 0.118 0.132
MA weights 0.044 0.577 0.123 0.257

α=0.2 n=400 RMSE of α 0.079 0.065 0.143 0.231 0.079
τ=0.2 RMSE of τ 0.161 0.062 0.112 0.320 0.081
β1=2 RMSE of β1 0.112 0.053 0.054 0.055 0.054
β2=1 RMSE of β2 0.073 0.053 0.057 0.057 0.053

Loss 45.843 9.097 30.670 32.313 10.615 7.490
MS accuracy 0.002 0.929 0.047 0.022
MA weights 0.025 0.659 0.101 0.215

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.072 0.068 0.139 0.203 0.149
τ=−0.2 RMSE of τ 0.221 0.127 0.166 0.222 0.141
β1=2 RMSE of β1 0.115 0.079 0.090 0.090 0.083
β2=1 RMSE of β2 0.085 0.080 0.086 0.099 0.083

Loss 25.247 9.137 12.085 19.541 11.501 7.691
MS accuracy 0.033 0.574 0.264 0.129
MA weights 0.065 0.539 0.183 0.213

α=−0.2 n=400 RMSE of α 0.070 0.067 0.120 0.179 0.127
τ=−0.2 RMSE of τ 0.217 0.096 0.133 0.142 0.103
β1=2 RMSE of β1 0.118 0.051 0.051 0.058 0.052
β2=1 RMSE of β2 0.060 0.051 0.053 0.074 0.056

Loss 65.561 18.298 30.144 34.524 22.219 11.016
MS accuracy 0.001 0.701 0.130 0.168
MA weights 0.016 0.588 0.086 0.311

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 0.878 0.419 1.203 1.460 0.513
τ=1.2 RMSE of τ 0.470 0.819 0.887 0.562 0.812
β1=2 RMSE of β1 1.356 0.199 0.901 0.539 0.347
β2=1 RMSE of β2 0.644 0.171 0.675 0.384 0.240

Loss 2924.891 307.403 7413.951 1180.077 469.299 427.650
MS accuracy 0.048 0.911 0.009 0.032
MA weights 0.096 0.732 0.019 0.152

α=1.2 n=400 RMSE of α 0.938 0.186 1.198 1.682 0.206
τ=1.2 RMSE of τ 0.578 0.501 0.655 0.566 0.502
β1=2 RMSE of β1 1.091 0.191 0.859 0.589 0.197
β2=1 RMSE of β2 0.610 0.075 0.756 0.319 0.080

Loss 7844.534 551.384 27743.911 3853.553 576.453 637.704
MS accuracy 0.002 0.994 0.001 0.003
MA weights 0.030 0.828 0.015 0.128

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.898 0.445 0.219 1.111 0.989
τ=−1.2 RMSE of τ 0.989 0.295 0.856 1.045 0.916
β1=2 RMSE of β1 1.345 0.266 0.286 0.486 0.599
β2=1 RMSE of β2 0.561 0.233 0.287 0.451 0.427

Loss 9263.240 2843.288 5380.361 5009.639 4957.023 4512.994
MS accuracy 0.097 0.319 0.102 0.482
MA weights 0.118 0.344 0.082 0.456

α=−1.2 n=400 RMSE of α 1.019 0.304 0.119 0.763 0.649
τ=−1.2 RMSE of τ 1.248 0.396 0.728 0.711 0.611
β1=2 RMSE of β1 1.349 0.120 0.141 0.508 0.467
β2=1 RMSE of β2 0.658 0.066 0.090 0.368 0.311

Loss 14333.386 4178.053 5869.305 5241.881 4334.436 3802.430
MS accuracy 0.021 0.423 0.120 0.436
MA weights 0.044 0.429 0.106 0.421
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7 An empirical illustration

Ertur and Koch (2007) explore the impact of spillover effects by incorporating technological interde-

pendence into a growth model. They estimate a SAR model and find significant spatial externalities.

In this empirical illustration, we discuss the choice of spatial weights matrix for the MESS version

of their model.

Ertur and Koch (2007) use the following SAR specification:

ln y = λW ln y + β0 + β1 ln s+ β2 ln(n + 0.05ln) + β3W ln s+ β4W ln(n + 0.05ln) + ε, (7.1)

where y is the n × 1 vector of the output per-worker, s is the n × 1 vector of fraction of savings,

n is the n× 1 vector of exogenous growth rate of labor, ln is the n× 1 vector of ones, and ε is the

n × 1 vector of disturbance terms. The sum of the annual rate of depreciation of physical capital

and the balanced growth rate of capital-output ratio is set to 0.05, which is a common assumption

in the economic growth literature. Ertur and Koch (2007) consider two spatial weights matrices (i)

W κ
1 = (wκ1ij) and (ii) W κ

2 = (wκ2ij), whose elements are specified as

wκ1ij =

0 if i = j,

d−κij if i 6= j,
wκ2ij =

0 if i = j,

e−κ dij if i 6= j,
(7.2)

where dij is the great-circle distance between country capitals, and κ is a constant that controls the

rate of decline in the magnitude of the weights when dij increases. Both weights matrices are row

normalized. Ertur and Koch (2007) chooses κ = 2 (i.e., W κ=2
1 and W κ=2

2 ), and show that there

exists significant spillover effects in the output per-worker.

To implement our model selection and model averaging procedures, we generate six candidates

for the spatial weights matrices, corresponding to κ ∈ {2, 1, 0.5}. We consider a cross-sectional data

set of 91 countries, and estimate the following MESS version of (7.1).

eαW ln y = δ0 + δ1 ln s+ δ2 ln(n + 0.05ln) + δ3W ln s+ δ4W ln(n + 0.05ln) + ν, (7.3)

where ν is the n × 1 vector of disturbance terms. We compute our criterion function under each

of the six candidate weights matrices. We also compute the MA weights for the first three, the

last three, and all six spatial weights matrices as a group, respectively. We report the coefficient

estimates of (7.3), and those reported in Ertur and Koch (2007) from the estimation of (7.1).

Table 6 reports the estimation results.11 When we use W κ=2
1 , the estimate of λ is 0.74 under the

SAR, and the estimate of α is −0.864 under the MESS.12 When the spatial weights matrix is W κ=2
2 ,

these estimates are 0.658 and −0.744 in the SAR and MESS, respectively. When we use W κ=2
1

11We do not report the standard errors (or the confidence intervals) in this table, because the large sample distribu-
tion of the MS and MA estimators are not standard (Leeb and Pötscher, 2005). Also, our aim here is on illustrating
the proposed selection and averaging schemes, not on statistical inference.

12Note that, when the spatial weights matrix is row normalized, the spatial coefficients α in the MESS and λ in
the SAR have the following relation: λ = 1− eα (Debarsy et al., 2015).
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and W κ=2
2 , each specification reports similar estimates for the other parameters, which can be seen

by comparing column (1) with (2), and column (3) with (6). In the case of W κ=1
1 , W κ=0.5

1 , W κ=1
2

and W κ=0.5
2 , the estimates reported under MESS varies as we are using different spatial weights

matrices. The results in the table indicate that the criterion function (denoted by “Criterion”)

associated with W κ=1
2 in column (7) obtains the smallest value out of all 6 candidates. The last

two rows in the table show our MA results. If we compute the MA weights for the six candidates

together, W κ=1
2 has the model weight of 1.000, which means that all weights are placed on W κ=1

2 .13

This result is consistent with our MS result based on the value of the criterion function. If we

compute the MA weights for W1 group (columns (3) to (5)) and W2 group (columns (6) to (8)),

separately, we find that W κ=1
1 receives the largest MA weight (0.657) in the first group, and W κ=1

2

receives the largest MA weight (1.000) in the second group. Overall, our MS and MA results show

that W κ=1
2 can be the optimal spatial weights matrix out of the six candidates for this application

(note that the optimality is defined here in the sense of Theorem 1).

The parameter estimates in Table 6 are not directly comparable because of the spatial lags

of the endogenous and exogenous variables in the model (Arbia et al., 2020; LeSage and Pace,

2009). In the context of (7.3), the marginal effects of exogenous variables are ∂ ln y/∂ ln s =

e−αW (δ1In + δ3W ) and ∂ ln y/∂ ln(n+ 0.05ln) = e−αW (δ2In + δ4W ). To ease the interpretation of

these marginal effects, LeSage and Pace (2009) suggest three impact measures: (i) the average direct

effect, (ii) the average total effect and (iii) the average indirect effect. The average direct effect of

ln s is defined by tr
(
e−αW (δ1In + δ3W )

)
/n, the average total effect by l

′
n

(
e−αW (δ1In + δ3W )

)
ln/n,

and the average indirect effect by l
′
n

(
e−αW (δ1In + δ3W )

)
ln/n− tr

(
e−αW (δ1In + δ3W )

)
/n. These

summary measures can be defined similarly for ln(n+ 0.05ln). Table 7 reports the impact measure

results for our empirical illustration. The results in this table indicate that the impact measure

estimates vary across different spatial weight matrices. It is instructive to compare the impact

measure estimates reported in the seventh column under the optimal W κ=1
2 with those reported in

the first two columns. Under our optimal W κ=1
2 , we obtain relatively smaller average direct effect

of ln s than those reported in the first two columns. On the other hand, we obtain relatively larger

average total and indirect effects of ln s than those reported in the first two columns. In the case

of ln(n+ 0.05ln), all impact measures under W κ=1
2 are relatively smaller in magnitude than those

reported in the first two columns.

13The MA estimator using a Mallows type criterion function can yield sparse weights vectors in finite samples for
both underfitted and overfitted models. See Feng et al. (2020) for a detailed discussion on the sparsity of Mallows
model averaging estimator.
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Table 6: Estimation results under different spatial weights matrices

SAR MESS

(1) (2) (3) (4) (5) (6) (7) (8)

W κ=2
1 W κ=2

2 W κ=2
1 W κ=1

1 W κ=0.5
1 W κ=2

2 W κ=1
2 W κ=0.5

2

Constant 0.988 0.530 2.003 1.652 13.490 2.371 2.902 3.465
ln s 0.825 0.792 0.960 0.960 0.867 0.904 0.764 0.776
ln(n + 0.05) −1.498 −1.451 −1.745 −1.641 −1.307 −1.648 −1.300 −1.299
W ln s −0.322 −0.372 −0.284 −0.032 2.681 −0.221 0.060 0.301
W ln(n + 0.05) 0.571 0.137 0.511 0.526 3.373 0.364 0.291 0.658
W ln y 0.740 0.658 −0.864 −1.240 −2.597 −0.744 −0.865 −1.146

Criterion 51.510 51.084 157.264 50.746 44.683 49.366
6 weights 0.000 0.000 0.000 0.000 1.000 0.000
3 weights 0.343 0.657 0.000 0.000 1.000 0.000

Table 7: Impact measures under different spatial weights matrices

SAR MESS

(1) (2) (3) (4) (5) (6) (7) (8)

W κ=2
1 W κ=2

2 W κ=2
1 W κ=1

1 W κ=0.5
1 W κ=2

2 W κ=1
2 W κ=0.5

2

Average direct effects

ln s 0.908 0.940 0.981 0.998 1.362 0.925 0.814 0.834
ln(n + 0.05) −1.652 −1.712 −1.786 −1.670 −0.971 −1.695 −1.331 −1.298

Average total effects

ln s 1.935 1.935 1.602 3.207 47.625 1.438 1.959 3.389
ln(n + 0.05) −3.565 −3.565 −2.928 −3.853 27.744 −2.702 −2.396 −2.017

Average indirect effects

ln s 1.027 0.995 0.621 2.210 46.264 0.513 1.145 2.555
ln(n + 0.05) −1.913 −1.853 −1.142 −2.183 28.715 −1.007 −1.066 −0.719
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8 Conclusion

