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Abstract

In this paper, a unified M-estimation method in Yang (2018) is extended to the matrix expo-
nential spatial dynamic panel specification (MESDPS) with fixed effects in short panels. Similar
to the STLE model which includes the spatial lag effect, the space-time effect and the spatial
error effect in Yang (2018), the quasi-maximum likelihood (QML) estimation for MESDPS also
has the initial condition specification problem. The initial-condition free M-estimator in this
paper solves this problem and is proved to be consistent and asymptotically normal. An outer
product of martingale difference (OPMD) estimator for the variance-covariance (VC) matrix of
the M-estimator is also derived and proved to be consistent. The finite sample property of the
M-estimator is studied through an extensive Monte Carlo study. The method is applied to US
outward FDI data to show its validity.
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1 Introduction

Dynamic panel data (DPD) models are important elements in Economics literature. Spatial

dependence can be incorporated into DPD models to discuss topics in applied economics like regional

markets (Keller and Shiue 2007), labor economics (Foote 2007) and technological interdependence

(Ertur and Koch 2007). The resulting spatial dynamic panel data (SDPD) models have gained

much attention. Some papers (Lee and Yu 2010c, 2013; Xu and Lee 2019) provide excellent surveys

on these models.

Depending on the type of dynamic features allowed in the SDPD model, four categories can

be generated (Anselin et al. 2008; Lee and Yu 2010c): “pure space recursive” with only a spatial

time lag, “time-space recursive” with an individual time lag and a spatial time lag, “time-space

simultaneous” with an individual time lag and a contemporaneous spatial lag and “time-space

dynamic” with all forms of lags. Recent studies have also used the terminology, weak and strong

spatial dependence, to refer to the regression models that have spatial lag terms and interactive

fixed effects respectively (Chudik et al. 2011; Kuersteiner and Prucha 2020; Shi and Lee 2017).

While most of the literature in the SDPD models focus on the long panel setting with a large time

period T (Anselin 2001; Lee and Yu 2010a; Yu and Lee 2010; Yu et al. 2008), the setup with a large

cross-sectional unit n and a small time period T , named short panels, has also gained more interest

recently. Some papers discuss the likelihood based estimators for short panels (Elhorst 2010; Su

and Yang 2015; Yang 2018).

However there is one difficulty with the quasi-maximum likelihood (QML) estimation for the

short panel SDPD model: the “initial condition” problem (Hsiao et al. 2002). The first observation

for the first differenced data is endogenous in models with fixed effects, no matter whether the

initial observation is endogenous or exogenous. To solve this problem, the traditional way is to

use the predicted value obtained from the values of regressors (Elhorst 2010; Hsiao et al. 2002; Su

and Yang 2015). But this method has its disadvantages. First process starting time is unknown

and the time-varying regressors need to be trend or first-difference stationary. Second, the method

cannot be applied to the SDPD models with spatial lags (SL) because the initial difference contains

spatial effect in the exogenous part when expanded using backward substitutions. To deal with

this problem, Yang (2018) proposes an initial-condition free M-estimator for the STLE model that

includes a dynamic effect, a spatial lag (SL), a space-time effect (STL) and a spatial error (SE).

The estimator is derived from a set of estimating equations based on the unbiased adjusted quasi

score (AQS) functions and is consistent and asymptotically normal. He also proposes an outer

product of martingale difference (OPMD) estimator for the variance-covariance (VC) matrix of the

M-estimator and proves that it is consistent.

The matrix exponential spatial specification (MESS) is first proposed by LeSage and Pace

(2007). They introduce the cross-sectional MESS and show that it has advantages over the tradi-

tional spatial autoregressive (SAR) models: a simpler log-likelihood function without the Jacobian

matrix and an unrestricted parameter space for its spatial coefficients. Debarsy et al. (2015) derive

the QML estimator and the GMM estimator of the MESS in cross-sectional setting and explore
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their large sample properties. Similar to the SPD models, MESS can be extended to the panel data

models (Figueiredo and Da Silva 2015; LeSage and Chih 2018; Zhang et al. 2019). There has been

a growing interest in recent literature in using MESS to explore various topics such as technological

spillover (LeSage and Pace 2000), housing price (LeSage and Pace 2004), third-country effect on

FDI (Debarsy et al. 2015), cigarette demands (Figueiredo and Da Silva 2015), wage rates (LeSage

and Chih 2018) and geographical spillover (Zhang et al. 2019).

In this paper, the M-estimation method in Yang (2018) is extended to the matrix exponential

spatial dynamic panel specification (MESDPS) with fixed effect in short panels, which assumes

large n and small T and is typical for most real world datasets. Similar to the STLE model, the

MESDPS also suffers from the “initial condition” problem. As discussed above, the traditional way

of solving this problem, which is to use the predicted value derived from the values of the regressors,

does not provide a satisfactory solution. A consistent way to estimate the coefficients and its VC

matrix is needed. We first derive a set of conditional quasi score (CQS) functions treating the

initial differences as exogenous, even if they are not. Then we modify these score functions to get

the adjusted quasi score (AQS) functions which are unbiased. The M-estimator thus is derived by

setting the AQS functions equaling to zero. To get a consistent estimate for the VC matrix of the M-

estimator, a martingale difference (M.D.) of the AQS functions at the true value is established. The

average of the outer product of M.D. (OPMD) is shown to generate a consistent estimate of the VC

matrix when being substituted into the “sandwich” estimate of it, which is referred to as the OPMD

estimator. In Monte Carlo simulations six types of submodels, MESDPS(1,1,1), MESDPS(1,1,0),

MESDPS(1,0,1), MESDPS(0,1,1), MESDPS(1,0,0) and MESDPS(0,1,0) are estimated, where 1’s

denote the MESS in the dependent variable, the lagged dependent variable and the disturbances

respectively. The results show that the M-estimator has good finite sample properties and is robust

to the way the initial observation is generated, which implies that it solves the “initial condition”

problem. The OPMD estimator of the VC matrix generates asymptotic standard errors that’s much

closer to the true standard deviation than the other candidates, especially when the disturbance

is non-normal, emphasizing its importance in research when the normality of disturbances is in

doubt. MESDPS(1,1,1) is applied to US outward FDI data to examine the validity of the model.

The estimation results for the STLE model that includes the spatial lag, the space-time effect

and the spatial error from Yang (2018) are also reported to emphasize the relation for the spatial

coefficients of these two models.

The contribution of this paper is two-fold. First the unified M-estimation method is extended to

MESDPS. The unified M-estimation is designed for the STLE model in Yang (2018). The MESDPS

and the STLE model are non-nested. So it remains to be explored whether the M-estimation method

designed for the STLE model can be extended to the MESDPS. Second, to our best knowledge, this

is the first paper to consider MESS in a dynamic panel setting. Previous literature (Figueiredo and

Da Silva 2015; LeSage and Chih 2018; Zhang et al. 2019) study the MESS in a panel data model.

As mentioned previously, the “initial condition” problem remains when the spatial effects in the

dynamic panel data model are in forms of the MESS, so consistent estimators for the coefficients
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and corresponding standard errors need to be designed, which is accomplished in this paper.

The rest of the paper is organized as follows. Section 2 introduces the M-estimation method.

Section 3 presents the asymptotic distribution of the M-estimator and introduces the OPMD esti-

mator of its VC matrix. Section 4 presents Monte Carlo simulation results. Section 5 applies the

model to US outward FDI. Section 6 concludes. All technical parts and proofs are provided in a

web appendix which is available through the journal webpage.

2 M-estimation of Matrix Exponential Spatial Dynamic

Panel Specification

In this section we first discuss the literature that incorporate the MESS in the panel data setting.

Although these papers discuss the panel data instead of the dynamic panel data, we include them

in the review to underline the importance of our study, i.e., MESDPS has not been explored in the

previous literature. The M-estimator and the OPMD estimator thus provide researchers who want

to work with the MESDPS a reliable method to estimate the parameters and conduct inference.

In the second subsection we present the M-estimation in MESDPS(1,1,1) in short panel. Short

panel assumes large n and small T , which is typical for most real world datasets. M-estimation

first formulates a set of conditional quasi score (CQS) functions assuming that the initial difference

is exogenous, and then modifies it to get a set of adjusted quasi score (AQS) functions which result

in consistent parameter estimates.

2.1 Matrix Exponential Spatial Dynamic Panel Specification

The matrix exponential spatial dynamic panel specification with fixed effects is given by

eα1W1yt = τyt−1 + eα2W2yt−1 +Xtβ+Zγ+µ+λtln+ut, eα3W3ut = εt, t = 1, 2, . . . , T, (2.1)

where yt is an n × 1 vector of observations on the dependent variable; Wr for r = 1, 2, 3 are three

n×n spatial weight matrices, with corresponding spatial coefficients αr capturing the MESS in the

dependent variable, the lagged dependent variable and the disturbances respectively; yt−1 is the

lagged vector of yt with coefficient τ capturing the dynamic effect; Xt is an n× k matrix of time-

varying exogenous variables with corresponding coefficient vector β; Z is an n× p matrix of time-

invariant exogenous variables, which might include the intercept, with corresponding coefficient

vector γ1; µ is an n×1 vector of unobserved individual fixed effects; λt is the time fixed effects; ln is

an n×1 vector of 1; and εt is a vector of disturbances independent and identically distributed across

i and t with mean zero and variance σ2
ε . The matrix exponential eαrWr is defined as

∑∞
j=0

αjrW
j
r

j! for

r = 1, 2 and 3 and is always invertible with inverse e−αrWr (Chiu et al. 1996). The reduced form of

the model is given by yt = e−α1W1(τIn+eα2W2)yt−1 +e−α1W1(Xtβ+Zγ+µ+λtln+e−α3W3εt). The

1As kindly pointed out by a referee, since the estimation approach is based on the first difference of the model,
we cannot estimate the parameters of time-invariant variables.
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model is stationary if all eigenvalues of e−α1W1(τIn + eα2W2) lie inside the unit circle. (Proposition

10.1, Hamilton (1994)).

The specification in (2.1) is comprehensive. It incorporates different submodels by setting the

spatial coefficients αr = 0 for r = 1, 2 or 3. By setting α2 = 0, we have MESDPS(1,0,1) with MESS

in the dependent variable and the disturbances:

eα1W1yt = (τ + 1)yt−1 +Xtβ + Zγ + µ+ λtln + ut, eα3W3ut = εt, t = 1, 2, . . . , T. (2.2)

Without (τ +1)yt−1, Zγ and merging λtln into Xtβ, Zhang et al. (2019) study the QML estimation

of (2.2) in panel data setting. They allow large n and small or large T and establish the consistency

and asymptotic normality under unknown heteroskedasticity when the spatial weight matrices in

MESS for yt and ut are commutable, i.e., W1W3 = W3W1
2.