In this paper, we focused on a specification problem in terms of choosing spatial weights matrices for

the MESS models. We proposed a model selection scheme using a Mallows type criterion function

and showed that the resulting MS estimator is asymptotically optimal. We also showed that when

the data generating process involves spatial effects, the MS estimator chooses the true weights

matrix with probability approaching one in large samples. We further proposed a model averaging

scheme that compromises across a set of candidate models. The resulting MA estimator is also

asymptotically optimal and can provide assurance against selecting the incorrect model in finite

samples. Our extensive Monte Carlo simulations showed that the proposed MS and MA estimators

perform satisfactorily in finite samples. In an illustration from the empirical growth literature, we

revisit a model of spillover effects and show how the proposed MS and MA methods can be helpful

in sensitivity or robustness checks. These methods thus are useful for researchers who want to select

an optimal spatial weights matrix out of a set of candidates and construct an optimal weights of

these candidates in the MESS models. We only considered the first order and higher-order MESS

models with cross-sectional data. In future studies, our approach can be extended to the panel

data versions of the MESS with individual or interactive fixed effects. It will also be interesting

to consider these procedures for the heterogeneous coefficients MESS models. In our analysis, we

assumed that the set of spatial weights matrices contains only the exogenous candidates. It will

be interesting to extend the MS and MA procedures to the MESS models with endogenous spatial

weights matrices. We leave these extensions for future studies.
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Appendix

A Some useful lemmas

In this section, we provide some lemmas for easy reference. The first lemma is the well-known

Stein’s lemma, and can be found in Stein (1981), the second lemma in, e.g., Gao et al. (2019) and

Zhang (2021), and the third and fourth lemma in Debarsy et al. (2015). We use the first lemma

to motivate the derivation of our criterion function. The second lemma is used in the proofs of

Theorems 1 and 3. The third lemma shows that certain matrices are bounded in both row and

column sum norms, and the fourth lemma provides the probability orders of certain terms.

Lemma A.1. Let Z be a random variable such that Z ∼ N(0, 1), and let f : R → R be an

indefinite integral of the Lebesgue measurable function f
′
. Suppose further that E

∣∣f ′(Z)
∣∣ < ∞.

Then E
(
f
′
(Z)
)

= E
(
Zf(Z)

)
.

Lemma A.2. Let s̃ = argmins∈{1,...,S} (Ls + as + b), where as is a term related to s and b is a

term unrelated to s. If sups∈{1,...,S}
|as|
Rs

= op(1) and sups∈{1,...,S}

∣∣∣Ls−RsRs

∣∣∣ = op(1), and there exists a

positive constant c and a positive integer N such that when n ≥ N, infs∈S Rs ≥ c > 0 almost surely,

then Ls̃
infs∈{1,...,S} Ls

→ 1 in probability.

Lemma A.3. Assume that Assumptions 1 and 2 hold. Then, eτM and eαW are bounded in both

row and column sum norms uniformly in τ and α, respectively.

Lemma A.4. Assume that Assumption 4 holds. Let A be an n× n matrix that is bounded in both

row and column sum norms, and C be an n × p matrix whose elements are uniformly bounded.

Then,

1. ε
′
Aε = Op(n), E(ε

′
Aε) = O(n), n−1ε

′
Aε = n−1E(ε

′
Aε) + op(1), and n−1/2C

′
Aε = Op(1).

2. ‖ec̃A − In‖∞ = op(1) and ‖ec̃A − In‖1 = op(1), where c̃ = op(1).

B Derivation of (3.6) and (3.7)

For a given (αs, τs) value, the first order conditions of (2.3) with respect to β and σ2 yield

β̂s =
(
X ′eτsM

′
seτsMsX

)−1
X
′
eτsM

′
seτsMseαsWsy, (B.1)

σ̂2
s =

1

n

∥∥∥eτsMs(eαsWsy −Xβ̂s)
∥∥∥2
. (B.2)

Substituting (B.1) and (B.2) into (2.3), we obtain the following concentrated log-likelihood function

under sth model:

`cs = − ln
∥∥GseτWseαsWsy

∥∥2
,
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where we ignore the constant terms. Then, the conditions ∂`cs(α̂s,τ̂s)
∂α̂s

= 0 and ∂`cs(α̂s,τ̂s)
∂τ̂s

= 0 imply

that

−
∥∥∥Ĝseτ̂sMseα̂sWsy

∥∥∥−2
(y
′
eα̂sW

′
seτ̂sM

′
sĜse

τ̂sMsWse
α̂sWsy) = 0, (B.3)

−
∥∥∥Ĝseτ̂sMseα̂sWsy

∥∥∥−2
(
y
′
eα̂sW

′
seτ̂sM

′
s

(
2ĜsMs +

∂Ĝs
∂τ̂ s

)
eτ̂sMseα̂sWsy

)
= 0. (B.4)

Taking the derivative of (B.3) with respect to y for a given τ̂ s, and the derivative of (B.4) with

respect to y for a given α̂s, we obtain respectively

− 2a1

(
A1 + a1

∂α̂s
∂y

)∥∥∥Ĝseτ̂sMseα̂sWsy
∥∥∥−2

+A2 +A3 + (a2 + a3)
∂α̂s
∂y

= 0, (B.5)

− b1
(

2B1 + b1
∂τ̂ s
∂y

)∥∥∥Ĝseτ̂sMseα̂sWsy
∥∥∥−2

+ (2b2 + b3)
∂τ̂ s
∂y

+ 2B2 = 0. (B.6)

Then, (3.6) and (3.7) can be obtained by solving (B.5) and (B.6) for ∂α̂s
∂y and ∂τ̂s

∂y .

C Expressions for MESS(1, 0) and MESS(0, 1)

In this section, we consider two special cases of MESS(1, 1), namely, MESS(1, 0) and MESS(0, 1).

Our results in Theorems 1–3 are also valid for these special cases. Here, our aim is to provide the

required quantities for the model selection and averaging procedures. We start with the MESS(1, 0),

which is given by

eαW y = Xβ + ε, (C.1)

with a reduced form of y = e−αWXβ + e−αW ε, implying that µ = E(y) = e−αWXβ and Ω =

σ2e−αW e−αW
′
. The quasi log-likelihood function for the sth model is then given by

`s = −n
2

ln 2πσ2 − 1

2σ2

∥∥eαWsy −Xβ
∥∥2
. (C.2)

For a given value α̂s, the estimator for µs is subsequently given by µ̂s = e−α̂sWsX(X
′
X)−1X

′
eα̂sWsy =

P̃sy, where P̃s = e−α̂sWsX(X
′
X)−1X

′
eα̂sWs . Then, the feasible version of our selection criterion

function takes the following form.

Ĉs =
∥∥∥P̃sy − y∥∥∥2

+ 2

(
tr
(
P̃sΩ̂

)
+
∂α̂s
∂y′

Ω̂
∂P̃s
∂α̂s

y

)
, (C.3)
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where ∂P̃s
∂α̂s

= −WsP̃s + P̃sWs and ∂α̂s
∂y = −2a1A1−‖Ĝseα̂sWsy‖2(A2+A3)

2a21−‖Ĝseα̂sWsy‖
2
(a2+a3)

, with

a1 = y
′
eα̂sW

′
s Ĝse

α̂sWsWsy, a2 = y
′
W
′
se
α̂sW

′
s Ĝse

α̂sWsWsy, a3 = y
′
eα̂sW

′
s Ĝse

α̂sWsW 2
s y,

A1 = eα̂sW
′
s Ĝse

α̂sWsy, A2 = eα̂sW
′
s Ĝse

α̂sWsWsy and A3 = W
′
se
α̂sW

′
s Ĝse

α̂sWsy,

and G = In − PX = In −X(X
′
X)−1X

′
. The model averaging estimator for µ is given by µ̂(w) =

P̃ (w)y =
∑S

s=1wsP̃sy with a feasible weights choice criterion function stated as

Ĉ(w) =
∥∥∥P̃ (w)y − y

∥∥∥2
+ 2

(
tr
(
P̃ (w)Ω̂

)
+

S∑
s=1

ws
∂α̂s
∂y′

Ω̂
∂P̃s
∂α̂s

y

)
. (C.4)

Next, we consider the MESS(0, 1), which is specified as

y = Xβ + u, eτMu = ε, (C.5)

with µ = E(y) = Xβ and Ω = σ2e−τMe−τM
′
. The quasi log-likelihood for the sth model is given

by

`s = −n
2

ln 2πσ2 − 1

2σ2

∥∥eτMs(y −Xβ)
∥∥2
. (C.6)

The estimator for µs is given by µ̂s = X(X
′
eτ̂sM

′
seτ̂sMsX)−1X

′
eτ̂sM

′
seτ̂sMsy = P̃sy, where P̃s =

X
(
X
′
eτ̂sM

′
seτ̂sMsX

)−1
X
′
eτ̂sM

′
seτ̂sMs . In this case, the feasible version of our selection criterion

function is

Cs =
∥∥∥P̃sy − y∥∥∥2

+ 2

(
tr
(
P̃sΩ̂

)
+
∂τ̂ s
∂y′

Ω̂
∂P̃s
∂τ̂ s

y

)
, (C.7)

where ∂P̃s
∂τ̂s

= e−τ̂sMsP̂s(Ms +M
′
s)(In − P̂s)eτ̂sMs and ∂τ̂s

∂y = − 2b1B1−2‖Ĝseτ̂sMsy‖2B2

b21−‖Ĝseτ̂sMsy‖
2
(2b2+b3)

, with

b1 = y
′
eτ̂sM

′
s

(
2ĜsMs +

∂Ĝs
∂τ̂ s

)
eτ̂sMsy, b2 = y

′
eτ̂sM

′
s

(
2ĜsMs +

∂Ĝs
∂τ̂ s

)
Mse

τ̂sMsy,

b3 = y
′
eτ̂sM

′
s

(
2
∂Ĝs
∂τ̂ s

Ms +
∂2Ĝs

∂τ̂2
s

)
eτ̂sMsy, B1 = eτ̂sM

′
sĜse

τ̂sMsy and

B2 = eτ̂sM
′
s

(
2ĜsMs +

∂Ĝs
∂τ̂ s

)
eτ̂sMsy.
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The model averaging estimate for µ(w) is given by µ̂(w) = P̃ (w)y =
∑S

s=1wsP̃sy with the feasible

weights choice criterion function,

Ĉ(w) =
∥∥∥P̃ (w)y − y

∥∥∥2
+ 2

(
tr
(
P̃ (w)Ω̂

)
+

S∑
s=1

ws
∂τ̂ s
∂y′

Ω̂
∂P̃s
∂τ̂ s

y

)
. (C.8)

D Expressions for the GMM approach

In this section, we derive the explicit expressions for ∂α̃s
∂y′

and ∂τ̃s
∂y′

. According to Debarsy et al.

(2015), the feasible best GMME is not available under an unknown form of heteroskedasticity.

However, an optimal GMME is still available which uses the following vector of moment functions:

g(γ) =
1

n

(
ε
′
(γ)P ∗1 ε(γ), ε

′
(γ)P ∗2 ε(γ), ε

′
(γ)F ∗

)′
,

where P ∗1 = eτMWe−τM − Diag(eτMWe−τM ), P ∗2 = M , F ∗ = (eτMWXβ, eτMX), and Diag(A)

denotes the n× n diagonal matrix consisting of the diagonal elements of A.

Let φ = (α, τ)
′
, P = eτMX

(
X
′
eτM

′
eτMX

)−1
X
′
eτM

′
and G = In − P . Given φ, the estimate

for β is β̂(φ) =
(
X
′
eτM

′
eτMX

)−1
X
′
eτM

′
eτMeαW y. The least square-type residual vector is then

given by εx(φ) = eτM
(
eαW y −Xβ̂(φ)

)
= GeαW eτMy. Then, the concentrated set of moment

functions is given by

g(φ) =
1

n

(
ε
′
x(φ)P ∗1 εx(φ), ε

′
x(φ)P ∗2 εx(φ), ε

′
x(φ)F ∗

)′
.

The GMM objective function is given by Ψ(φ) = g
′
(φ)V g(φ), where V is an arbitrary weighting

matrix. Note that an optimal GMME will be based on the weight matrix Ωx = Var (g(φ)). Consider

the first-order conditions of the objective function ∂Ψ(φ)
∂α̃s

= 0 and ∂Ψ(φ)
∂τ̃s

= 0. The derivatives of

these conditions with respect to y are

∂ (∂Ψ(φ)/∂α̃s)

∂y′
+
∂ (∂Ψ(φ)/∂α̃s)

∂α̃s

∂α̃s
∂y′

= 0, (D.1)

∂ (∂Ψ(φ)/∂τ̃s)

∂y′
+
∂ (∂Ψ(φ)/∂τ̃s)

∂τ̃s

∂τ̃s
∂y′

= 0. (D.2)

Then, using (D.1) and (D.2), we obtain

∂α̃s
∂y′

= −
(
∂ (∂Ψ(φ)/∂α̃s)

∂α̃s

)−1(∂ (∂Ψ(φ)/∂α̃s)

∂y′

)
, (D.3)

∂τ̃s
∂y′

= −
(
∂ (∂Ψ(φ)/∂τ̃s)

∂τ̃s

)−1(∂ (∂Ψ(φ)/∂τ̃s)

∂y′

)
. (D.4)
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For the terms in (D.3) and (D.4), we can derive the following general expressions:

∂Ψ(φ)

∂α
= g

′
(φ)V s∂g(φ)

∂α
, (D.5)

∂ (∂Ψ(φ)/∂α)

∂α
=
∂g
′
(φ)

∂α
V s∂g(φ)

∂α
+ g

′
(φ)V s∂g

2(φ)

∂α2
, (D.6)

∂ (∂Ψ(φ)/∂α)

∂y′
=
∂g
′
(φ)

∂α
V s∂g(φ)

∂y′
+ g

′
(φ)V s∂g

2(φ)

∂α∂y′
, (D.7)

∂Ψ(φ)

∂τ
= g

′
(φ)V s∂g(φ)

∂τ
, (D.8)

∂ (∂Ψ(φ)/∂τ)

∂τ
=
∂g
′
(φ)

∂τ
V s∂g(φ)

∂τ
+ g

′
(φ)V s∂g

2(φ)

∂τ2
, (D.9)

∂ (∂Ψ(φ)/∂τ)

∂y′
=
∂g
′
(φ)

∂τ
V s∂g(φ)

∂y′
+ g

′
(φ)V s∂g

2(φ)

∂τ∂y′
. (D.10)

Using the vector of moment functions g(φ), the terms in (D.5) through (D.10) can be derived as

∂g(φ)

∂α
=

ε
′
x(φ)P ∗s1 GeτMeαWWy

ε
′
x(φ)P ∗s2 GeτMeαWWy

F ∗s
′
GeτMeαWWy

 , (D.11)

∂g(φ)

∂τ
=

 ε
′
x(φ)P ∗s1

∂εx(φ)
∂τ

ε
′
x(φ)P ∗s2

∂εx(φ)
∂τ

F ∗
′
GMeτMeαW y

 , (D.12)

∂g(φ)

∂y′
=

ε
′
x(φ)P ∗s1 GeτMeαW

ε
′
x(φ)P ∗s2 GeτMeαW

F ∗s
′
GMeτMeαW

 , (D.13)

∂2g(φ)

∂α∂y′
=

y
′
W
′
eαW

′
eτM

′
GP ∗s1 GeτMeαW + ε

′
x(φ)P ∗s1 GeτMeαWW

y
′
W
′
eαW

′
eτM

′
GP ∗s2 GeτMeαW + ε

′
x(φ)P ∗s2 GeτMeαWW

F ∗s
′
GeτMeαWW

 , (D.14)

∂2g(φ)

∂τ∂y′
=


∂ε
′
x(φ)
∂τ P ∗s1 eαW eτMG+ ε

′
x(φ)P ∗s1

∂2εx(φ)
∂τ∂y′

∂ε
′
x(φ)
∂τ P ∗s2 eαW eτMG+ ε

′
x(φ)P ∗s2

∂2εx(φ)
∂τ∂y′

F ∗s
′
GMeτMeαW

 , (D.15)
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∂2g(φ)

∂α2
=

y
′
W
′
eαW

′
eτM

′
GP ∗s1 GeτMeαWWy + ε

′
x(φ)P ∗s1 GeτMeαWW 2y

y
′
W
′
eαW

′
eτM

′
GP ∗s2 GeτMeαWWy + ε

′
x(φ)P ∗s2 GeτMeαWW 2y

F ∗s
′
GeτMeαWW 2y

 , (D.16)

and

∂2g(φ)

∂τ2
=


y
′
eαW

′
eτM

′
M
′
GP ∗s1

∂εx(φ)
∂τ + ε

′
x(φ)P ∗s1

((
∂G
∂τM −

∂2P
∂τ2

)
eτMeαW y + ∂ε2x(φ)

∂τ2

)
y
′
eαW

′
eτM

′
M
′
GP ∗s2

∂εx(φ)
∂τ + ε

′
x(φ)P ∗s2

((
∂G
∂τM −

∂2P
∂τ2

)
eτMeαW y + ∂ε2x(φ)

∂τ2

)
F ∗
′
GM2eτMeαW y

 , (D.17)

where ∂εx(φ)
∂τ = (GM − MP − PM sP − PM

′
)eτMeαW y, ∂2εx(φ)

∂τ∂y′
= (GM − MP − PM sP −

PM
′
)eτMeαW , ∂ε

2
x(φ)
∂τ2

=
(
GM −MP − PM sP − PM ′

)
MeτMeαW y, ∂G∂τ = −MP −PM sP −PM ′

and ∂2P
∂τ2

= −
(
M(GM −MP − PM sP − PM ′

) + 2(GM −MP − PM sP − PM ′
)M sP + (GM −

MP − PM sP − PM ′
)M

′)
. These expressions can be substituted back into (D.5) through (D.10),

which in turn can be substituted into (D.3) and (D.4) to get the explicit expressions of the two

derivatives.

E Proofs of Theorems

E.1 Proof of Theorem 1

First observe that the first term in the definition of Ĉs in (3.8) satisfies the following equation:∥∥∥P̃sy − y∥∥∥2
=
∥∥∥P̃sy − µ+ µ− y

∥∥∥2

= Ls + ‖ε̃‖2 − 2ε̃
′
(P̃sy − µ) = Ls + ‖ε̃‖2 − 2ε̃

′
(
P̃s(µ+ ε̃)− µ

)
= Ls + ‖ε̃‖2 + 2ε̃

′
H̃sµ− 2ε̃

′
P̃sε̃, (E.1)

where H̃s = In − P̃s.
Note here ‖ε̃‖2 is irrelevant for s. Thus, the selected model ŝ also minimizes the following term:

Ls + 2ε̃H̃sµ+ 2
(

tr
(
P̃sΩ̂

)
− ε̃′P̃sε̃

)
+ 2

(
∂α̂s
∂y

Ω̂
∂P̃s
∂α̂s

y +
∂τ̂ s
∂y

Ω̂
∂P̃s
∂τ̂ s

y

)
. (E.2)
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By Lemma A.2, we need to show the following results:

sup
s
R∗−1
s

∣∣∣ε̃′H̃sµ
∣∣∣ = op(1), (E.3)

sup
s
R∗−1
s

∣∣∣tr(P̃sΩ̂)− ε̃′P̃sε̃
∣∣∣ = op(1), (E.4)

sup
s
R∗−1
s

∣∣∣∣∣∂α̂s∂y′
Ω̂
∂P̃s
∂α̂s

y

∣∣∣∣∣ = op(1), (E.5)

sup
s
R∗−1
s

∣∣∣∣∣∂τ̂ s∂y′
Ω̂
∂P̃s
∂τ̂ s

y

∣∣∣∣∣ = op(1), (E.6)

sup
s
R∗−1
s |Ls −R∗s| = op(1). (E.7)

For (E.3), first observe R∗−1
s

∣∣∣ε̃′H̃sµ
∣∣∣ ≤ R∗−1

s

∣∣∣ε̃′H∗sµ∣∣∣ + R∗−1
s

∣∣∣ε̃′(P ∗s − P̃s)µ∣∣∣, where H∗s = In − P ∗s .

For the first term, we have

P

(
sup
s
R∗−1
s

∣∣∣ε̃′H∗sµ∣∣∣ > η

)
≤

S∑
s=1

E
((

ε̃
′
H∗sµ

)2G
)

R∗2Gs η2G
≤ c1η

−2G
S∑
s=1

‖H∗sµ‖2GR∗−2G
s

≤ c1η
−2G

S∑
s=1

R∗−Gs = o(1),

for some constant terms c1 and G, where the first inequality follows from the generalized Cheby-

shev’s inequality, the second follows from Assumption 4 and Theorem 2 in Whittle (1960), the

third follows from the fact that R∗s = E ‖µ∗s − µ‖
2 = tr(P ∗s ΩP ∗

′
s ) + ‖H∗sµ‖

2 ≥ ‖H∗sµ‖
2 and the last

equality follows from Assumption 5. For the second term, using the Cauchy-Schwarz inequality

and the bounds of Rayleigh quotient, we obtain

sup
s
R∗−1
s

∣∣∣ε̃′(P ∗s − P̃s)µ∣∣∣ ≤ sup
s
R∗−1
s ‖ε̃‖

∥∥∥(P ∗s − P̃s)µ
∥∥∥ ≤ ζ−1

n ‖ε̃‖ sup
s
γmax(P ∗s − P̃s)‖µ‖

= op(1),

by Assumptions 6 and 8, and the fact that ‖ε̃‖ = Op(n
1/2), which is ensured by Lemma A.4.

For (E.4), first note that
∣∣∣tr(P̃sΩ̂)− ε̃′P̃sε̃

∣∣∣ ≤ ∣∣∣tr(P ∗s Ω)− ε̃′P ∗s ε̃
∣∣∣+∣∣∣tr(P ∗s (Ω̂− Ω)

)∣∣∣+∣∣∣tr((P̃s − P ∗s )Ω̂
)∣∣∣+∣∣∣ε̃′(P̃s − P ∗s )ε̃

∣∣∣. Define Ds = P ∗s e
−αW e−τM . Then, for the first term, we have

P

(
sup
s
R∗−1
s

(
tr(P ∗s Ω)− ε̃′P ∗s ε̃

)
> η

)
≤

S∑
s=1

E
((

tr(P ∗s Ω)− ε̃′P ∗s ε̃
)2G

)
R∗2Gs η2G

≤ c2

S∑
s=1

(
tr(DsD

′
s)
)G

R∗2Gs η2G

≤ c′2
S∑
s=1

R∗−Gs = o(1),
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for some constants c2 and c
′
2, where the first inequality follows from generalized Chebyshev’s

inequality, the second from Assumption 4 and Theorem 2 in Whittle (1960), the third from

σ2tr(DsD
′
s) = tr(P ∗s ΩP ∗

′
s ) ≤ R∗s and the fourth equality from Assumption 5.