By setting α2 = 0 and α3 = 0, we get MESDPS(1,0,0):

eα1W1yt = (τ + 1)yt−1 +Xtβ + Zγ + µ+ λtln + εt, t = 1, 2, . . . , T. (2.3)

Figueiredo and Da Silva (2015) discuss (2.3) without (τ + 1)yt−1 and Zγ. They use the deviation

from mean operator to get rid of the individual and time fixed effects and present the ML estima-

tion of the transformed model. This approach, however, results in linearly dependent disturbance

terms after transformation. Instead, we can pre- and post-multiply the model by the orthonormal

eigenvector matrix of the individual and time mean deviation operators respectively (Lee and Yu

2010b).

The literature above incorporate MESS into a panel data model. To the best of our knowledge,

MESS in a dynamic panel setting has not been studied in the previous literature. The M-estimation

proposed in this paper provides consistent and asymptotically normal estimates. The OPMD

estimator for the VC matrix is also consistent and provides good finite sample properties. The

method is useful for those who want to utilize the MESDPS in empirical research.

2.2 The M-estimation of MESDPS

Different from the geometrical decay in the STLE model, (2.1) has an exponential decay. It also

has a simpler quasi log-likelihood function without the Jacobian of the transformation. However,

they suffer from the “initial condition” problem discussed below.

Denote the true value of the parameter vector by θ0 = (β′0, σ
2
ε0, τ0, α

′
0)′, where α0 =

(α10, α20, α30)′. Let A20 = τ0In + eα20W2 . Taking first difference for (2.1), we get:

eα10W1∆yt = A20∆yt−1 + ∆Xtβ0 + ∆ut, eα30W3∆ut = ∆εt, t = 2, 3, . . . , T. (2.4)

where ∆λtln is merged into ∆Xtβ0. Here we abuse the notation and let ∆Xtβ0 in (2.4) denote

2In this paper the commutability is not required since it is a dynamic panel data setting instead of panel data
setting.
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the merged variable of first differenced ∆Xtβ0 and ∆λtln from (2.1). Note (2.4) is not defined

for t = 1 because ∆y1 depends on ∆y0 and the latter is unobserved. So even if y0 and ∆y0 is

exogenous, the likelihood function which conditions on ∆y0 cannot be formulated. Also y1 and

thus ∆y1 are not exogenous. This “initial condition” problem prevents us from deriving consistent

estimates for the MESDPS. The traditional way is to use the predicted values based on the observed

values of regressors (Elhorst 2010; Hsiao et al. 2002; Su and Yang 2015). However, it requires that

the time-varying regressors be trend or first-difference stationary. Besides, for the MESDPS with

MESS in the dependent variable, for example MESDPS(1,0,0), the first differenced equation is

given by eα10W1∆yt = (τ0 +1)∆yt−1 +∆Xtβ0 +∆εt. By backward substitution, we get ∆y1 = (τ0 +

1)m(e−α10W1)m∆y−m+1+
∑m−1

i=0 (τ0+1)i(e−α10W1)i+1∆X−i+1β0+
∑m−1

i=0 (τ0+1)i(e−α10W1)i+1∆ε−i+1,

where −m is the process starting time. Note the exogenous part contains the MESS e−α10W1 . The

linear structure no longer exists due to the existence of the MESS and the linear projection method

fails. Thus we need a unified way to estimate the model.

To express the model in vector form, we define the following: ∆Y = (∆y
′
2, . . . ,∆y

′
T )
′
, ∆Y−1 =

(∆y
′
1, . . . ,∆y

′
T−1)

′
, ∆X = (∆X

′
2, . . . ,∆X

′
T )
′
, ∆u = (∆u

′
2, . . . ,∆u

′
T )
′
, ∆ε = (∆ε

′
2, . . . ,∆ε

′
T )
′
, A20 =

IT−1 ⊗ A20, Wr = IT−1 ⊗ Wr and eαr0Wr = IT−1 ⊗ eαr0Wr for r = 1, 2 and 3. Stacking the

observations vertically, the model can be expressed as:

eα10W1Y = A20∆Y−1 + ∆Xβ0 + ∆u, eα30W3∆u = ∆ε. (2.5)

So Var(∆u) = Var(e−α30W3∆ε) = σ2
ε0(B ⊗ e−α30W3e−α30W

′
3) = σ2

ε0Σ(α30), where

B =



2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1 2


Under normally distributed εt, the joint distribution of ∆ut can be used to derive the log-

likelihood function of parameters θ:

`(θ) = −n(T − 1)

2
log(2πσ2

ε )−
1

2
log|Σ(α3)|+ log|eα1W1 | − 1

2σ2
ε

∆u(φ)
′
Σ(α3)−1∆u(φ), (2.6)

with θ = (β
′
, σ2

ε , τ, α
′
)
′

and φ = (β
′
, τ, α1, α2)

′
where φ are the parameters in ∆u(φ) = eα1W1∆Y −

A2∆Y−1 − ∆Xβ. Note log|Σ(α3)| = nlog|B| + 2(T − 1)log(e−α3tr(W3)) = nlog|B| which is a

constant and log(|eα1W1 |) = (T − 1)log(eα1tr(W1)) = 0 because the spatial weight matrices have

zero diagonals. So we can ignore the constants and simplify the log-likelihood function to:

`(θ) = −n(T − 1)

2
log(σ2

ε )−
1

2σ2
ε

∆u(φ)
′
Σ(α3)−1∆u(φ). (2.7)
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Given ζ = (τ, α
′
)
′

with α = (α1, α2, α3)
′
, we can derive the estimators of β and σ2

ε as following:

β̃(ζ) = (∆X
′
Σ(α3)−1∆X)−1∆X

′
Σ(α3)−1(eα1W1∆Y −A2∆Y−1), (2.8)

σ̃2
ε (ζ) =

1

n(T − 1)
∆ũ(ζ)

′
Σ(α3)−1∆ũ(ζ), (2.9)

where ∆ũ(ζ) = eα1W1∆Y − A2∆Y−1 − ∆Xβ̃(ζ). Substituting them back into (2.7), ignoring

constants, we get the concentrated log-likelihood function:

lc(ζ) = −n(T − 1)

2
log[∆ũ(ζ)

′
Σ(α3)−1∆ũ(ζ)]. (2.10)

The conditional QML (CQML) estimators ζ̃ = (τ̃ , α̃
′
)
′

are then derived by maximizing (2.10). The

CQML estimators β̃ = β̃(ζ̃) and σ̃2
ε = σ̃2

ε (ζ̃) are subsequently derived by substituting ζ̃ into (2.8)

and (2.9).

The comprehensive model in Yang (2018) that includes the spatial lag (SL), the space-time

lag (STL) and the spatial error (SE) is denoted as the STLE model. Consider the STLE model

given by yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + Xtβ + Zγ + µ + αtln + ut, ut = λ3W3ut + εt. The

log-likelihood function (2.7) and the concentrated log-likelihood function (2.10) are simpler without

the Jacobian log|B1(λ1)| where B1(λ1) = IT−1 ⊗ B1(λ1) and B1(λ1) = In − λ1W1. It makes the

MESDPS computationally easier, especially for large sample sizes. A correspondence of relation

for the parameters also exists for the MESDPS and the STLE model. Consider (2.1), assume

the spatial weight matrix is row-normalized and a shock ∂xtk is applied to all spatial units on

the kth independent variable Xtk, so that the new variable becomes Xtk + ln∂xtk. Then the

contemporaneous total impact for the MESDPS is given by ∂yt = e−α1W1 ln∂xtkβk, so the average

contemporaneous total impact is 1
n l
′
n∂yt = e−α1∂xtkβk. Similarly for the STLE model, the average

contemporaneous total impact is given by 1
1−λ1∂xtkβk. Equating them gives us the relation λ1 =

1 − eα1 . For yt−1, a shock ∂νt−1 leads to the average total impact e−α1(τ + eα2)∂νt−1 for the

MESDPS and ρ+λ2
1−λ1 ∂νt−1 for the STLE model. So τ + eα2 = ρ + λ2. Setting α2 = 0 and λ2 = 0

gives us ρ = τ + 1, which implies λ2 = eα2 − 1. On contrary to the negative relation between α1

and λ1, the relation between α2 and λ2 is positive. When −1 < λ2 < 0, α2 also takes negative

values and vice versa.

The CQML estimator θ̃ = (β̃
′
, σ̃2

ε , τ̃ , α̃
′
)
′

derived above encounters a bias when T is small as

shown below. We simplify the notation by denoting Σ = Σ(α3) and Σ0 = Σ(α30). Using the

simplified log-likelihood function in (2.7), the conditional quasi score (CQS) function S(θ) = ∂`(θ)
∂θ
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is derived as

S(θ) =



β : 1
σ2
ε
∆X

′
Σ−1∆u(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆u(φ)

′
Σ−1∆u(φ),

τ : 1
σ2
ε
∆u(φ)

′
Σ−1∆Y−1,

α1 : − 1
σ2
ε
∆u(φ)

′
Σ−1W1e

α1W1∆Y,

α2 : 1
σ2
ε
∆u(φ)

′
Σ−1W2e

α2W2∆Y−1,

α3 : − 1
2σ2
ε
∆u(φ)

′
(B−1 ⊗ E3)∆u(φ),

(2.11)

where E3 = eα3W
′
3(W3+W

′
3)eα3W3 . We will show that the τ , α1 and α2 elements of the CQS function

(2.11) are biased, meaning their expected values are nonzeros at the true parameter values, leading

to the inconsistency of the CQML estimator. First let’s make Assumption 1 below.

Assumption 1. For model (2.1), (i) the processes started m periods before the start of data collec-

tion, the 0th period, (ii) if m ≥ 1, ∆y0 is independent of future disturbances {εt, t ≥ 1}; if m = 0,

y0 is independent of future disturbances {εt, t ≥ 1}.

Assumption 1 is the same as the Assumption A in Yang (2018). Compared with the assumptions

in previous literature (Elhorst 2010; Hsiao et al. 2002; Su and Yang 2015), Assumption 1 requires

minimum information about the past processes. It does not require the time-varying regressors

to be trend or first-difference stationary. This is one of the advantages of M-estimation, i.e.,

some restrictive assumptions on the initial values and initial differences are removed. Denote

A21,0 = A20e
−α10W1 . The following lemma is necessary to compute the bias of the CQS function.

Lemma 2.1. Under Assumption 1, E(∆Y∆ε
′
) = −σ2

ε0e
−α10W1D0e

−α30W3 and E(∆Y−1∆ε
′
)

= −σ2
ε0e

−α10W1D−1,0e
−α30W3, where D−1,0 =



In 0 . . . . . . 0

A21,0 − 2In In
. . . . . .

...

(A21,0 − In)2 . . .
. . .

. . .
...

...
...

. . .
. . . 0

AT−4
21,0 (A21,0 − In)2 . . . (A21,0 − In)2 A21,0 − 2In In



and D0 =


A21,0 − 2In In . . . . . . 0

(A21,0 − In)2 A21,0 − 2In
. . . . . .

...
...

...
. . .

. . . In

AT−3
21,0 (A21,0 − In)2 . . . . . . (A21,0 − In)2 A21,0 − 2In

 .

Here we used the fact that εit is i.i.d. across i and t, and that eαr0Wr is always invertible for
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r = 1 and 3. Using Lemma 2.1, we have

E(∆u
′
Σ−1

0 ∆Y−1) = −σ2
ε0tr(D−1,0B

−1e−α10W1), (2.12)

E(∆u
′
Σ−1

0 W1e
α10W1∆Y ) = −σ2

ε0tr(D0B
−1W1), (2.13)

E(∆u
′
Σ−1

0 W2e
α20W2∆Y−1) = −σ2

ε0tr(D−1,0B
−1W21,0), (2.14)

where W21,0 = W2e
α20W2e−α10W1 and B = B⊗In. These equations imply that E(∂`(θ)∂τ ), E(∂`(θ)∂α1

)

and E(∂`(θ)∂α2
) are nonzero, making τ , α1 and α2 elements of the CQS function (2.11) biased. The

set of CQS functions are estimating functions for the CQML estimator. The consistency of an

M-estimator requires that the estimating functions need to have a probability limit of zero at the

true parameter values, i.e., plimn→∞
1
nT S(θ0) = 0 (Vaart 2000). However Lemma 2.1 implies that

it does not hold for the CQML estimator. Typically E(∂`(θ)∂τ ), E(∂`(θ)∂α1
) and E(∂`(θ)∂α2

) are of order n,

which implies E[
√
nT (θ̃ − θ0)] = O(

√
n
T ). The bias thus does not vanish in short panels when T

is fixed. The bias vanishes when n
T → 0, which refers to a long panel and is not of interest in our

study. So the CQML estimation fails to produce consistent estimates.

To have a set of unbiased estimating functions, we modify the CQS functions in (2.11) to get

the adjusted quasi score (AQS) functions:

S∗(θ) =



β : 1
σ2
ε
∆X

′
Σ−1∆u(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆u(φ)

′
Σ−1∆u(φ),

τ : 1
σ2
ε
∆u(φ)

′
Σ−1∆Y−1 + tr(D−1B

−1e−α1W1),

α1 : − 1
σ2
ε
∆u(φ)

′
Σ−1W1e

α1W1∆Y − tr(DB−1W1),

α2 : 1
σ2
ε
∆u(φ)

′
Σ−1W2e

α2W2∆Y−1 + tr(D−1B
−1W21),

α3 : − 1
2σ2
ε
∆u(φ)

′
(B−1 ⊗ E3)∆u(φ).

(2.15)

The M-estimator derived from the AQS functions is consistent and asymptotically normal, which

will be shown in the next section. It is interesting to compare the AQS functions with those for

the STLE model in Yang (2018). First the bias term tr(D−1B
−1e−α1W1) in the τ element has

similar format with that for the ρ element3 in the STLE model (with SAR process being replaced

by MESS). This means that while the inherent spatial processes are different, the format of the bias

that comes from the dynamic effect is not affected by the nature of the spatial structure. Second

thing to note is that, similar to the STLE model, the adjustments in the AQS functions are free

from MESS in the disturbance term, i.e., eα3W3 does not appear in the trace terms. This implies

that the AQS adjustments will not change if MESS in the disturbance term changes to other forms

of spatial relationship, e.g., higher order MESS, autoregressive, moving average, etc. Third the

adjustments modify the estimation of τ , α1 and α2 so that they become nonlinear.

To derive the M-estimator, we first solve for the constrained M-estimators of β and σ2
ε , given

3Note the differences in the definition of matrix D and D−1 with those in Yang (2018).

9



ζ = (τ, α
′
)
′
, as

β̂M (ζ) = (∆X
′
Σ−1∆X)−1∆X

′
Σ−1(eα1W1∆Y −A2∆Y−1), (2.16)

σ̂2
ε,M (ζ) =

1

n(T − 1)
∆û(ζ)

′
Σ−1∆û(ζ), (2.17)

where ∆û(ζ) = eα1W1∆Y −A2∆Y−1 −∆Xβ̂M (ζ). Then β̂M (ζ) and σ̂2
ε,M (ζ) are substituted back

into the other four elements of the AQS function S∗(θ) to get the concentrated AQS function:

S∗c(ζ) =



τ : 1
σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1∆Y−1 + tr(D−1B

−1e−α1W1),

α1 : − 1
σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1W1e

α1W1∆Y − tr(DB−1W1),

α2 : 1
σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1W2e

α2W2∆Y−1 + tr(D−1B
−1W21),

α3 : − 1
2σ̂2
ε,M (ζ)

∆û(ζ)
′
(B−1 ⊗ E3)∆û(ζ).

(2.18)

The unconstrained M-estimator ζ̂M = (τ̂M , α̂
′

M )
′

can be solved by letting S∗c(ζ) = 0. The uncon-

strained M-estimators β̂M and σ̂2
ε,M are then derived by substituting ζ̂M into β̂M (ζ) and σ̂2

ε,M (ζ).

Note the CQML estimator (CQMLE) and the M-estimator use the same set of estimators of β

and σ2
ε to derive unconstrained ones, i.e., β̃(ζ) = β̂M (ζ) and σ̃2

ε (ζ) = σ̂2
ε,M (ζ), which are from

(2.8), (2.16), (2.9) and (2.17) respectively. The advantage of M-estimation comes from the AQS

function (2.15). It adjusts the estimation functions so that they become unbiased. For the CQML

estimation, the estimators β̃(ζ̃) and σ̃2(ζ̃) are biased because of the spillover from the bias of the

estimator ζ̃ when being substituted into (2.8) and (2.9).

3 Asymptotic Properties of the M-estimator

In this section we explore the asymptotic properties of the M-estimator. We first prove it is

consistent and then derive its asymptotic distribution. To facilitate valid inference, an OPMD

estimator of the VC matrix is also proposed. Valid inference can thus be based on the standard

errors implied by the OPMD estimator of the VC matrix.

3.1 Consistency of the M-estimator

To prove the consistency and to later derive the asymptotic distribution of the M-estimator, we

first make some regularity assumptions. Let Cn be an n× n matrix. Then C
′
n, tr(Cn), |Cn|, ‖Cn‖,

γmin(Cn) and γmax(Cn) denote the transpose, trace, determinant, Euclidean norm, the smallest and

largest eigenvalues of Cn respectively.

Assumption 2. Matrices {W1}, {W2} and {W3} are bounded in both row and column sum norms.

The diagonal elements of W1, W2 and W3 are zeroes.
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Assumption 3. The time-varying regressors {Xt, t = 1, . . . , T} are exogenous with uniformly

bounded elements and have full column rank. Also limn→∞
1
nT ∆X

′
∆X exists and is nonsingular.

Assumption 4. There exists a constant δ > 0 such that |αr| ≤ δ for r = 1, 2 and 3, and the true

ζ0 is in the interior of the parameter space Z. Also there exist a lower bound cαr and an upper

bound cαr such that 0 < cαr ≤ infαr∈Zr γmin(eαrW
′
reαrWr) ≤ supαr∈Zr γmax(eαrW

′
reαrWr) ≤ cαr <∞

for r = 1, 2 and 3.

Assumption 5. The {εit} are i.i.d. with mean zero and variance σ2
ε , and E|εit|4+a exists for some

a > 0.

Assumption 6. For an n × n matrix Cn uniformly bounded in row and column sums with el-

ements of uniform order g−1
n , and an n × 1 vector cn with elements of uniform order g

−1/2
n ,

(i) gn
n ∆y

′
1Cn∆y1 = Op(1) and gn

n ∆y
′
1Cn∆ε2 = Op(1); (ii) gn

n [∆y1 − E(∆y1)]
′
cn = op(1); (iii)

gn
n [∆y

′
1Cn∆y1 − E(∆y

′
1Cn∆y1)] = op(1); (iv) gn

n [∆y
′
1Cn∆ε2 − E(∆y

′
1Cn∆ε2)] = op(1).

Assumptions 2-5 are standard in the literature (see, e.g., Lee (2004), Debarsy et al. (2015)).

Assumption 6 is the same as Assumption F in Yang (2018). It imposes some mild conditions on

the initial difference ∆y1 which will be used in the later proofs.

First note that the consistency of θ̂M = (β̂
′
M , σ̂

2
ε,M , τ̂M , α̂

′
M )′ follows from the consistency of

ζ̂M = (τ̂M , α̂
′

M )
′

since β̂M = β̂M (ζ̂M ) and σ̂2
ε,M = σ̂2

ε,M (ζ̂M ). To prove the consistency of ζ̂M , we

first define the population counterpart of the AQS function as:

S∗(θ) = E[S∗(θ)] =



β : 1
σ2
ε
E[∆X

′
Σ−1∆u(φ)],

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
E[∆u(φ)

′
Σ−1∆u(φ)],

τ : 1
σ2
ε
E[∆u(φ)

′
Σ−1∆Y−1] + tr(D−1B

−1e−α1W1),

α1 : − 1
σ2
ε
E[∆u(φ)

′
Σ−1W1e

α1W1∆Y ]− tr(DB−1W1),

α2 : 1
σ2
ε
E[∆u(φ)

′
Σ−1W2e

α2W2∆Y−1] + tr(D−1B
−1W21),

α3 : − 1
2σ2
ε
E[∆u(φ)

′
(B−1 ⊗ E3)∆u(φ)].