To find the order of the second term, supsR
∗−1
s

∣∣∣tr(P ∗s (Ω̂− Ω)
)∣∣∣, note that for two n×nmatrices

∆1 and ∆2, we have γmax(∆1∆2) ≤ γmax(∆1)γmax(∆2) and γmax(∆1 + ∆2) ≤ γmax(∆1) +γmax(∆2)

(Li, 1987). Since γmax(∆1) ≤ ‖∆1‖ for any matrix norm ‖·‖, and γmax(eτ
∗
sMsX(X

′
eτ
∗
sM
′
seτ
∗
sMsX)−1

X
′
eτ
∗
sM
′
s) = 1, it follows from Lemma A.3 that

sup
s
γmax(P ∗s ) ≤ sup

s
γmax(e−α

∗
sWs) sup

s
γmax(e−τ

∗
sMs) sup

s
γmax(eα

∗
sWs) sup

s
γmax(eτ

∗
sMs) = O(1),

(E.8)

sup
s
γmax(H∗s ) ≤ 1 + sup

s
γmax(P ∗s ) = O(1). (E.9)

Thus,

sup
s
R∗−1
s

∣∣∣tr(P ∗s (Ω̂− Ω)
)∣∣∣ ≤ ζ−1

n sup
s

(
γmax(Ω̂− Ω)γmax(P ∗s )rank(P ∗s )

)
≤ kζ−1

n

(
γmax(Ω̂) + γmax(Ω)

)
sup
s
γmax(P ∗s ) = op(1),

by (E.8), Assumption 8 and Lemma A.3. For the third term, supsR
∗−1
s

∣∣∣tr(P̃s − P ∗s )Ω̂
∣∣∣, we have

sup
s
R∗−1
s

∣∣∣tr((P̃s − P ∗s )Ω̂
)∣∣∣ ≤ ζ−1

n sup
s

(
γmax(P̃s − P ∗s )γmax(Ω̂)rank(P̃s − P ∗s )

)
≤ 2kζ−1

n sup
s
γmax(P̃s − P ∗s )γmax(Ω̂) = op(1),

by Assumption 8 and Lemma A.3. Finally, for the fourth term, using the bounds of Rayleigh

quotient, we obtain supsR
−1∗
s

∣∣∣ε̃′(P̃s − P ∗s )ε̃
∣∣∣ ≤ ζ−1

n ‖ε̃‖
2 sups γmax(P̃s−P ∗s ) = op(1) by Assumption

8 and Lemma A.4.

Next, we consider the results in (E.5) and (E.6). It is easy to see that supsR
∗−1
s

∣∣∣∂α̂s
∂y′

Ω̂∂P̃s
∂α̂s

y
∣∣∣ ≤

ζ−1
n sups

∣∣∣∂α̂s
∂y′

Ω̂∂P̃s
∂α̂s

y
∣∣∣ = op(1) by Assumption 7. Similarly, we can obtain the result in (E.6).
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Now consider the result in (E.7). First note that we can express |Ls −R∗s| as

|Ls −R∗s| =
∣∣∣∣∥∥∥P̃sy − µ∥∥∥2

− tr(P ∗s ΩP ∗
′

s )− ‖H∗sµ‖
2

∣∣∣∣
=

∣∣∣∣ ∥∥∥(P̃s − P ∗s )µ
∥∥∥2

+
∥∥∥(P̃s − P ∗s )ε̃

∥∥∥2
+ ‖P ∗s ε̃‖

2 − tr(P ∗s ΩP ∗
′

s ) + 2µ
′
(P̃s − P ∗s )

′
(P̃s − P ∗s )ε̃

+ 2µ
′
(P̃s − P ∗s )

′
P ∗s ε̃− 2µ

′
(P̃s − P ∗s )

′
H∗sµ+ 2ε̃

′
(P̃s − P ∗s )

′
P ∗s ε̃− 2ε̃

′
(P̃s − P ∗s )

′
H∗sµ

− 2ε̃
′
P ∗
′

s H
∗
sµ

∣∣∣∣
≤
∥∥∥(P̃s − P ∗s )µ

∥∥∥2
+
∥∥∥(P̃s − P ∗s )ε̃

∥∥∥2
+
∣∣∣‖P ∗s ε̃‖2 − tr(P ∗s ΩP ∗

′
s )
∣∣∣+ 2

∣∣∣µ′(P̃s − P ∗s )
′
(P̃s − P ∗s )ε̃

∣∣∣
+ 2

∣∣∣µ′(P̃s − P ∗s )
′
P ∗s ε̃

∣∣∣+ 2
∣∣∣µ′(P̃s − P ∗s )

′
H∗sµ

∣∣∣+ 2
∣∣∣ε̃′(P̃s − P ∗s )

′
P ∗s ε̃

∣∣∣+ 2
∣∣∣ε̃′(P̃s − P ∗s )

′
H∗sµ

∣∣∣
+ 2

∣∣∣ε̃′P ∗′s H∗sµ∣∣∣ .
Thus, we need to prove the following results for showing that supsR

∗−1
s |Ls −R∗s| = op(1):

sup
s
R∗−1
s

∥∥∥(P̃s − P ∗s )µ
∥∥∥2

= op(1), (E.10)

sup
s
R∗−1
s

∥∥∥(P̃s − P ∗s )ε̃
∥∥∥2

= op(1), (E.11)

sup
s
R∗−1
s

∣∣∣‖P ∗s ε̃‖2 − tr(P ∗s ΩP ∗
′

s )
∣∣∣ = op(1), (E.12)

sup
s
R∗−1
s

∣∣∣µ′(P̃s − P ∗s )
′
(P̃s − P ∗s )ε̃

∣∣∣ = op(1), (E.13)

sup
s
R∗−1
s

∣∣∣µ′(P̃s − P ∗s )
′
P ∗s ε̃

∣∣∣ = op(1), (E.14)

sup
s
R∗−1
s

∣∣∣µ′(P̃s − P ∗s )
′
H∗sµ

∣∣∣ = op(1), (E.15)

sup
s
R∗−1
s

∣∣∣ε̃′(P̃s − P ∗s )
′
P ∗s ε̃

∣∣∣ = op(1), (E.16)

sup
s
R∗−1
s

∣∣∣ε̃′(P̃s − P ∗s )
′
H∗sµ

∣∣∣ = op(1), (E.17)

sup
s
R∗−1
s

∣∣∣ε̃′P ∗′s H∗sµ∣∣∣ = op(1). (E.18)

For the result in (E.10), it follows from the bounds of Rayleigh quotient, Assumptions 6 and 8 that

sup
s
R∗−1
s

∥∥∥(P̃s − P ∗s )µ
∥∥∥2
≤ ζ−1

n ‖µ‖
2 sup γ2

max(P̃s − P ∗s ) = op(1).

The result in (E.11) can be obtained similarly. The proof for the result in (E.12) is similar to the

proof of the result in (E.4). For the result in (E.13), we have supsR
∗−1
s

∣∣∣µ′(P̃s − P ∗s )
′
(P̃s − P ∗s )ε̃

∣∣∣ ≤
ζ−1
n ‖µ‖ sups γ

2
max(P̃s − P ∗s ) ‖ε̃‖ = op(1) by Assumption 6 and 8 and Lemma A.4. The remaining

results in (E.14)-(E.18) can be obtained similarly by using (E.8), (E.9), Assumptions 6 and 8. This

completes the proof of Theorem 1.
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E.2 Proof of Theorem 2

Since
∥∥∥P̃sy − y∥∥∥2

= Ls + ‖ε̃‖2 + 2ε̃
′
H̃sµ− 2ε̃

′
P̃sε̃, our criterion function can be expressed as

Ĉs = Ls + ‖ε̃‖2 + 2ε̃H̃sµ+ 2
(

tr
(
P̃sΩ̂

)
− ε̃′P̃sε̃

)
+ 2

(
∂α̂s
∂y

Ω̂
∂P̃s
∂α̂s

y +
∂τ̂ s
∂y

Ω̂
∂P̃s
∂τ̂ s

y

)
= R∗s + qn,

where qn = Ls −R∗s + ‖ε̃‖2 + 2ε̃H̃sµ+ 2
(

tr
(
P̃sΩ̂

)
− ε̃′P̃sε̃

)
+ 2

(
∂α̂s
∂y Ω̂∂P̃s

∂α̂s
y + ∂τ̂s

∂y Ω̂∂P̃s
∂τ̂s

y
)

. We will

first show that qn/ζ
∗
n = op(1). It follows from Assumption 9 and Lemma A.4 that ζ∗−1

n ‖ε̃‖2 =

o(1/n)Op(n) = op(1). It directly follows from Assumption 9 that sups

∣∣∣∂α̂s
∂y′

Ω̂∂P̃s
∂α̂s

y
∣∣∣ /ζ∗n = op(1) and

sups

∣∣∣∂τ̂s
∂y′

Ω̂∂P̃s
∂τ̂s

y
∣∣∣ /ζ∗n = op(1). Next, we will show that

∣∣∣ε̃H̃sµ
∣∣∣ /ζ∗n = op(1). Note that ζ∗−1

n

∣∣∣ε̃′H̃sµ
∣∣∣ ≤

ζ∗−1
n

∣∣∣ε̃′H∗sµ∣∣∣ + ζ∗−1
n

∣∣∣ε̃′(P ∗s − P̃s)µ∣∣∣, where H∗s = In − P ∗s . It follows from Chebyshev’s inequality

and the bounds of Rayleigh quotient that

P
(
ζ∗−1
n

∣∣∣ε̃′H∗sµ∣∣∣ > η
)

= P
(∣∣∣ε̃′H∗sµ∣∣∣ > ζ∗nη

)
≤ η−2ζ∗−2

n E
(
ε̃
′
H∗sµ

)2
(E.19)

= η−2ζ∗−2
n tr

(
µ
′
H∗
′
s ΩH∗sµ

)
≤ η−2ζ∗−2

n ‖µ‖2γ2
max(H∗s )γmax(Ω) = o(1),

by Assumption 9 and Lemma A.3. Similarly, we have

P
(
ζ∗−1
n

∣∣∣ε̃′(P ∗s − P̃s)µ∣∣∣ > η
)
≤ η−2ζ∗−2

n E
(
ε̃
′
(P ∗s − P̃s)µ

)2
(E.20)

≤ η−2ζ∗−2
n γ2

max

(
P ∗s − P̃s

)
γmax(Ω)‖µ‖2 = op(1),

by Assumption 9 and Lemma A.3. Next, we consider ζ∗−1
n

∣∣∣tr(P̃sΩ̂)− ε̃′P̃sε̃
∣∣∣. Note that

∣∣∣tr(P̃sΩ̂)− ε̃′P̃sε̃
∣∣∣ ≤∣∣∣tr(P ∗s Ω)− ε̃′P ∗s ε̃

∣∣∣+ ∣∣∣tr(P ∗s (Ω̂− Ω)
)∣∣∣+ ∣∣∣tr((P̃s − P ∗s )Ω̂

)∣∣∣+ ∣∣∣ε̃′(P̃s − P ∗s )ε̃
∣∣∣. Then, by Chebyshev’s

inequality, we have

P
(∣∣∣tr(P ∗s Ω)− ε̃′P ∗s ε̃

∣∣∣ > δζ∗n

)
≤ δ−2ζ∗−2

n Var(ε̃
′
P ∗s ε̃) = o(1), (E.21)

by Assumption 9 and the fact that Var(ε̃
′
P ∗s ε̃) = O(n), which is ensured by Lemma A.3 and

Assumption 4. For the term, ζ∗−1
n

∣∣∣tr((P̃s − P ∗s )Ω̂
)∣∣∣, we have

ζ∗−1
n

∣∣∣tr((P̃s − P ∗s )Ω̂
)∣∣∣ ≤ ζ∗−1

n sup
s

(
γmax(P̃s − P ∗s )γmax(Ω̂)rank(P̃s − P ∗s )

)
≤ 2kζ∗−1

n sup
s
γmax(P̃s − P ∗s )γmax(Ω̂) = op(1), (E.22)
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by Assumption 9. Similarly, by Assumption 9 and Lemma A.3, we have

ζ∗−1
n

∣∣∣tr(P ∗s (Ω̂− Ω)
)∣∣∣ ≤ ζ∗−1

n sup
s

(
γmax(Ω̂− Ω)γmax(P ∗s )rank(P ∗s )

)
≤ kζ∗−1

n

(
γmax(Ω̂) + γmax(Ω)

)
sup
s
γmax(P ∗s ) = op(1). (E.23)

Finally, for the third term, using the bounds of Rayleigh quotient, we obtain ζ∗−1
n

∣∣∣ε̃′(P̃s − P ∗s )ε̃
∣∣∣ ≤

ζ∗−1
n ‖ε̃‖2 sups γmax(P̃s−P ∗s ) = op(1) by Assumption 9 and Lemma A.4. Thus, ζ∗−1

n

∣∣∣tr(P̃sΩ̂)− ε̃′P̃sε̃
∣∣∣ =

op(1).