(3.1)

Similar to the process of deriving the M-estimator, we can first solve for βM (ζ) and σ2
ε,M (ζ) as:

βM (ζ) = (∆X
′
Σ−1∆X)−1∆X

′
Σ−1[eα1W1E(∆Y )−A2E(∆Y−1)], (3.2)

σ2
ε,M (ζ) =

1

n(T − 1)
E[∆u(ζ)

′
Σ−1∆u(ζ)], (3.3)

where ∆u(ζ) = eα1W1∆Y −A2∆Y−1−∆XβM (ζ). By substituting them into the last four elements
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of S∗(θ), we get the population counterpart of the concentrated AQS function (2.18) as

S∗c(ζ) =



τ : 1
σ2
ε,M (ζ)

E[∆u(ζ)
′
Σ−1∆Y−1] + tr(D−1B

−1e−α1W1),

α1 : − 1
σ2
ε,M (ζ)

E[∆u(ζ)
′
Σ−1W1e

α1W1∆Y ]− tr(DB−1W1),

α2 : 1
σ2
ε,M (ζ)

E[∆u(ζ)
′
Σ−1W2e

α2W2∆Y−1] + tr(D−1B
−1W21),

α3 : − 1
2σ2

ε,M (ζ)
E[∆u(ζ)

′
(B−1 ⊗ E3)∆u(ζ)].

(3.4)

Note ζ0 is a zero of S∗c(ζ). According to Theorem 5.9 of Vaart (2000), if ζ̂M is a zero of S∗c(ζ) and ζ0

is a zero of S∗c(ζ), then ζ̂M is a consistent estimator of ζ0 if supζ∈Z
1

n(T−1)

∥∥S∗c(ζ)− S∗c(ζ)
∥∥ p−−→ 0

and the following assumption holds.

Assumption 7. infζ:d(ζ,ζ0)≥ν
∥∥S∗c(ζ)

∥∥ > 0 for every ν > 0, where d(ζ, ζ0) is a measure of distance

between ζ and ζ0.

Before we show supζ∈Z
1

n(T−1)

∥∥S∗c(ζ)− S∗c(ζ)
∥∥ p−−→ 0, let’s first define some convenient ex-

pressions. Let ∆u∗(ζ) = Σ−
1
2 ∆u(ζ), eα1W∗

1 = Σ−
1
2eα1W1 , A∗2 = Σ−

1
2A2, ∆Y † = ∆Y − E(∆Y ),

∆Y †−1 = ∆Y−1−E(∆Y−1), P = Σ−
1
2 ∆X(∆X

′
Σ−1∆X)−1∆X

′
Σ−

1
2 and M = In(T−1)−P . Then we

have

∆u∗(ζ) = P (eα1W∗
1∆Y † −A∗2∆Y †−1) +M(eα1W∗

1∆Y −A∗2∆Y−1). (3.5)

The expression will be useful in deriving σ2
ε,M (ζ) in (3.3) in the proof for Theorem 3.1 below.

Theorem 3.1. Suppose Assumptions 1-7 hold and further the following condition 0 < c∆Y ≤
infζ∈Z γmin[Var(eα1W1∆Y − A2∆Y−1)] ≤ supζ∈Z γmax[Var(eα1W1∆Y − A2∆Y−1)] ≤ c∆Y < ∞,

we have θ̂M
p−−→ θ0 as n→∞.

3.2 Asymptotic Distribution of the M-estimator

To derive the asymptotic distribution of θ̂M , we apply the mean value theorem (MVT) to

S∗(θ̂M ) = 0 at the true θ0 to get
√
n(T − 1)(θ̂M −θ0) = −( 1

n(T−1)
∂S∗(θ)

∂θ′
)−1 1√

n(T−1)
S∗(θ0) for some

θ between θ0 and θ̂M elementwise. Then we show that 1
n(T−1)

∂S∗(θ)

∂θ′
carries appropriate asymptotic

properties and that 1√
n(T−1)

S∗(θ0) is asymptotically normal. One thing to note here is that ∆y1

might not be exogenous and is unspecified, so the regular law of large numbers (LLN) and central

limit theorem (CLT) for linear-quadratic forms from Kelejian and Prucha (2001) is not sufficient.

Instead we use the extended LLN and CLT for bilinear-quadratic forms from Yang (2018) and Su

and Yang (2015), which are listed in Lemmas A.3 and A.4 in the web appendix. The following

lemma that expresses ∆Y and ∆Y−1 in a convenient format will be crucial in deriving the asymptotic

distribution and later a consistent estimate of the VC matrix. Let blkdiag(C1, ..., Cn) be the block

diagonal matrix with diagonal n× n matrices C1, ..., Cn. Denote A12,0 = e−α10W1A20.
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Lemma 3.1. Under Assumptions 1, 3 and 5,

∆Y = G∆y1 + δ +K∆ε, (3.6)

∆Y−1 = G−1∆y1 + δ−1 +K−1∆ε, (3.7)

where ∆y1 = IT−1 ⊗ ∆y1, G = blkdiag[A12,0, (A12,0)2, ..., (A12,0)T−1], G−1 =

blkdiag[In, A12,0, ..., (A12,0)T−2], δ = Je−α10W1∆Xβ0, δ−1 = J−1e
−α10W1∆Xβ0,

K = Je−α10W1e−α30W3, K−1 = J−1e
−α10W1e−α30W3,

J =



In 0 . . . . . . 0

A12,0
. . .

. . .
. . .

...

A2
12,0

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

AT−2
12,0 . . . A2

12,0 A12,0 In


and J−1 =



0 0 . . . . . . 0

In
. . .

. . .
. . .

...

A12,0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

AT−3
12,0 . . . A12,0 In 0


.

By substituting (3.6) and (3.7) into τ , α1 and α2 elements and substituting ∆u = e−α30W3∆ε

into the β, σ2
ε and α3 elements of the AQS function (2.15) at the true value θ0, we get

S∗(θ0) =



β : R
′
1∆ε,

σ2
ε : −n(T−1)

2σ2
ε0

+ ∆ε
′
O1∆ε,

τ : ∆ε
′
F1∆y1 +R

′
2∆ε+ ∆ε

′
O2∆ε+ tr(D−1,0B

−1e−α10W1),

α1 : −∆ε
′
F2∆y1 −R

′
3∆ε−∆ε

′
O3∆ε− tr(D0B

−1W1),

α2 : ∆ε
′
F3∆y1 +R

′
4∆ε+ ∆ε

′
O4∆ε+ tr(D−1,0B

−1W21,0),

α3 : ∆ε
′
O5∆ε,

(3.8)

whereR1 = 1
σ2
ε0

(B−1⊗eα30W3)∆X, R2 = 1
σ2
ε0

(B−1⊗eα30W3)δ−1, R3 = 1
σ2
ε0

(B−1⊗eα30W3)W1e
α1W1δ,

R4 = 1
σ2
ε0

(B−1 ⊗ eα30W3)W2e
α2W2δ−1, O1 = 1

2σ4
ε0

(B−1 ⊗ In), O2 = 1
σ2
ε0

(B−1 ⊗ eα30W3)K−1, O3 =
1
σ2
ε0

(B−1 ⊗ eα30W3)W1e
α1W1K, O4 = 1

σ2
ε0

(B−1 ⊗ eα30W3)W2e
α2W2K−1, O5 = − 1

2σ2
ε0

[B−1 ⊗ (W3 +

W
′
3)], F1 = 1

σ2
ε0

(B−1 ⊗ eα30W3)G−1, F2 = 1
σ2
ε0

(B−1 ⊗ eα30W3)W1e
α1W1G and F3 = 1

σ2
ε0

(B−1 ⊗
eα30W3)W2e

α2W2G−1.

Using S∗(θ0) in (3.8), we can derive the expected score and the variance of the AQS function

at the true value to get the the asymptotic distribution of the M-estimator.

Theorem 3.2. Suppose assumptions of Theorem 3.1 hold, we have, as n→∞,√
n(T − 1)(θ̂M − θ0)

d−−→ N [0, limn→∞Ψ∗−1(θ0)Ω∗(θ0)Ψ∗−1′(θ0)], (3.9)

where Ψ∗(θ0) = − 1
n(T−1)E

[
∂S∗(θ0)

∂θ′

]
and Ω∗(θ0) = 1

n(T−1) Var [S∗(θ0)] are assumed to exist and

Ψ∗(θ0) is assumed to be positive definite for sufficiently large n.
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3.3 The OPMD Estimator of VC Matrix

In this section we derive a feasible estimator for the VC matrix Ψ∗−1(θ0)Ω∗(θ0)Ψ∗−1′(θ0). Denote

the Hessian matrix by H∗(θ) = ∂S∗(θ)

∂θ′
. Then a consistent estimate of Ψ∗(θ0) is easily derived by

substituting the consistent M-estimates in, i.e., Ψ∗(θ̂M ) = − 1
n(T−1)H

∗(θ̂M ). The detailed expression

of Ψ∗(θ̂M ) and the proof for the consistency of it are provided in the proof of Theorem 3.2 in the

web appendix.

For Ω∗(θ0), however, this method does not work. This is because from (3.8) we know that

τ , α1 and α2 elements of S∗(θ0) contain the initial difference ∆y1, which is unspecified. So we

need to design a method that is free from the initial condition. Following Yang (2018), we propose

an outer product of martingale difference (OPMD) method to consistently estimate Ω∗(θ0). The

OPMD method first transforms S∗(θ0) in (3.8) into a sum of vector martingale difference sequence

(MDS). Specifically, we will write R
′
r∆ε, ∆ε

′
Or∆ε − E(∆ε

′
Or∆ε) and ∆ε

′
Fr∆y1 − E(∆ε

′
Fr∆y1)

for suitable r as sums of MDS. The transformation enables us to write Ω∗(θ0), which is the variance

of the outer product of the sum of elements of a vector MDS, as the expected outer product of the

elements of MDS because MDS has mean zero and the terms in the sum are independent (See 3.14

below). Then the averaged sum of the outer product of elements of the estimated vector MDS can

be computed to be a consistent estimate of Ω∗(θ0).

For a square matrix A = Au + Al + Ad, let Au, Al and Ad be the upper-triangular, lower-

triangular and diagonal matrix of A respectively. In the following we suppress the subscripts in

Rr, Or and Fr for suitable r to simplify notations. Let Rt be the n × k submatrix or n × 1

subvector of R, where R could be a n(T − 1) × K matrix (R1) or n(T − 1) × 1 vector (R2, R3

and R4). Let Ots and Fts be the n × n submatrix of n(T − 1) × n(T − 1) matrix O and F

respectively. Note Rt, Ots and Fts are partitioned by t, s = 2, . . . , T . Define F+
t =

∑T
s=2 Fts,

for t = 2, . . . , T , F++
2 = F+

2 e
−α10W1eα30W3 , ∆y�1 = eα3W3eα10W1∆y1, ∆ξ = (F++u

2 + F++l
2 )∆y�1,

∆ηt =
∑T

s=2(Ou
′

st +Olts)∆εs, ∆ε∗t =
∑T

t=2O
d
ts∆εs and ∆y∗1t = F+

t ∆y1. Let dit be the itth diagonal

element of BO, where B = B⊗In is defined after (2.14) in section 2.2. Let {Πn,i} be the increasing

sequence of σ-fields generated by {εj1, . . . , εjT , j = 1, . . . , i}, i = 1, . . . , n, n ≥ 1. Let Φn,0 be the

σ-field generated by {ε0,∆y0}. Define Φn,i = Φn,0 ⊗ Πn,i as the σ-field on the Cartesian product

generated by subset of the form φn,0 × πn,i, where φn,0 ∈ Φn,0 and πn,i ∈ Πn,i. We show in the

following lemma that S∗(θ0) can be written as sums of vector MDS.

Lemma 3.2. Suppose the assumptions of Lemma 3.1 hold, define a1i =
∑T

t=2R
′
it∆εit, a2i =∑T

t=2(∆εit∆ηit + ∆εit∆ε
∗
it − σ2

ε0dit) and a3i = ∆ε2i∆ξi + F++
2,ii (∆ε2i∆y

�
1i + σ2

ε0) +
∑T

t=3 ∆εit∆y
∗
1it.
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Then

R
′
∆ε =

n∑
i=1

a1i, (3.10)

∆ε
′
O∆ε− E(∆ε

′
O∆ε) =

n∑
i=1

a2i, (3.11)

∆ε
′
F∆y1 − E(∆ε

′
F∆y1) =

n∑
i=1

a3i, (3.12)

and {(a′1i, a2i, a3i)
′
,Φn,i}ni=1 forms a vector MDS.

Now using Lemma 3.2, for each Rr, define a1ri =
∑T

t=2R
′
rit∆εit for r = 1, 2, 3 and 4; for each

Or, define a2ri =
∑T

t=2(∆εit∆ηrit + ∆εit∆ε
∗
rit − σ2

ε0drit) for r = 1, 2, 3, 4 and 5; for each Fr, define

a3ri =
∑T

t=2[∆ε2i∆ξri + F++
2,rii(∆ε2i∆y

�
1i + σ2

ε0) +
∑T

t=3 ∆εit∆y
∗
r1it] for r = 1, 2 and 3. Then we

can construct a vector ai = (a
′
11i, a21i, a31i + a12i + a22i,−a32i − a13i − a23i, a33i + a14i + a24i, a25i)

′
.

Here for the first element E(R
′
1∆ε) = 0. For the second element E(∆ε

′
O1∆ε) = n(T−1)

2σ2
ε0

. For the

third element E(∆ε
′
F1y1 +R

′
2∆ε+ ∆ε

′
O2∆ε) = −tr(D−1,0B

−1e−α10W1). For the fourth element

E(∆ε
′
F2y1 +R

′
3∆ε+ ∆ε

′
O3∆ε) = −tr(D0B

−1W1). For the fifth element E(∆ε
′
F3∆y1 +R

′
4∆ε+

∆ε
′
O4∆ε) = −tr(D−1,0B

−1W2e
−α10W1). For the sixth element E(∆ε

′
O5∆ε) = 0. So

S∗(θ0) =
n∑
i=1

ai. (3.13)

Since E(ai|Φn,i−1) = 0, {ai,Φn,i} form a vector MDS. Together with (3.13), we thus have

Var [S∗(θ0)] = E

( n∑
i=1

ai

)(
n∑
i=1

ai

)′−[E

(
n∑
i=1

ai

)][
E

(
n∑
i=1

ai

)]′
=

n∑
i=1

E
(
aia

′
i

)
. (3.14)

A consistent estimator of Ω∗(θ0) is then given by Ω̂∗ = 1
n(T−1)

∑n
i=1 âiâ

′

i, where âi is derived by

replacing θ0 in ai by the M-estimator θ̂M . The consistency of Ω̂∗ and thus of the VC matrix

Ψ∗−1(θ̂M )Ω̂∗Ψ∗−1(θ̂M ) follow in the theorem below.

Theorem 3.3. Under the assumptions of Theorem 3.1, as n→∞,

Ω̂∗ − Ω∗(θ0) =
1

n(T − 1)

[
n∑
i=1

âiâ
′

i −
n∑
i=1

aia
′
i

]
p−−→ 0, (3.15)

and thus

Ψ∗−1(θ̂M )Ω̂∗Ψ∗−1′(θ̂M )−Ψ∗−1(θ0)Ω∗(θ0)Ψ∗−1′(θ0)
p−−→ 0. (3.16)

The M-estimator and the OPMD estimator of the VC matrix subsume submodels that contain

MESS in the dependent variable, the lagged dependent variable and/or the disturbances. Their
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formats are derived in the web appendix. Different submodels are also explored in the Monte Carlo

simulations in the next section.

4 Monte Carlo Simulation

To fully investigate the performance of the M-estimator and the OPMD-based standard error, we

establish the following models in the Monte Carlo simulation.

MESDPS(1,1,1): eα1W1yt = τyt−1 + eα2W2yt−1 + β0ln +Xtβ1 + Zγ + µ+ ut, eα3W3ut = εt,

MESDPS(1,1,0): eα1W1yt = τyt−1 + eα2W2yt−1 + β0ln +Xtβ1 + Zγ + µ+ εt,

MESDPS(1,0,1): eα1W1yt = (τ + 1)yt−1 + β0ln +Xtβ1 + Zγ + µ+ ut, eα3W3ut = εt,

MESDPS(0,1,1): yt = τyt−1 + eα2W2yt−1 + β0ln +Xtβ1 + Zγ + µ+ ut, eα3W3ut = εt,

MESDPS(1,0,0): eα1W1yt = (τ + 1)yt−1 + β0ln +Xtβ1 + Zγ + µ+ εt,

MESDPS(0,1,0): yt = τyt−1 + eα2W2yt−1 + β0ln +Xtβ1 + Zγ + µ+ εt.

The elements of Xt is drawn from N(0, 4). Elements of Z and µ are drawn from U(0, 1) and N(0, 1)

respectively. The spatial weight matrices are based on rook and queen contiguity. To this end, n

spatial units are randomly allocated into
√
n×
√
n square lattice graph. In the rook contiguity case,

wij = 1 if the j’th observation is adjacent (left/right/above or below) to the i’th observation on the

graph. In the queen contiguity case, wij = 1 if the j’th observation is adjacent to, or shares a border

with the i’th observation. The weights matrices are then row normalized. Three specifications of

the disturbances εt are generated: (i) normal, (ii) normal mixture (10% N(0, 52) and 90% N(0, 1)),

(iii) standardized gamma (2, 1). Both (ii) and (iii) are standardized to have the same mean and

variance with (i). Four sample sizes are considered, corresponding to n = (49, 100) and T = (3, 7).

The values of parameters are β0 = 10, β1 = 1, γ = 1 and σ2
ε = 1. For ρ and αr, r = 1, 2, 3,

we select from a set of values (−1.5,−1.1,−0.5,−0.1, 0, 0.5, 1.1, 1.5) in different submodels. Each

experiment is replicated 1000 times. To compare the performance of the OPMD estimator, we

report the empirical standard deviations (sd), OPMD-based standard errors (se), standard errors

based on Ω̂∗−1 (s̃e) and standard errors based on Ψ∗−1(θ̂M ) (ŝe). Better performance is represented

by closer approximation to sd. We only show the results from the full model MESDPS(1,1,1) in

the main paper and put the rest of estimated results in the web appendix.

Table 4.1 presents results for the empirical means of the CQMLE and the M-estimator

and Table 4.2 presents the empirical standard deviations and the standard errors for MES-

DPS(1,1,1). For the empirical means in Table 4.1, the M-estimator provides closer results to

the true values of parameters than the CQMLE in most cases. It gives nearly unbiased re-

sults in many cases. For example, when n = 49, T = 3 and (β0, σ
2
ε0, τ0, α10, α20, α30) =

(1, 1, 0.5, 1.1, 1.1, 1.1), the CQMLE are (0.9606, 0.8833, 0.4102, 1.0856, 1.1123, 1.1516) respectively,

leading to the biases of (−0.0394,−0.1167,−0.0898,−0.0144, 0.0123, 0.0516). On the other hand,

the M-estimators are (1.0016, 0.9446, 0.5024, 1.1060, 1.1053, 1.1726) respectively, with the biases
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(0.0016,−0.0554, 0.0024, 0.0060, 0.0053, 0.0726). The M-estimator thus provides better results than

the CQMLE except for α3. For β, τ, α1 and α2, the M-estimates are nearly unbiased. For α3, the

bias of the M-estimator is relatively larger than that of the CQMLE. When n increases to 100,

the biases of the CQMLE does not vanish for β, τ, α1. But when T grows bigger, the biases of the

CQMLE are getting smaller. On the other hand, the M-estimators remain unbiased for all n and T ,

while the bias of α3 also vanishes as n and T grows bigger. For example, when n = 49 and T = 7,

the biases of the CQMLE reduce to (0.0002,−0.0176,−0.0034, 0.0034, 0.0051, 0.0125) and the biases

of the M-estimator remains small at (0.0009,−0.0128, 0.0000, 0.0004, 0.0005, 0.0208). The rational

choice of n and T means that the M-estimator is useful in many real-world applications. It brings

nearly unbiased results for studies with short panels. For the standard errors in Table 4.2, the

OPMD estimator has good performance, exhibiting much closer approximation to the empirical sd

than the other two candidates in most cases. The OPMD estimator stays close to the empirical sd

for most parameters under all n and T . Paying specific attention to τ under disturbance that follows

gamma distribution, we find that the OPMD estimator gives especially better performance than

the other two candidates of se. For example, when (β, σ2
ε , τ, α1, α2, α3) = (1, 1, 0.5, 1.1, 1.1, 1.1) and

n = 49, T = 3, under the gamma disturbances, sd for σ2
ε is 0.218. The OPMD based se = 0.196.

The other two candidates have estimates s̃e = 0.139 and ŝe = 0.149. We can see that se is much

closer to sd than the other two candidates. This highlights the importance of conducting inference

using the OPMD estimator when the normality of the disturbance is in doubt. Overall the M-

estimator and the OPMD-based estimator for the standard error provide unbiased estimates and

exhibit good finite sample properties.