Next, we consider ζ∗−1
n |Ls −R∗s|. From the proof Theorem 1, it will be enough to show that

(a)
∥∥∥(P̃s − P ∗s )µ

∥∥∥2
/ζ∗n = op(1), (b)

∥∥∥(P̃s − P ∗s )ε̃
∥∥∥2
/ζ∗n = op(1),

(c)
∣∣∣‖P ∗s ε̃‖2 − tr(P ∗s ΩP ∗

′
s )
∣∣∣ /ζ∗n = op(1), (d)

∣∣∣µ′(P̃s − P ∗s )
′
(P̃s − P ∗s )ε̃

∣∣∣ /ζ∗n = op(1),

(e)
∣∣∣µ′(P̃s − P ∗s )

′
P ∗s ε̃

∣∣∣ /ζ∗n = op(1), (f)
∣∣∣µ′(P̃s − P ∗s )

′
H∗sµ

∣∣∣ /ζ∗n = op(1),

(g)
∣∣∣ε̃′(P̃s − P ∗s )

′
P ∗s ε̃

∣∣∣ /ζ∗n = op(1), (h)
∣∣∣ε̃′(P̃s − P ∗s )

′
H∗sµ

∣∣∣ /ζ∗n = op(1),

(j)
∣∣∣ε̃′P ∗′s H∗sµ∣∣∣ /ζ∗n = op(1).

We can prove the above results by using similar approaches to those used in (E.19)-E.23. Thus, we

have shown that Ĉs = R∗s + qn, where qn/ζ
∗
n = op(1) uniformly for s ∈ S. Note that Assumption 9

ensures that ζ∗n → ∞. Therefore, uniformly for s ∈ S, we have Ĉs = R∗s + qn with R∗s ≥ ζ∗n → ∞,

which completes the proof.

E.3 Proof of Theorem 3

Similar to the proof of Theorem 1, we need to verify the following:

sup
z
R∗(z)−1

∣∣∣ε̃′H̃(z)µ
∣∣∣ = op(1), (E.24)

sup
z
R∗(z)−1

∣∣∣tr(P̃ (z)Ω̂)− ε̃′P̃ (z)ε̃
∣∣∣ = op(1), (E.25)

sup
z
R∗(z)−1

∣∣∣∣∣
S∑
s=1

zs
∂α̂s
∂y′

Ω̂
∂P̃s
∂α̂s

y

∣∣∣∣∣ = op(1), (E.26)

sup
z
R∗(z)−1

∣∣∣∣∣
S∑
s=1

zs
∂τ̂ s
∂y′

Ω̂
∂P̃s
∂τ̂ s

y

∣∣∣∣∣ = op(1), (E.27)

sup
z
R∗(z)−1 |L(z)−R∗(z)| = op(1), (E.28)
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where z ∈ N , supz denote supremum over N and H̃(z) = In − P̃ (z). For (E.24), similar to (E.3),

we need to prove

sup
z
R∗(z)−1

∣∣∣ε̃′H∗(z)µ∣∣∣ = op(1), (E.29)

and

sup
z
R∗(z)−1

∣∣∣ε̃′ (P ∗(z)− P̃ (z)
)
µ
∣∣∣ = op(1), (E.30)

where H∗(z) = In − P ∗(z). Note that H∗(z) =
∑S

s=1 zsH
∗
s because

∑S
s=1 zs = 1. Denote zos as an

S × 1 vector of zeros except the sth element which is one. For (E.29), by a similar logic to the first

term in (E.3), we obtain

P

(
sup
z
R∗(z)−1

∣∣∣ε̃′H∗(z)µ∣∣∣ > η

)
≤ P

(
ζ̃−1
n sup

z

S∑
s=1

zs

∣∣∣ε̃′H∗sµ∣∣∣ > η

)

= P

(
ζ̃−1
n max

1≤s≤S

∣∣∣ε̃′H∗sµ∣∣∣ > η

)
= P

((
ζ̃−1
n

∣∣∣ε̃′H∗(zo1)µ
∣∣∣ > η

)
∪ · · · ∪

(
ζ̃−1
n

∣∣∣ε̃′H∗(zoS)µ
∣∣∣ > η

))

≤
S∑
s=1

P
(
ζ̃−1
n

∣∣∣ε̃′H∗(zos)µ∣∣∣ > η
)
≤

S∑
s=1

E


(
ε̃
′
H∗(zos)µ

)2G

η2Gζ̃2G
n


≤ c3η

−2Gζ̃−2G
n

S∑
s=1

‖H∗(zos)µ‖
2G ≤ c3η

−2Gζ̃−2G
n

S∑
s=1

(R∗(zos))
2G = o(1),

where c3 is a constant, the second inequality follows from the Boole’s inequality and the last equality

from Assumption 10. For (E.30), using the Cauchy-Schwarz inequality and the bounds of Rayleigh

quotient, we obtain

sup
z
R∗(z)−1

∣∣∣ε̃′ (P ∗(z)− P̃ (z)
)
µ
∣∣∣ ≤ ζ̃−1

n ‖ε̃‖ γmax

(
S∑
s=1

zs(P
∗
s − P̃s)

)
‖µ‖

≤ ζ̃−1
n ‖ε̃‖

S∑
s=1

zsγmax

(
P ∗s − P̃s

)
‖µ‖ ≤ ‖ε̃‖ ζ̃−1

n sup
s
γmax

(
P ∗s − P̃s

)
‖µ‖ = op(1),
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by Assumptions 6 and 10, and the fact that ‖ε̃‖ = Op(n
1/2), which is ensured by Lemma A.4. For

(E.25), similar to E.4, we have to prove the following results:

sup
z
R∗(z)−1

∣∣∣tr (P ∗(z)Ω)− ε̃′P ∗(z)ε̃
∣∣∣ = op(1), (E.31)

sup
z
R∗(z)−1

∣∣∣tr(P ∗(z)(Ω̂− Ω)
)∣∣∣ = op(1), (E.32)

sup
z
R∗(z)−1

∣∣∣tr((P̃ (z)− P ∗(z)
)

Ω̂
)∣∣∣ = op(1), (E.33)

sup
z
R∗(z)−1

∣∣∣ε̃′ (P̃ (z)− P ∗(z)
)
ε̃
∣∣∣ = op(1). (E.34)

Define D(zos) = P ∗(zos)e
−τMe−αW . For (E.31), using a similar approach to the one used in the

second term in (E.4), we obtain

P

(
sup
z
R∗(z)−1

∣∣∣tr (P ∗(z)Ω)− ε̃′P ∗(z)ε̃
∣∣∣ > η

)
≤

S∑
s=1

P
(
ζ̃−1
n

∣∣∣tr (P ∗(zos)Ω)− ε̃′P ∗(zos)ε̃
∣∣∣ > η

)

≤
S∑
s=1

E


(

tr(P ∗(zos)Ω)− ε̃′P ∗(zos)ε̃
)2G

η2Gζ̃2G
n

 ≤ c4η
−2Gζ̃−2G

n

S∑
s=1

(
tr
(
D(zos)D(zos)

′
))G

≤ c′4η−2Gζ̃−2G
n

S∑
s=1

(R∗(zos))
−G = op(1),

for some constants c4 and c
′
4. Similarly, the results (E.32)-(E.34) can be obtained by similar

approaches used in the other terms in (E.4). Moreover, (E.26) and (E.27) can be easily obtained

from the second part of Assumption 10.
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To prove (E.28), similar to (E.7), we need to show the following results:

sup
z
R∗(z)−1

∥∥∥(P̃ (z)− P ∗(z)
)
µ
∥∥∥2

= op(1), (E.35)

sup
z
R∗(z)−1

∥∥∥(P̃ (z)− P ∗(z)
)
ε
∥∥∥2

= op(1), (E.36)

sup
z
R∗(z)−1

∣∣∣‖P ∗(z)ε̃‖2 − tr
(
P ∗(z)ΩP ∗

′
(z)
)∣∣∣ = op(1), (E.37)

sup
z
R∗(z)−1

∣∣∣∣µ′ (P̃ (z)− P ∗(z)
)′ (

P̃ (z)− P ∗(z)
)
ε̃

∣∣∣∣ = op(1), (E.38)

sup
z
R∗(z)−1

∣∣∣∣µ′ (P̃ (z)− P ∗(z)
)′
P ∗(z)ε̃

∣∣∣∣ = op(1), (E.39)

sup
z
R∗(z)−1

∣∣∣∣µ′ (P̃ (z)− P ∗(z)
)′
H∗(z)µ

∣∣∣∣ = op(1), (E.40)

sup
z
R∗(z)−1

∣∣∣∣ε̃′ (P̃ (z)− P ∗(z)
)′
P ∗(z)ε̃

∣∣∣∣ = op(1), (E.41)

sup
z
R∗(z)−1

∣∣∣∣ε̃′ (P̃ (z)− P ∗(z)
)′
H∗(z)µ

∣∣∣∣ = op(1), (E.42)

sup
z
R∗(z)−1

∣∣∣µ′P ∗′(z)H∗(z)µ∣∣∣ = op(1). (E.43)

For (E.35), using the bounds of Rayleigh quotient, we obtain

sup
z
R∗(z)−1

∥∥∥(P̃ (z)− P ∗(z)
)
µ
∥∥∥2
≤ ζ̃−1

n γmax

((
P̃ (z)− P ∗(z)

)′ (
P̃ (z)− P ∗(z)

))
‖µ‖2

≤ ζ̃−1
n γ2

max

((
P̃ (z)− P ∗(z)

))
‖µ‖2 ≤ ζ̃−1

n

(
S∑
s=1

zsγmax(P̃s − P ∗s )

)2

‖µ‖2

≤ ζ̃−1
n sup

s
γ2

max(P̃s − P ∗s ) ‖µ‖2 = op(1),

by Assumptions 6 and 10. The result in (E.36) can be obtained similarly.