The estimation results for other submodels are provided in the web appendix. The main con-

clusion does not change. The CQMLE is biased while the M-estimator provides nearly unbiased

estimates in most cases, regardless of n and T . The OPMD estimator for the VC matrix pro-

vides closer approximation to sd in most cases than the other two candidates, especially when the

disturbance is non-normal.
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Table 4.1: Empirical mean of CQMLE and M-estimator, MESDPS(1,1,1)

dis par CQMLE M-est CQMLE M-est CQMLE M-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9606 1.0016 0.9629 1.0013 1.0002 1.0009 0.9993 1.0001
1 0.8833 0.9446 0.9214 0.9812 0.9824 0.9872 0.9858 0.9903
0.5 0.4102 0.5024 0.4136 0.5028 0.4966 0.5000 0.4967 0.5000
1.1 1.0856 1.1060 1.0828 1.1013 1.1034 1.1004 1.1032 1.1001
1.1 1.1123 1.1053 1.1085 1.1001 1.1051 1.1005 1.1048 1.1002
1.1 1.1516 1.1726 1.1069 1.1301 1.1125 1.1208 1.1084 1.1168

2 1 0.9602 1.0030 0.9625 1.0015 1.0000 1.0009 0.9994 1.0002
1 0.8958 0.9605 0.9165 0.9754 0.9778 0.9826 0.9856 0.9900
0.5 0.4124 0.5069 0.4133 0.5013 0.4968 0.5001 0.4968 0.5000
1.1 1.0839 1.1075 1.0838 1.1039 1.1031 1.1001 1.1032 1.1001
1.1 1.1095 1.1054 1.1098 1.1037 1.1046 1.1001 1.1047 1.1002
1.1 1.1531 1.1749 1.1062 1.1254 1.1129 1.1210 1.1018 1.1099

3 1 0.9629 1.0047 0.9628 1.0009 0.9976 0.9984 1.0002 1.0010
1 0.8934 0.9593 0.9131 0.9720 0.9783 0.9831 0.9840 0.9884
0.5 0.4132 0.5075 0.4137 0.5015 0.4967 0.5001 0.4967 0.5000
1.1 1.0855 1.1066 1.0841 1.1023 1.1033 1.1003 1.1033 1.1001
1.1 1.1112 1.1044 1.1100 1.1017 1.1049 1.1004 1.1049 1.1002
1.1 1.1514 1.1752 1.1047 1.1255 1.1149 1.1230 1.1054 1.1135

1 1 0.9383 1.0016 0.9379 1.0005 1.0006 1.0004 1.0018 1.0012
1 0.8768 0.9537 0.9039 0.9779 0.9725 0.9856 0.9821 0.9943
0 −0.1288 0.0062 −0.1289 0.0022 −0.0203 0.0017 −0.0207 0.0005
1.1 1.0445 1.1037 1.0424 1.1013 1.1155 1.0999 1.1176 1.1011
1.1 1.0890 1.1017 1.0869 1.1007 1.1220 1.0992 1.1243 1.1009
1.1 1.1804 1.1768 1.1490 1.1408 1.0971 1.1238 1.0824 1.1095

2 1 0.9378 1.0008 0.9398 1.0016 0.9998 0.9998 1.0015 1.0009
1 0.8801 0.9566 0.9084 0.9822 0.9710 0.9838 0.9785 0.9907
0 −0.1286 0.0058 −0.1295 0.0005 −0.0211 0.0006 −0.0209 0.0004
1.1 1.0398 1.0979 1.0473 1.1049 1.1171 1.1017 1.1178 1.1010
1.1 1.0844 1.0960 1.0918 1.1047 1.1238 1.1014 1.1245 1.1008
1.1 1.1786 1.1742 1.1351 1.1284 1.0965 1.1218 1.0818 1.1089

3 1 0.9396 1.0039 0.9377 0.9994 1.0013 1.0014 1.0001 0.9996
1 0.8749 0.9531 0.9052 0.9798 0.9672 0.9799 0.9760 0.9884
0 −0.1299 0.0054 −0.1270 0.0035 −0.0209 0.0006 −0.0204 0.0011
1.1 1.0446 1.1050 1.0433 1.1007 1.1167 1.1014 1.1170 1.1004
1.1 1.0895 1.1034 1.0872 1.0996 1.1234 1.1011 1.1236 1.1000
1.1 1.1750 1.1704 1.1442 1.1373 1.0906 1.1158 1.0807 1.1079

1 1 0.9360 0.9979 0.9392 1.0001 0.9839 1.0003 0.9840 1.0004
1 0.8965 0.9568 0.9269 0.9868 0.9702 0.9845 0.9767 0.9909
−0.5 −0.6370 −0.4984 −0.6328 −0.4961 −0.5502 −0.4997 −0.5506 −0.5002
1.1 1.0286 1.1000 1.0337 1.1031 1.0815 1.1013 1.0805 1.1000
1.1 1.0893 1.1006 1.0913 1.1019 1.1016 1.1012 1.1009 1.1002
1.1 1.1984 1.1643 1.1591 1.1287 1.1277 1.1169 1.1235 1.1131

2 1 0.9392 1.0009 0.9409 1.0013 0.9826 0.9994 0.9831 0.9994
1 0.8995 0.9604 0.9209 0.9798 0.9666 0.9808 0.9778 0.9919
−0.5 −0.6339 −0.4945 −0.6354 −0.4998 −0.5509 −0.5004 −0.5510 −0.5007
1.1 1.0290 1.1001 1.0333 1.1024 1.0796 1.0996 1.0802 1.0997
1.1 1.0882 1.0990 1.0916 1.1022 1.1002 1.0998 1.1007 1.1001
1.1 1.2135 1.1844 1.1568 1.1275 1.1332 1.1226 1.1175 1.1074

3 1 0.9357 0.9969 0.9400 1.0001 0.9841 1.0010 0.9851 1.0013
1 0.8995 0.9607 0.9172 0.9759 0.9717 0.9862 0.9764 0.9905
−0.5 −0.6364 −0.4982 −0.6329 −0.4985 −0.5509 −0.5001 −0.5489 −0.4988
1.1 1.0241 1.0944 1.0302 1.0985 1.0807 1.1009 1.0815 1.1007
1.1 1.0856 1.0957 1.0883 1.0986 1.1012 1.1010 1.1010 1.1003
1.1 1.2181 1.1889 1.1647 1.1360 1.1320 1.1209 1.1202 1.1102

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters θ =
(β, σ2

ε , τ, α1, α2, α3)
′
. W1, W2 and W3 are generated by queen, rook and queen contiguity re-

spectively. 18



Table 4.2: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(1,1,1)

dis par sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 .054 .054 .057 .052 .037 .037 .038 .037 .024 .023 .026 .024 .017 .017 .017 .017
1 .152 .148 .163 .146 .105 .107 .112 .106 .081 .089 .090 .085 .058 .062 .060 .059
0.5 .049 .049 .047 .045 .032 .034 .030 .031 .004 .004 .004 .004 .003 .003 .002 .003
1.1 .072 .082 .074 .073 .050 .057 .050 .052 .006 .006 .005 .005 .004 .004 .004 .004
1.1 .088 .104 .092 .092 .062 .072 .061 .065 .008 .009 .007 .007 .005 .006 .005 .005
1.1 .224 .226 .231 .214 .149 .154 .153 .149 .116 .113 .120 .111 .080 .080 .082 .079

2 1 .057 .054 .058 .053 .037 .037 .038 .037 .025 .024 .026 .024 .017 .017 .017 .017
1 .154 .150 .168 .149 .109 .107 .111 .105 .083 .087 .090 .084 .057 .062 .060 .059
0.5 .049 .049 .047 .045 .032 .033 .030 .031 .004 .004 .004 .004 .003 .003 .002 .002
1.1 .077 .083 .074 .074 .049 .057 .049 .051 .005 .006 .005 .005 .004 .004 .004 .004
1.1 .094 .104 .092 .092 .061 .072 .061 .064 .007 .008 .007 .007 .005 .006 .005 .005
1.1 .228 .227 .229 .214 .151 .153 .153 .148 .112 .111 .121 .111 .080 .079 .082 .079

3 1 .057 .054 .060 .053 .038 .038 .039 .036 .024 .023 .027 .024 .017 .017 .018 .017
1 .218 .196 .139 .149 .144 .141 .088 .105 .123 .126 .065 .084 .085 .090 .042 .059
0.5 .053 .052 .049 .046 .034 .034 .031 .031 .004 .004 .004 .004 .003 .003 .002 .003
1.1 .074 .085 .077 .074 .051 .057 .051 .051 .005 .006 .006 .005 .004 .004 .004 .004
1.1 .089 .107 .096 .093 .064 .072 .063 .064 .007 .008 .008 .007 .005 .006 .005 .005
1.1 .225 .227 .240 .215 .149 .153 .157 .148 .111 .111 .124 .111 .078 .078 .084 .079

1 1 .062 .060 .064 .059 .042 .042 .042 .041 .026 .026 .028 .026 .019 .019 .019 .018
1 .162 .148 .168 .149 .109 .106 .113 .106 .083 .084 .091 .083 .059 .059 .061 .059
0 .067 .059 .059 .056 .045 .040 .038 .038 .014 .016 .014 .014 .010 .011 .009 .010
1.1 .091 .093 .090 .087 .058 .065 .059 .061 .028 .032 .026 .027 .020 .023 .018 .019
1.1 .090 .096 .092 .089 .057 .066 .060 .062 .031 .037 .030 .031 .022 .026 .020 .022
1.1 .238 .229 .235 .218 .153 .155 .156 .151 .117 .118 .124 .115 .081 .084 .084 .082

2 1 .061 .060 .064 .059 .043 .042 .042 .041 .026 .027 .028 .026 .018 .019 .018 .018
1 .159 .147 .170 .149 .114 .106 .113 .106 .083 .083 .091 .083 .058 .059 .061 .059
0 .066 .058 .059 .055 .044 .040 .038 .038 .014 .016 .014 .014 .010 .011 .009 .010
1.1 .088 .093 .090 .087 .060 .066 .060 .061 .027 .032 .026 .028 .019 .023 .018 .019
1.1 .087 .096 .092 .089 .060 .067 .061 .062 .031 .037 .030 .031 .021 .026 .020 .022
1.1 .233 .227 .236 .218 .155 .156 .155 .151 .118 .119 .123 .115 .081 .083 .084 .082

3 1 .064 .060 .067 .059 .044 .042 .043 .041 .027 .027 .028 .026 .018 .019 .019 .018
1 .203 .188 .143 .149 .152 .140 .091 .106 .116 .118 .066 .083 .085 .087 .043 .058
0 .068 .060 .061 .056 .046 .042 .039 .038 .014 .016 .014 .014 .010 .011 .009 .010
1.1 .088 .094 .094 .087 .063 .065 .062 .061 .026 .033 .027 .028 .019 .023 .018 .019
1.1 .088 .097 .096 .089 .063 .067 .062 .062 .029 .037 .031 .031 .022 .026 .021 .022
1.1 .227 .226 .248 .219 .163 .153 .162 .151 .120 .117 .128 .115 .083 .083 .085 .082

1 1 .064 .063 .067 .062 .045 .044 .044 .043 .033 .032 .034 .032 .022 .022 .023 .022
1 .152 .147 .167 .148 .106 .107 .113 .107 .085 .082 .091 .083 .056 .058 .061 .058
−0.5 .070 .062 .068 .061 .048 .043 .045 .043 .027 .026 .028 .026 .019 .018 .019 .018
1.1 .095 .100 .099 .094 .066 .069 .065 .065 .048 .048 .049 .046 .033 .034 .033 .033
1.1 .075 .080 .080 .076 .053 .056 .053 .053 .041 .041 .042 .040 .028 .029 .028 .028
1.1 .231 .229 .240 .221 .161 .158 .158 .153 .121 .121 .130 .120 .084 .086 .088 .085

2 1 .063 .063 .067 .061 .043 .044 .044 .043 .033 .032 .034 .032 .022 .022 .023 .022
1 .153 .147 .168 .149 .108 .106 .112 .106 .082 .082 .091 .083 .057 .059 .061 .058
−0.5 .070 .062 .068 .061 .047 .043 .044 .042 .028 .025 .029 .026 .019 .018 .019 .018
1.1 .093 .100 .099 .094 .063 .068 .065 .065 .048 .048 .049 .046 .033 .034 .033 .033
1.1 .075 .081 .080 .076 .051 .055 .052 .052 .041 .041 .042 .040 .028 .029 .028 .028
1.1 .235 .228 .239 .220 .156 .157 .158 .153 .125 .121 .130 .120 .085 .086 .088 .085

3 1 .064 .062 .070 .061 .044 .044 .045 .043 .032 .032 .035 .032 .023 .022 .023 .022
1 .209 .192 .141 .149 .151 .140 .090 .105 .129 .118 .067 .083 .086 .086 .043 .058
−0.5 .072 .063 .070 .061 .049 .043 .045 .042 .029 .025 .029 .026 .019 .018 .019 .018
1.1 .097 .100 .104 .095 .063 .068 .067 .065 .047 .048 .050 .046 .032 .034 .033 .033
1.1 .078 .081 .084 .076 .050 .055 .054 .052 .040 .041 .043 .040 .027 .029 .029 .028
1.1 .236 .227 .252 .221 .151 .155 .163 .153 .121 .119 .134 .120 .085 .085 .090 .085

Note: Same configuration as Table 4.1. Here sd is empirical standard deviation, se is OPMD
estimator, s̃e is standard error based on Ω̂∗−1 and ŝe based on Ψ∗−1(θ̂M ).
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5 Empirical Application to US Outward FDI

In this section we apply the M-estimation method to US foreign direct investment to explore its

usefulness. Recent literature explore third market as a determinant of bilateral FDI. Coughlin and

Segev (1999) is the first paper to study FDI using spatial econometrics. They find a positive spatial

lag (SL) and spatial error (SE) effect for China’s inward FDI for neighboring regions. Baltagi et al.

(2007) use the industries and countries FDI data to explore the knowledge-capital model of US

outbound FDI using generalized moments (GM) estimators. They find that the spatial coefficients

are significant while evidence of various modes of FDI emerges. Blonigen et al. (2007) study the

US outward FDI by including spatial lag in the model and find that the estimates of the traditional

determinants of FDI are robust to the inclusion of spatial lag. They find a positive and significant

spatial lag using the whole sample which suggests complex-vertical motivations for MNE activity.

Garretsen and Peeters (2009) apply a spatial lag model (SLM) and spatial error model (SEM) for

Dutch FDI and find positive and significant spatial effects in both. Debarsy et al. (2015) utilize

a cross-sectional MESS model on Belgium’s outward FDI and find evidence of pure vertical FDI.

They argue that this is because Belgium has high production costs such as labor. In our study, the

focus will be placed on the spatial coefficients since the dynamic nature of the model changes the

situation in a significant way.

We explore the US outward FDI using the MESDPS. Our balanced data contains 40 countries

from both developed and developing world over 7 years (2011-2017). The list of countries are listed

in Table 5.1.

Table 5.1: List of Countries

Argentina Australia Belgium Brazil Canada Chile
China Cyprus Czech Denmark Estonia Finland
France Germany Hungary India Ireland Italy
Japan South Korea Luxembourg Malaysia Mexico Netherland
New Zealand Norway Poland Portugal Romania Russia
Singapore South Africa Spain Sweden Switzerland Thailand
Turkey Ukraine United Kingdom Vietnam

The model to be estimated is a dynamic panel framework,

eα1W1LFDIt = τLFDIt−1 + eα2W2LFDIt−1 + β1LGDPt + β2LPOPt + β3LRISKt

+ β4MPt + φtln + uit, eα3W3ut = εt. (5.1)

Here LFDIt is the log of stock of outward FDI from US to host countries in year t. FDI are

US outward positions (stocks) from International Direct Investment Statistics. The independent

variables are a set of host country variables which includes log of GDP (LGDP ), log of population

(LPOP ), log of an investment risk variable (LRISK), which is found to be important in the

International Finance literature, and a surrounding-market potential variable (MP ). We follow
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Garretsen and Peeters (2009) and compute it as the distance-weighted sums of other countries’

GDP in the sample where the distance is the bilateral distance between capitals from Mayer and

Zignago (2011). GDP and population data are extracted from the World Bank’s World Development

Indicators (WDI). Risk is the inverse of an investment profile index from International Country

Risk Guide. We also add a time trend φtln to capture the time-series variation. Table 5.2 contains

the summary statistics of these variables. The spatial weight matrix is an inverse arc-distance

between capitals of host countries. Similar to Blonigen et al. (2007), we multiply the weights by

the shortest distance between capitals (80.98 km between capitals of Estonia and Finland). The

same spatial weight matrix will be applied to all spatial processes.

Table 5.2: Descriptive Statistics

Variable Mean Std Min Max

Log of FDI ($millions) 10.09 1.97 4.09 13.75
Log of host country GDP (2010 constant dollars) 27.02 1.34 23.77 29.95
Log of host country population 17.05 1.64 13.16 21.05
Log of investment risk −2.22 0.2 −2.48 −1.73
Surrounding market potential 25.66 2.07 22.5 27.16

As discussed in section 2.2, there exists a relation between the spatial coefficients in STLE model

and MESDPS4, i.e., λ1 = 1− eα1 , ρ = τ + 1 and λ2 = eα2 − 1. The M-estimation results of corre-

sponding models in Yang (2018) are thus also reported to highlight the relation in interpretations

of the two methods.

Table 5.3 summarizes the estimation results. We run two specifications: the STLE model and

MESDPS(1,1,1). The STLE models is based on Yang (2018). Both specifications contain the

CQMLE and the M-estimator.

We make three important observations. First we would like to emphasize the fact that the results

capture the expected relation between spatial coefficients. In Table 5.3, the coefficient estimate for

dynamic effects of the CQMLE for the STLE model is 0.4756 and for MESDPS(1,1,1) is −0.5619.

For the M-estimator they are 0.7038 and −0.2911 respectively. They satisfy the relation ρ = τ + 1.

For W1, which represents the spatial lag in the STLE model and MESS in MESDPS(1,1,1) for the

dependent variables, we find that the signs of the CQMLE of coefficients are positive and negative

respectively. For the CQMLE, the STLE model has a coefficient of 0.3887 and MESDPS(1,1,1)

has a coefficient of −0.4772. On the other hand, for the M-estimators the coefficient estimates are

−0.1818 and 0.2569 respectively. These are in line with the relation λ1 = 1− eα1 . For W2, we find

that the coefficient estimates have the same signs. The CQMLE are −0.2388 for the STLE model

and −0.2116 for MESDPS(1,1,1). The M-estimator has estimates 0.0574 for the STLE model and

0.1489 for the MESDPS(1,1,1). Combined with their magnitudes, the expected relation λ2 = eα2−1

4STLE specification is the comprehensive model which contains the spatial lag effect, dynamic effect, space-
time effect and spatial error effect. It corresponds to our MESDPS(1,1,1). See section 2.2 for the detailed model
specification.
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holds. For W3, the CQMLE for the STLE model is −0.7770 and for MESDPS(1,1,1) is 0.72555. For

the M-estimator they are −0.1237 and −0.0191 respectively. Thus the results confirm our proposed

relation between the coefficient estimates in the theory.

Table 5.3: Estimation results of US outbound log(FDI) for STLE and MESDPS(1,1,1)

STLE MESDPS(1,1,1)

CQMLE M-Estimator CQMLE M-Estimator

LGDP 0.6958 0.2545 0.6253 0.2220
(0.328) (0.265)

LPOP 1.5881 1.3188 1.9200 1.2389
(0.987) (0.965)

RISK −0.0720 −0.1083 −0.0516 −0.0933
(0.113) (0.110)

MP 0.5506 −0.7573 0.3350 −0.9495
(2.485) (2.769)

TREND −0.0310 0.0045 −0.0262 0.009
(0.054) (0.059)

LFDIt−1 0.4756 0.7038∗∗∗ −0.5619 −0.2911∗∗∗

(0.139) (0.076)
W1 0.3887 −0.1818∗∗∗ −0.4772 0.2569∗∗

(0.071) (0.131)
W2 −0.2388 0.0574 −0.2116 0.1489

(0.047) (0.099)
W3 −0.7770 −0.1237∗∗∗ 0.7255 −0.0191

(0.044) (0.120)

Note: OPMD standard errors are in parenthesis. W1,W2 and W3 are spatial weight matrices in
terms of SAR in the STLE model and MESS in MESDPS(1,1,1).
∗ Correspond to significance at 10%.
∗∗ Correspond to significance at 5%.
∗∗∗ Correspond to significance at 1%.