To prove the result in (E.37), first define D(zos) = P ∗(zos)e
−αW e−τM . Then, using a similar
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approach to the one used in the first term of (E.4), we obtain

P

(
sup
z
R∗(z)−1

∣∣∣‖P ∗(z)ε̃‖2 − tr
(
P ∗(z)ΩP ∗

′
(z)
)∣∣∣ > η

)
≤ P

(
ζ̃−1
n sup

z

S∑
t=1

S∑
s=1

ztzs

∣∣∣ε̃′P ∗′t P ∗s ε̃− tr(P ∗s ΩP ∗
′

t )
∣∣∣ > η

)

≤ P
(
ζ̃−1
n max

1≤t≤S
max

1≤s≤S

∣∣∣ε̃′P ∗′t P ∗s ε̃− tr(P ∗s ΩP ∗
′

t )
∣∣∣ > η

)
≤ P

(
ζ̃−1
n

∣∣∣ε̃′P ∗′(zo1)P ∗(zo1)ε̃− tr(P ∗(zo1)ΩP ∗
′
(zo1))

∣∣∣ > η
)

∪ P
(
ζ̃−1
n

∣∣∣ε̃′P ∗′(zo1)P ∗(zo2)ε̃− tr(P ∗(zo2)ΩP ∗
′
(zo1))

∣∣∣ > η
)
· · ·

∪ P
(
ζ̃−1
n

∣∣∣ε̃′P ∗′(zo1)P ∗(zoS)ε̃− tr(P ∗(zoS)ΩP ∗
′
(zo1))

∣∣∣ > η
)

∪ P
(
ζ̃−1
n

∣∣∣ε̃′P ∗′(zo2)P ∗(zo1)ε̃− tr(P ∗(zo1)ΩP ∗
′
(zo2))

∣∣∣ > η
)
· · ·

∪ P
(
ζ̃−1
n

∣∣∣ε̃′P ∗′(zo2)P ∗(zoS)ε̃− tr(P ∗(zoS)ΩP ∗
′
(zo2))

∣∣∣ > η
)
· · ·

∪ P
(
ζ̃−1
n

∣∣∣ε̃′P ∗′(zoS)P ∗(zoS)ε̃− tr(P ∗(zoS)ΩP ∗
′
(zoS))

∣∣∣ > η
)

≤
S∑
t=1

S∑
s=1

P
(
ζ̃−1
n

∣∣∣ε̃′P ∗′(zot )P ∗(zos)ε̃− tr(P ∗(zos)ΩP
∗′(zot ))

∣∣∣ > η
)

≤
S∑
t=1

S∑
s=1

E
(
ε̃
′
P ∗
′
(zot )P

∗(zos)ε̃− tr(P ∗(zos)ΩP
∗′(zot ))

)2G

ζ̃2G
n η2G

≤ c5ζ̃
−2Gη−2G

S∑
t=1

S∑
s=1

(
tr
(
D(zos)D

′
(zos)

))G
≤ c′5ζ̃−2Gη−2GS

S∑
s=1

(R∗s)
G

= o(1),

where c5 and c
′
5 are some constant terms, the fourth inequality follows from the Boole’s inequality

and the last equality from Assumption 10. Finally, the results in (E.38)-(E.43) can be obtained

similarly to those in (E.14)-(E.18). This completes the proof.
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In this appendix, we provide additional simulation results on the finite sample performance of our

suggested MS and MA procedures. The simulation setting for these results is described in the

main text. For the normal distribution case, Tables 1 and 2 report the simulation results when

the true spatial weights matrices are W2 and W3, respectively. For the non-normal distribution

case, Tables 3, 4 and 5 report the simulation results when the true spatial weights matrices are W2,

W3 and W4, respectively. The remaining tables, Tables 6–8, include the simulation results for the

heteroskedastic case.
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Table 1: True W is W2 under normal disturbance

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.112 0.049 0.062 0.087 0.054
τ=0.2 RMSE of τ 0.145 0.093 0.124 0.201 0.101
β1=2 RMSE of β1 0.095 0.075 0.079 0.089 0.075
β2=1 RMSE of β2 0.083 0.078 0.082 0.083 0.079

Loss 13.817 3.430 10.814 15.625 4.568 4.330
MS accuracy 0.057 0.858 0.071 0.014
MA weights 0.103 0.729 0.103 0.065

α=0.2 n=400 RMSE of α 0.112 0.035 0.048 0.058 0.035
τ=0.2 RMSE of τ 0.125 0.061 0.087 0.157 0.062
β1=2 RMSE of β1 0.089 0.054 0.056 0.056 0.054
β2=1 RMSE of β2 0.051 0.050 0.062 0.067 0.051

Loss 25.017 3.459 21.223 30.787 3.985 4.330
MS accuracy 0.006 0.971 0.023 0.000
MA weights 0.062 0.836 0.076 0.026

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.102 0.046 0.075 0.114 0.057
τ=−0.2 RMSE of τ 0.137 0.095 0.137 0.234 0.115
β1=2 RMSE of β1 0.089 0.079 0.102 0.118 0.080
β2=1 RMSE of β2 0.071 0.071 0.081 0.097 0.071

Loss 13.727 3.306 13.127 18.737 4.845 4.500
MS accuracy 0.064 0.867 0.054 0.015
MA weights 0.105 0.752 0.085 0.058

α=−0.2 n=400 RMSE of α 0.106 0.031 0.043 0.081 0.033
τ=−0.2 RMSE of τ 0.121 0.061 0.083 0.185 0.063
β1=2 RMSE of β1 0.082 0.052 0.060 0.055 0.052
β2=1 RMSE of β2 0.067 0.051 0.052 0.054 0.051

Loss 25.880 3.259 22.714 34.457 3.839 4.158
MS accuracy 0.013 0.974 0.009 0.004
MA weights 0.063 0.850 0.050 0.037

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 1.001 0.060 3.474 4.606 0.070
τ=1.2 RMSE of τ 0.844 0.104 3.499 4.665 0.176
β1=2 RMSE of β1 1.142 0.102 0.780 0.867 0.116
β2=1 RMSE of β2 0.575 0.061 0.550 0.464 0.081

Loss 1592.040 23.011 913.465 926.259 57.168 65.376
MS accuracy 0.001 0.947 0.027 0.025
MA weights 0.049 0.838 0.065 0.048

α=1.2 n=400 RMSE of α 1.013 0.038 2.421 4.403 0.039
τ=1.2 RMSE of τ 0.848 0.063 2.607 4.458 0.071
β1=2 RMSE of β1 1.163 0.065 0.721 0.817 0.066
β2=1 RMSE of β2 0.586 0.044 0.416 0.507 0.047

Loss 3972.496 25.020 2092.509 2277.550 33.755 69.030
MS accuracy 0.000 0.994 0.004 0.002
MA weights 0.027 0.894 0.050 0.029

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 1.056 0.067 3.006 11.491 0.434
τ=−1.2 RMSE of τ 0.740 0.106 3.004 11.627 0.613
β1=2 RMSE of β1 1.153 0.111 0.567 1.308 0.148
β2=1 RMSE of β2 0.602 0.066 0.321 0.702 0.100

Loss 1420.104 25.696 669.128 1262.617 65.657 74.989
MS accuracy 0.000 0.946 0.025 0.029
MA weights 0.052 0.854 0.021 0.073

α=−1.2 n=400 RMSE of α 1.027 0.037 1.689 13.408 0.044
τ=−1.2 RMSE of τ 0.807 0.065 1.828 13.819 0.177
β1=2 RMSE of β1 1.139 0.061 0.380 1.425 0.064
β2=1 RMSE of β2 0.565 0.037 0.211 0.718 0.049

Loss 3316.116 18.657 1341.870 3219.301 31.253 66.618
MS accuracy 0.000 0.992 0.002 0.006
MA weights 0.033 0.905 0.015 0.047
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Table 2: True W is W3 under normal error terms

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.147 0.095 0.064 0.083 0.070
τ=0.2 RMSE of τ 0.100 0.146 0.127 0.178 0.142
β1=2 RMSE of β1 0.079 0.078 0.077 0.086 0.077
β2=1 RMSE of β2 0.086 0.086 0.083 0.085 0.084

Loss 10.769 7.680 3.424 8.226 4.970 4.407
MS accuracy 0.026 0.108 0.703 0.163
MA weights 0.066 0.119 0.624 0.192

α=0.2 n=400 RMSE of α 0.151 0.099 0.043 0.055 0.048
τ=0.2 RMSE of τ 0.073 0.119 0.084 0.118 0.092
β1=2 RMSE of β1 0.053 0.055 0.051 0.051 0.051
β2=1 RMSE of β2 0.049 0.049 0.048 0.051 0.048

Loss 17.751 12.381 2.957 12.469 4.391 4.037
MS accuracy 0.008 0.062 0.855 0.075
MA weights 0.044 0.092 0.745 0.118

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.157 0.117 0.073 0.102 0.085
τ=−0.2 RMSE of τ 0.093 0.125 0.142 0.196 0.151
β1=2 RMSE of β1 0.082 0.080 0.078 0.083 0.080
β2=1 RMSE of β2 0.074 0.074 0.071 0.078 0.073

Loss 9.518 7.472 3.309 6.726 4.817 4.206
MS accuracy 0.060 0.137 0.697 0.106
MA weights 0.098 0.151 0.614 0.137

α=−0.2 n=400 RMSE of α 0.150 0.100 0.044 0.077 0.049
τ=−0.2 RMSE of τ 0.072 0.116 0.083 0.137 0.088
β1=2 RMSE of β1 0.058 0.051 0.049 0.051 0.049
β2=1 RMSE of β2 0.051 0.049 0.048 0.049 0.048

Loss 19.005 13.434 2.975 13.022 3.704 3.712
MS accuracy 0.008 0.033 0.931 0.028
MA weights 0.047 0.081 0.785 0.087

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 0.974 0.611 0.062 2.534 0.167
τ=1.2 RMSE of τ 0.338 0.735 0.127 2.643 0.259
β1=2 RMSE of β1 0.322 0.208 0.088 0.465 0.105
β2=1 RMSE of β2 0.303 0.146 0.065 0.239 0.088

Loss 472.162 257.049 10.187 466.014 42.516 33.931
MS accuracy 0.003 0.045 0.906 0.046
MA weights 0.034 0.026 0.853 0.088

α=1.2 n=400 RMSE of α 0.963 0.597 0.042 3.096 0.102
τ=1.2 RMSE of τ 0.356 0.731 0.083 3.189 0.149
β1=2 RMSE of β1 0.374 0.133 0.056 0.473 0.064
β2=1 RMSE of β2 0.198 0.089 0.046 0.296 0.048

Loss 1035.937 549.931 10.224 982.778 28.952 36.242
MS accuracy 0.000 0.018 0.973 0.009
MA weights 0.029 0.019 0.894 0.058

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.981 0.582 0.064 0.939 0.248
τ=−1.2 RMSE of τ 0.416 0.794 0.129 0.775 0.265
β1=2 RMSE of β1 0.273 0.360 0.089 0.261 0.109
β2=1 RMSE of β2 0.143 0.245 0.061 0.162 0.074

Loss 439.287 243.193 10.680 336.684 41.285 37.177
MS accuracy 0.017 0.063 0.887 0.033
MA weights 0.062 0.040 0.830 0.069

α=−1.2 n=400 RMSE of α 1.047 0.674 0.041 0.543 0.108
τ=−1.2 RMSE of τ 0.320 0.694 0.083 0.305 0.109
β1=2 RMSE of β1 0.212 0.304 0.054 0.158 0.058
β2=1 RMSE of β2 0.069 0.259 0.040 0.141 0.044

Loss 995.274 557.724 9.241 443.054 19.920 28.424
MS accuracy 0.000 0.010 0.982 0.008
MA weights 0.060 0.023 0.902 0.016
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Table 3: True W is W2 under non-normal (stadanrdized χ2
3) error terms

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.112 0.049 0.064 0.086 0.053
τ=0.2 RMSE of τ 0.141 0.091 0.126 0.202 0.097
β1=2 RMSE of β1 0.094 0.077 0.082 0.093 0.077
β2=1 RMSE of β2 0.087 0.080 0.084 0.086 0.081

Loss 13.879 3.499 11.027 15.756 4.718 4.427
MS accuracy 0.042 0.860 0.079 0.019
MA weights 0.090 0.735 0.110 0.066

α=0.2 n=400 RMSE of α 0.104 0.030 0.047 0.064 0.031
τ=0.2 RMSE of τ 0.119 0.056 0.081 0.165 0.057
β1=2 RMSE of β1 0.070 0.052 0.054 0.056 0.052
β2=1 RMSE of β2 0.065 0.049 0.052 0.052 0.049

Loss 26.065 3.124 24.085 37.562 3.563 3.992
MS accuracy 0.008 0.979 0.013 0.000
MA weights 0.059 0.846 0.072 0.024

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.115 0.050 0.066 0.156 0.062
τ=−0.2 RMSE of τ 0.148 0.096 0.125 0.236 0.109
β1=2 RMSE of β1 0.108 0.078 0.088 0.086 0.079
β2=1 RMSE of β2 0.086 0.077 0.080 0.088 0.078

Loss 13.551 3.305 12.155 17.897 4.640 4.357
MS accuracy 0.049 0.884 0.044 0.023
MA weights 0.100 0.761 0.079 0.060

α=−0.2 n=400 RMSE of α 0.111 0.034 0.046 0.074 0.037
τ=−0.2 RMSE of τ 0.125 0.061 0.083 0.190 0.069
β1=2 RMSE of β1 0.073 0.051 0.053 0.057 0.051
β2=1 RMSE of β2 0.056 0.052 0.054 0.057 0.052

Loss 25.896 3.382 21.811 29.757 4.071 4.396
MS accuracy 0.004 0.970 0.016 0.010
MA weights 0.058 0.841 0.046 0.055

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 1.012 0.057 3.325 5.062 0.079
τ=1.2 RMSE of τ 0.745 0.098 3.294 5.049 0.146
β1=2 RMSE of β1 1.090 0.091 0.585 0.766 0.105
β2=1 RMSE of β2 0.586 0.066 0.459 0.437 0.085

Loss 1528.231 19.706 795.227 931.889 59.420 61.765
MS accuracy 0.001 0.943 0.032 0.024
MA weights 0.049 0.856 0.057 0.038

α=1.2 n=400 RMSE of α 1.014 0.039 2.382 4.217 0.039
τ=1.2 RMSE of τ 0.853 0.062 2.582 4.257 0.075
β1=2 RMSE of β1 1.164 0.066 0.595 0.801 0.066
β2=1 RMSE of β2 0.575 0.041 0.425 0.436 0.043

Loss 3966.367 24.997 1799.558 2469.166 36.853 67.524
MS accuracy 0.000 0.992 0.006 0.002
MA weights 0.031 0.896 0.051 0.022

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.965 0.053 2.305 11.718 0.138
τ=−1.2 RMSE of τ 0.693 0.092 2.372 12.386 0.353
β1=2 RMSE of β1 1.130 0.095 0.487 1.368 0.127
β2=1 RMSE of β2 0.558 0.058 0.387 0.749 0.115

Loss 1639.635 20.355 752.891 1463.676 58.905 72.958
MS accuracy 0.004 0.952 0.013 0.031
MA weights 0.050 0.844 0.028 0.078

α=−1.2 n=400 RMSE of α 1.007 0.039 1.145 12.929 0.044
τ=−1.2 RMSE of τ 0.842 0.062 1.279 13.141 0.098
β1=2 RMSE of β1 1.155 0.067 0.634 1.440 0.068
β2=1 RMSE of β2 0.578 0.045 0.366 0.760 0.046

Loss 3889.033 25.745 1829.504 3612.798 28.537 74.325
MS accuracy 0.000 0.999 0.000 0.001
MA weights 0.029 0.906 0.033 0.033
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Table 4: True W is W3 under non-normal (stadanrdized χ2
3) error terms

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.147 0.093 0.061 0.079 0.068
τ=0.2 RMSE of τ 0.106 0.148 0.124 0.172 0.140
β1=2 RMSE of β1 0.080 0.077 0.076 0.082 0.077
β2=1 RMSE of β2 0.082 0.082 0.081 0.082 0.081

Loss 10.641 7.394 3.164 8.026 4.660 4.081
MS accuracy 0.031 0.112 0.713 0.144
MA weights 0.068 0.118 0.645 0.169

α=0.2 n=400 RMSE of α 0.153 0.109 0.047 0.061 0.050
τ=0.2 RMSE of τ 0.073 0.109 0.085 0.119 0.089
β1=2 RMSE of β1 0.055 0.058 0.051 0.053 0.052
β2=1 RMSE of β2 0.052 0.052 0.051 0.052 0.051

Loss 17.742 12.984 3.230 15.365 4.229 4.149
MS accuracy 0.007 0.038 0.911 0.044
MA weights 0.041 0.071 0.789 0.098

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.159 0.109 0.067 0.131 0.084
τ=−0.2 RMSE of τ 0.093 0.134 0.127 0.216 0.144
β1=2 RMSE of β1 0.086 0.078 0.076 0.078 0.078
β2=1 RMSE of β2 0.087 0.083 0.079 0.084 0.080

Loss 10.715 8.230 3.142 9.075 4.392 3.979
MS accuracy 0.033 0.084 0.817 0.066
MA weights 0.073 0.119 0.707 0.101

α=−0.2 n=400 RMSE of α 0.154 0.103 0.048 0.071 0.054
τ=−0.2 RMSE of τ 0.070 0.115 0.082 0.128 0.092
β1=2 RMSE of β1 0.051 0.053 0.049 0.052 0.049
β2=1 RMSE of β2 0.058 0.058 0.056 0.058 0.056

Loss 18.229 12.923 3.359 10.780 4.454 4.307
MS accuracy 0.010 0.056 0.882 0.052
MA weights 0.061 0.101 0.744 0.094

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 0.990 0.622 0.062 2.598 0.104
τ=1.2 RMSE of τ 0.336 0.796 0.128 2.709 0.216
β1=2 RMSE of β1 0.332 0.269 0.082 0.391 0.101
β2=1 RMSE of β2 0.216 0.138 0.069 0.259 0.077

Loss 485.307 273.603 9.173 414.074 29.691 28.458
MS accuracy 0.001 0.011 0.945 0.043
MA weights 0.039 0.023 0.865 0.074

α=1.2 n=400 RMSE of α 0.974 0.595 0.040 4.298 0.099
τ=1.2 RMSE of τ 0.382 0.766 0.083 4.406 0.151
β1=2 RMSE of β1 0.329 0.195 0.057 0.567 0.061
β2=1 RMSE of β2 0.118 0.148 0.043 0.330 0.045

Loss 1097.609 575.632 10.141 1217.466 30.486 38.014
MS accuracy 0.000 0.017 0.973 0.010
MA weights 0.032 0.018 0.898 0.053

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.926 0.679 0.061 0.535 0.211
τ=−1.2 RMSE of τ 0.421 0.914 0.122 0.551 0.283
β1=2 RMSE of β1 0.357 0.268 0.087 0.164 0.096
β2=1 RMSE of β2 0.139 0.201 0.058 0.151 0.078

Loss 610.846 290.374 12.499 248.331 48.779 44.771
MS accuracy 0.004 0.062 0.875 0.059
MA weights 0.076 0.044 0.815 0.065

α=−1.2 n=400 RMSE of α 0.979 0.614 0.041 0.735 0.104
τ=−1.2 RMSE of τ 0.374 0.730 0.084 0.413 0.130
β1=2 RMSE of β1 0.367 0.126 0.057 0.147 0.058
β2=1 RMSE of β2 0.185 0.089 0.045 0.096 0.046

Loss 905.125 509.739 8.556 587.272 19.063 26.593
MS accuracy 0.000 0.019 0.979 0.002
MA weights 0.044 0.029 0.901 0.027

5



Table 5: True W is W4 under non-normal (stadanrdized χ2
3) error terms

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.173 0.146 0.100 0.076 0.085
τ=0.2 RMSE of τ 0.178 0.208 0.162 0.174 0.184
β1=2 RMSE of β1 0.074 0.073 0.073 0.074 0.074
β2=1 RMSE of β2 0.082 0.082 0.082 0.081 0.081

Loss 7.228 6.372 5.224 2.710 3.984 3.464
MS accuracy 0.062 0.117 0.115 0.706
MA weights 0.095 0.120 0.115 0.669

α=0.2 n=400 RMSE of α 0.182 0.166 0.109 0.063 0.072
τ=0.2 RMSE of τ 0.155 0.173 0.122 0.118 0.129
β1=2 RMSE of β1 0.059 10.227 0.055 0.051 0.051
β2=1 RMSE of β2 0.050 0.050 0.050 0.050 0.050

Loss 10.227 9.617 7.920 2.763 4.089 3.616
MS accuracy 0.024 0.055 0.106 0.815
MA weights 0.068 0.079 0.113 0.739

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.187 0.174 0.158 0.120 0.142
τ=−0.2 RMSE of τ 0.116 0.134 0.151 0.196 0.178
β1=2 RMSE of β1 0.077 0.075 0.077 0.076 0.076
β2=1 RMSE of β2 0.080 0.078 0.077 0.075 0.078

Loss 6.544 6.364 5.651 3.496 5.105 4.379
MS accuracy 0.102 0.135 0.216 0.547
MA weights 0.129 0.143 0.228 0.501

α=−0.2 n=400 RMSE of α 0.173 0.144 0.112 0.069 0.080
τ=−0.2 RMSE of τ 0.108 0.137 0.134 0.126 0.129
β1=2 RMSE of β1 0.050 0.050 0.049 0.049 0.049
β2=1 RMSE of β2 0.057 0.058 0.057 0.055 0.056

Loss 12.729 10.860 7.814 3.515 4.820 4.426
MS accuracy 0.040 0.049 0.152 0.759
MA weights 0.081 0.080 0.167 0.672

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 1.076 0.931 0.365 0.063 0.080
τ=1.2 RMSE of τ 1.242 1.401 0.884 0.177 0.198
β1=2 RMSE of β1 0.168 0.177 0.157 0.079 0.080
β2=1 RMSE of β2 0.177 0.154 0.195 0.074 0.074

Loss 122.422 103.227 194.649 3.694 4.137 6.478
MS accuracy 0.000 0.003 0.001 0.996
MA weights 0.034 0.041 0.032 0.892

α=1.2 n=400 RMSE of α 1.083 0.981 0.274 0.042 0.042
τ=1.2 RMSE of τ 1.286 1.393 0.806 0.110 0.110
β1=2 RMSE of β1 0.163 0.152 0.180 0.053 0.053
β2=1 RMSE of β2 0.144 0.125 0.130 0.044 0.044

Loss 282.270 255.846 616.782 3.634 3.634 5.714
MS accuracy 0.000 0.000 0.000 1.000
MA weights 0.014 0.027 0.013 0.946

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 1.065 0.820 1.088 0.130 0.317
τ=−1.2 RMSE of τ 0.274 0.485 0.285 0.203 0.239
β1=2 RMSE of β1 0.173 0.266 0.183 0.078 0.088
β2=1 RMSE of β2 0.176 0.108 0.196 0.077 0.084

Loss 457.505 307.583 439.141 22.171 55.116 45.632
MS accuracy 0.004 0.072 0.025 0.899
MA weights 0.034 0.039 0.080 0.846

α=−1.2 n=400 RMSE of α 1.113 0.932 1.233 0.091 0.242
τ=−1.2 RMSE of τ 0.219 0.394 0.201 0.136 0.153
β1=2 RMSE of β1 0.265 0.080 0.318 0.058 0.065
β2=1 RMSE of β2 0.109 0.074 0.152 0.048 0.050

Loss 583.407 465.628 659.137 13.725 38.044 37.814
MS accuracy 0.004 0.041 0.005 0.950
MA weights 0.034 0.035 0.059 0.872
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Table 6: True W is W2 under heteroskedastic error terms

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.113 0.050 0.066 0.091 0.056
τ=0.2 RMSE of τ 0.148 0.097 0.134 0.221 0.105
β1=2 RMSE of β1 0.114 0.102 0.109 0.118 0.103
β2=1 RMSE of β2 0.085 0.078 0.083 0.086 0.079

Loss 14.706 4.496 12.064 16.794 5.908 5.487
MS accuracy 0.056 0.836 0.090 0.018
MA weights 0.097 0.720 0.118 0.066

α=0.2 n=400 RMSE of α 0.102 0.030 0.049 0.065 0.033
τ=0.2 RMSE of τ 0.118 0.059 0.087 0.173 0.061
β1=2 RMSE of β1 0.083 0.068 0.070 0.071 0.068
β2=1 RMSE of β2 0.062 0.047 0.050 0.049 0.047

Loss 26.686 3.952 24.991 38.339 4.469 4.857
MS accuracy 0.012 0.976 0.012 0.000
MA weights 0.061 0.844 0.072 0.022

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.118 0.050 0.069 0.161 0.065
τ=−0.2 RMSE of τ 0.144 0.092 0.123 0.246 0.107
β1=2 RMSE of β1 0.127 0.104 0.115 0.111 0.104
β2=1 RMSE of β2 0.088 0.083 0.086 0.095 0.083

Loss 14.601 4.409 13.317 19.131 6.147 5.531
MS accuracy 0.074 0.842 0.061 0.023
MA weights 0.106 0.751 0.081 0.062

α=−0.2 n=400 RMSE of α 0.112 0.034 0.050 0.071 0.036
τ=−0.2 RMSE of τ 0.127 0.062 0.088 0.190 0.067
β1=2 RMSE of β1 0.084 0.065 0.067 0.070 0.065
β2=1 RMSE of β2 0.059 0.056 0.058 0.062 0.056

Loss 26.888 4.325 22.924 30.529 4.868 5.324
MS accuracy 0.006 0.975 0.013 0.006
MA weights 0.061 0.840 0.051 0.049

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 1.025 0.065 2.327 5.928 0.075
τ=1.2 RMSE of τ 0.750 0.104 2.392 5.953 0.168
β1=2 RMSE of β1 1.067 0.120 0.594 0.984 0.130
β2=1 RMSE of β2 0.629 0.065 0.396 0.581 0.079

Loss 1796.327 35.367 765.477 1242.728 74.591 80.532
MS accuracy 0.001 0.949 0.021 0.029
MA weights 0.046 0.850 0.059 0.045

α=1.2 n=400 RMSE of α 1.011 0.037 3.237 4.501 0.037
τ=1.2 RMSE of τ 0.850 0.064 3.422 4.580 0.066
β1=2 RMSE of β1 1.153 0.076 0.644 0.737 0.076
β2=1 RMSE of β2 0.581 0.039 0.340 0.385 0.039

Loss 4049.869 27.181 1893.256 2528.386 32.350 74.028
MS accuracy 0.000 0.996 0.004 0.000
MA weights 0.030 0.900 0.047 0.022

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.950 0.058 1.518 11.544 0.138
τ=−1.2 RMSE of τ 0.685 0.096 1.609 11.766 0.342
β1=2 RMSE of β1 1.135 0.116 0.813 1.329 0.139
β2=1 RMSE of β2 0.534 0.065 0.310 0.682 0.108

Loss 1327.822 22.200 871.228 1367.843 58.519 72.662
MS accuracy 0.001 0.951 0.020 0.028
MA weights 0.043 0.846 0.036 0.076

α=−1.2 n=400 RMSE of α 1.002 0.042 1.271 12.435 0.042
τ=−1.2 RMSE of τ 0.801 0.065 1.436 12.727 0.071
β1=2 RMSE of β1 1.147 0.079 0.638 1.398 0.079
β2=1 RMSE of β2 0.574 0.044 0.386 0.740 0.044

Loss 3864.587 30.816 1859.131 3502.113 34.836 86.543
MS accuracy 0.000 0.997 0.003 0.000
MA weights 0.030 0.898 0.037 0.035
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Table 7: True W is W3 under heteroskedastic error terms

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.147 0.094 0.066 0.085 0.074
τ=0.2 RMSE of τ 0.104 0.146 0.130 0.180 0.143
β1=2 RMSE of β1 0.102 0.100 0.100 0.106 0.100
β2=1 RMSE of β2 0.080 0.081 0.079 0.085 0.080

Loss 11.471 8.379 4.191 9.007 5.871 5.212
MS accuracy 0.047 0.137 0.677 0.139
MA weights 0.078 0.142 0.608 0.171

α=0.2 n=400 RMSE of α 0.153 0.109 0.046 0.062 0.051
τ=0.2 RMSE of τ 0.071 0.107 0.085 0.122 0.091
β1=2 RMSE of β1 0.072 0.075 0.069 0.070 0.069
β2=1 RMSE of β2 0.050 0.050 0.049 0.051 0.049

Loss 18.411 13.691 4.004 16.206 5.210 4.947
MS accuracy 0.009 0.051 0.895 0.045
MA weights 0.042 0.080 0.783 0.095

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.158 0.109 0.067 0.135 0.082
τ=−0.2 RMSE of τ 0.099 0.134 0.129 0.222 0.147
β1=2 RMSE of β1 0.112 0.106 0.106 0.107 0.106
β2=1 RMSE of β2 0.086 0.086 0.083 0.088 0.084

Loss 11.857 9.300 4.252 10.273 5.837 5.302
MS accuracy 0.059 0.110 0.775 0.056
MA weights 0.102 0.120 0.684 0.094

α=−0.2 n=400 RMSE of α 0.153 0.103 0.048 0.068 0.053
τ=−0.2 RMSE of τ 0.073 0.117 0.088 0.130 0.096
β1=2 RMSE of β1 0.066 0.068 0.064 0.067 0.064
β2=1 RMSE of β2 0.058 0.058 0.056 0.058 0.056

Loss 18.995 13.671 4.128 11.360 5.178 4.985
MS accuracy 0.010 0.057 0.881 0.052
MA weights 0.063 0.100 0.747 0.090

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 0.968 0.725 0.066 4.101 0.142
τ=1.2 RMSE of τ 0.370 0.966 0.132 4.180 0.231
β1=2 RMSE of β1 0.420 0.235 0.108 0.605 0.114
β2=1 RMSE of β2 0.202 0.196 0.065 0.347 0.075

Loss 569.807 265.604 15.509 547.940 37.734 36.543
MS accuracy 0.001 0.042 0.933 0.024
MA weights 0.034 0.037 0.853 0.076

α=1.2 n=400 RMSE of α 0.976 0.801 0.044 2.359 0.093
τ=1.2 RMSE of τ 0.357 0.880 0.084 2.467 0.123
β1=2 RMSE of β1 0.166 0.351 0.070 0.373 0.073
β2=1 RMSE of β2 0.185 0.120 0.041 0.208 0.042

Loss 1109.869 615.068 13.879 1169.966 27.535 38.434
MS accuracy 0.000 0.013 0.982 0.005
MA weights 0.032 0.016 0.903 0.049

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 0.979 1.314 0.062 0.873 0.202
τ=−1.2 RMSE of τ 0.431 1.460 0.128 0.671 0.230
β1=2 RMSE of β1 0.382 0.284 0.109 0.262 0.122
β2=1 RMSE of β2 0.281 0.185 0.073 0.192 0.090

Loss 411.606 268.487 10.454 295.791 30.358 29.320
MS accuracy 0.009 0.030 0.927 0.034
MA weights 0.065 0.027 0.846 0.061

α=−1.2 n=400 RMSE of α 0.982 0.614 0.042 0.752 0.127
τ=−1.2 RMSE of τ 0.370 0.728 0.081 0.438 0.137
β1=2 RMSE of β1 0.372 0.141 0.072 0.164 0.073
β2=1 RMSE of β2 0.187 0.089 0.044 0.092 0.047

Loss 909.669 513.615 10.855 597.735 26.466 34.005
MS accuracy 0.000 0.028 0.970 0.002
MA weights 0.042 0.033 0.896 0.030
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Table 8: True W is W4 under heteroskedastic error terms

W1 W2 W3 W4 MS MA

α=0.2 n=169 RMSE of α 0.174 0.149 0.102 0.084 0.092
τ=0.2 RMSE of τ 0.177 0.204 0.157 0.183 0.193
β1=2 RMSE of β1 0.100 0.099 0.099 0.099 0.100
β2=1 RMSE of β2 0.083 0.083 0.082 0.081 0.082

Loss 8.081 7.214 6.169 3.613 4.806 4.415
MS accuracy 0.057 0.081 0.129 0.733
MA weights 0.094 0.108 0.124 0.673

α=0.2 n=400 RMSE of α 0.183 0.168 0.113 0.067 0.076
τ=0.2 RMSE of τ 0.154 0.171 0.118 0.119 0.126
β1=2 RMSE of β1 0.073 10.805 0.070 0.066 0.067
β2=1 RMSE of β2 0.047 0.047 0.047 0.047 0.047

Loss 10.805 10.206 8.548 3.481 4.501 4.228
MS accuracy 0.033 0.041 0.067 0.859
MA weights 0.067 0.077 0.090 0.765

W1 W2 W3 W4 MS MA

α=−0.2 n=169 RMSE of α 0.187 0.172 0.156 0.124 0.141
τ=−0.2 RMSE of τ 0.123 0.141 0.155 0.202 0.188
β1=2 RMSE of β1 0.102 0.101 0.102 0.101 0.101
β2=1 RMSE of β2 0.080 0.081 0.082 0.079 0.082

Loss 7.463 7.205 6.639 4.490 6.066 5.261
MS accuracy 0.113 0.097 0.243 0.547
MA weights 0.141 0.112 0.235 0.512

α=−0.2 n=400 RMSE of α 0.175 0.144 0.112 0.067 0.079
τ=−0.2 RMSE of τ 0.110 0.141 0.141 0.119 0.130
β1=2 RMSE of β1 0.069 0.069 0.069 0.069 0.069
β2=1 RMSE of β2 0.058 0.059 0.058 0.058 0.058

Loss 13.816 11.920 9.016 4.522 5.995 5.486
MS accuracy 0.039 0.053 0.171 0.737
MA weights 0.080 0.075 0.176 0.668

W1 W2 W3 W4 MS MA

α=1.2 n=169 RMSE of α 1.059 0.919 0.315 0.060 0.086
τ=1.2 RMSE of τ 1.267 1.407 0.873 0.176 0.208
β1=2 RMSE of β1 0.140 0.131 0.146 0.098 0.099
β2=1 RMSE of β2 0.164 0.157 0.146 0.072 0.072

Loss 125.120 104.991 244.548 4.366 5.014 6.744
MS accuracy 0.000 0.006 0.000 0.994
MA weights 0.031 0.042 0.018 0.910

α=1.2 n=400 RMSE of α 1.121 1.048 0.400 0.045 0.045
τ=1.2 RMSE of τ 1.225 1.302 0.792 0.110 0.110
β1=2 RMSE of β1 0.293 0.278 0.232 0.066 0.066
β2=1 RMSE of β2 0.082 0.091 0.072 0.040 0.040

Loss 238.350 224.707 482.115 4.583 4.583 6.920
MS accuracy 0.000 0.000 0.000 1.000
MA weights 0.017 0.026 0.014 0.942

W1 W2 W3 W4 MS MA

α=−1.2 n=169 RMSE of α 1.123 0.988 1.261 0.152 0.396
τ=−1.2 RMSE of τ 0.225 0.356 0.277 0.217 0.232
β1=2 RMSE of β1 0.268 0.149 0.386 0.110 0.126
β2=1 RMSE of β2 0.098 0.108 0.153 0.072 0.074

Loss 232.002 199.282 272.159 15.398 39.293 32.021
MS accuracy 0.035 0.070 0.014 0.881
MA weights 0.064 0.046 0.065 0.826

α=−1.2 n=400 RMSE of α 1.113 0.931 1.226 0.100 0.219
τ=−1.2 RMSE of τ 0.217 0.394 0.186 0.139 0.154
β1=2 RMSE of β1 0.270 0.093 0.318 0.073 0.077
β2=1 RMSE of β2 0.110 0.074 0.147 0.046 0.047

Loss 584.700 466.925 654.524 17.011 35.280 37.972
MS accuracy 0.003 0.034 0.001 0.962
MA weights 0.032 0.032 0.051 0.885
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