The second observation is that the inclusion of dynamic effects makes the coefficients of host

country variables insignificant compared with the panel data case. In Blonigen et al. (2007) where

the data from 1983 to 1998 are used, the signs for LGDP is positive and for LPOP and RISK

are negative (see table 3 on p1315). The estimates are mostly significant in their study except MP

variable. In our study, however, adding in a lagged dependent variable changes the model estimates

extensively. Although the estimates (except LPOP ) have the same signs with those in Blonigen

et al. (2007), they are no longer significant. The sign for spatial lag of LFDI stays significant but

becomes negative. The significance of coefficient estimate for LFDIt−1 tells us that the dynamic

effect is a relatively important variable in explaining the variation in LFDI. The spatial terms are

5As kindly pointed out by a referee, note here 0.7255 > ln2, which implies the corresponding STLE coefficient is
1− e0.7255 = −1.0658. This is one of the advantages of the MESDPS compared with the STLE model: the parameter
space of the MESS coefficient for the disturbance term is unrestricted.
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also significant in most cases.

The third observation is the difference between of the CQMLE and the M-estimator. While

in most cases they have same signs in respective groups, their magnitudes differ. For example,

the estimate for LGDP is 0.6958 for the CQMLE and 0.2545 for the M-estimator in the STLE

model. This tells us that the M-estimator might correctly captures the impact of LGDP on LFDI.

Although we do not have a reference in this field to examine its validity, the difference do tell us

that we need to be careful in using the CQMLE which provide biased results.

To investigate the impact measures, we compute the average direct impacts for the STLE model

and MESDPS(1,1,1) and summarize them in Table 5.4. We can see that the CQMLE has similar

average direct impacts for the STLE model and MESDPS(1,1,1) model for the 4 independent

variables. This is also the case for the M-estimator. Their OPMD ses are also similar, which shows

that the M-estimation method works for both MESDPS and the STLE model and provides similar

impact measures.

Table 5.4: Average direct impacts for STLE and MESDPS(1,1,1)

STLE MESDPS(1,1,1)

CQMLE M-Est OPMD se CQMLE M-Est OPMD se

LGDP 1.0296 0.2371 0.3062 1.0043 0.2010 0.2321
LPOP 2.4084 1.1965 0.7572 2.5437 1.0629 0.7819
RISK −0.0378 −0.0989 0.0965 −0.0723 −0.0806 0.0901
MP −1.5727 −0.4808 0.4980 −1.4253 −0.4112 0.4302

6 Conclusion

In this paper we propose a consistent M-estimator to estimate the matrix exponential spatial

dynamic panel specification (MESDPS) with fixed effects in short panels. To the best of our

knowledge, this is the first paper to tackle this problem. The comprehensive model includes matrix

exponential in the dependent variable, the lagged dependent variable and the disturbances. We

also propose an OPMD estimator for the VC matrix. Valid inference can be based on the standard

error derived from the OPMD estimator, especially when the normality of the disturbance is in

doubt. The method can be applied to submodels and works well. The method is free from the

initial condition specification and simple to use. It provides scholars a reliable way to conduct

empirical research. Future research might focus on modifying the type of disturbance in the model

to heteroskedastic.
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Web Appendix for Unified M-estimation of Matrix Exponential

Spatial Dynamic Panel Specification

Ye Yang∗

This web appendix provides the following: (A) some useful lemmas that will be used in the

proofs of theorems below, (B) proofs of Lemmas 2.1, 3.1 and 3.2 in the main paper, (C) proofs of

Theorems 3.1-3.3 in the main paper, (D) estimation of submodels MESDPS(1,0,0), MESDPS(0,1,0),

MESDPS(1,1,0), MESDPS(1,0,1) and MESDPS(0,1,1), and (E) some more comprehensive Monte

Carlo simulation results.

A Some Useful Lemmas

In the following, Lemma A.1 can be found in Kelejian and Prucha (1999). Lemma A.2 can be

found in, e.g., Debarsy et al. (2015) and Lee (2004). Lemma A.3 can be found in, e.g., Yang (2015)

and Yang (2018). Lemma A.4, a central limit theorem for bilinear quadratic forms, can be found

in Yang (2018). Lemma A.5 can be found in Debarsy et al. (2015). The proofs are contained in

these papers and thus are omitted. Let UB stand for“bounded in both row and column sum norms”.

Lemma A.1. Suppose that n × n matrices {An} and {Bn} are UB and Cn is a sequence of

conformable matrices whose elements are uniformly O(g−1
n ). Then

(i) the sequence {AnBn} are UB,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(g−1
n ).

Lemma A.2. Suppose that elements of n × k matrix Xn are uniformly bounded and

limn→∞ n
−1X

′
nXn exists and is nonsingular, then Pn = Xn(X

′
nXn)−1X

′
n and Mn = In − Pn are

UB.

Lemma A.3. Suppose that n × n matrices {An} are uniformly bounded in either row or column

sum norm and the elements an,ij of An are O(g−1
n ) uniformly in all i and j. Also suppose that εn

is an n × 1 random vector of i.i.d. elements with mean zero, variance σ2 and finite 4th moment

and bn is an n×1 vector with constant elements of uniform order O(g
−1/2
n ). Then (i) E(ε

′
nAnεn) =

∗School of Accounting, Capital University of Economics and Business, Beijing, China, email: yang.ye@cueb.edu.cn
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O( ngn ); (ii) Var(ε
′
nAnεn) = O( ngn ); (iii) Var(ε

′
nAnεn + b

′
nεn) = O( ngn ); (iv) ε

′
nAnεn = Op(

n
gn

); (v)

ε
′
nAnεn − E(ε

′
nAnεn) = Op[(

n
gn

)1/2]; (vi) ε
′
nAnbn = Op[(

n
gn

)1/2]; (vii) The results in (iii) and (vi)

remain valid if bn is an n × 1 random vector independent of εn such that {E(b2n)} are of uniform

order O(g−1
n ).

Lemma A.4. Suppose that n × n matrices {An} is UB with elements of uniform order O(g−1
n ).

Suppose {εn} is a n × 1 random vector of i.i.d. elements with mean zero, variance σ2
ε and finite

(4+2ν0)th moment for some ν0 > 0. Suppose an n×1 random vector bn = {bni} is independent of εn

and satisfies the following conditions (i) {E(b2ni)} are of uniform order O(g−1
n ), (ii) supi E|bni|2+ν0 <

∞, (iii) gn
n

∑n
i=1[An,ii(bni − E(bni))] = op(1) where {An,ii} are the diagonal elements of An, (iv)

gn
n

∑n
i=1[b2ni−E(b2ni)] = op(1). Define the bilinear-quadratic form as Cn = b

′
nεn+ε

′
nAnεn−σ2

ε tr(An)

with variance σ2
Cn

. If limn→∞ g
1+2/ν0
n /n = 0 and {gnn σ

2
Cn
} are bounded away from zero, then

Cn/σCn
d−−→ N(0, 1).

Lemma A.5. Let A be any n(T − 1) × n(T − 1) matrix that is UB and a = op(1). Then∥∥eaA − In∥∥∞ = op(1) and
∥∥eaA − In∥∥1

= op(1).

Lemma A.6. Let An and Bn be any two n × n matrices that are UB. Also an = op(1) and

bn = op(1). Then
∥∥∥eanA′nebnBn − In∥∥∥

∞
= op(1) and

∥∥∥eanA′nebnBn − In∥∥∥
1

= op(1).

B Proofs of Lemmas A.6, 2.1, 3.1 and 3.2

Proof of Lemma A.6. We have

∥∥∥eanA′nebnBn − In∥∥∥
∞

=

∥∥∥∥∥∥
∞∑
i=1

ainA
′i
n

i!
+
∞∑
j=1

bjnB
j
n

j!
+

( ∞∑
i=1

ainA
′i
n

i!

) ∞∑
j=1

bjnB
j
n

j!

∥∥∥∥∥∥
∞

≤
∞∑
i=1

|an|i
∥∥∥A′n∥∥∥∞
i!

+
∞∑
j=1

|bn|j ‖Bn‖∞
j!

+
∞∑
i=1

|an|i
∥∥∥A′n∥∥∥∞
i!

∞∑
j=1

|bn|j ‖Bn‖∞
j!

≤ e|an|
∥∥∥A′n∥∥∥∞ − 1 + e|bn|‖Bn‖∞ − 1 + (e

|an|
∥∥∥A′n∥∥∥∞ − 1)(e|bn|‖Bn‖∞ − 1)

= op(1).

Similarly
∥∥∥eanA′nebnBn − In∥∥∥

1
= op(1).

Proof of Lemma 2.1. First note the reduced form of ∆Y is given by ∆Y = e−α10W1A20∆Y−1
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+ e−α10W1∆Xβ0 + e−α10W1e−α30W3∆ε. For each element of ∆Y , we have:

(1) E(∆yt−1∆ε
′
t)

= E[(e−α10W1A20∆yt−2 + e−α10W1∆Xt−1β0 + e−α10W1e−α30W3∆εt−1)∆ε
′
t]

= −σ2
ε0e
−α10W1e−α30W3 ;

(2) E(∆yt∆ε
′
t)

= E[(e−α10W1A20∆yt−1 + e−α10W1∆Xtβ0 + e−α10W1e−α30W3∆εt)∆ε
′
t]

= −σ2
ε0e
−α10W1(A20e

−α10W1 − 2In)e−α30W3 ;

(3) E(∆yt+1∆ε
′
t)

= E[(e−α10W1A20∆yt + e−α10W1∆Xt+1β0 + e−α10W1e−α30W3∆εt+1)∆ε
′
t]

= −σ2
ε0e
−α10W1(A20e

−α10W1 − In)2e−α30W3 ;

(4) For t ≥ s+ 1 and s ≥ 2,

E(∆yt∆ε
′
s) = −σ2

ε0e
−α10W1(A20e

−α10W1)t−(s+1)(A20e
−α10W1 − In)2e−α30W3 ;

(5) All the remaining terms E(∆yt∆ε
′
t+2) = 0 for t ≥ 1.

Combining all elements, we have

E(∆Y−1∆ε
′
) = E




∆y1

...

∆yT−1

× (
∆ε2 . . . ∆εT

)  = −σ2
ε0e

−α10W1D−1,0e
−α30W3

and E(∆Y∆ε
′
) = E




∆y2

...

∆yT

× (
∆ε2 . . . ∆εT

)  = −σ2
ε0e

−α10W1D0e
−α30W3 .

Proof of Lemma 3.1. Recall A12,0 = e−α10W1A20. By the reduced form of ∆yt and continuous

substitution, we have:

∆yt = A12,0∆yt−1 + e−α10W1∆Xtβ0 + e−α10W1e−α30W3∆εt

= At−1
12,0∆y1 +

t−2∑
i=0

Ai12,0e
−α10W1∆Xt−iβ0 +

t−2∑
i=0

Ai12,0e
−α10W1e−α30W3∆εt−i

= At−1
12,0∆y1 + [At−2

12,0 At−3
12,0 . . . In 0 . . . 0]e−α10W1∆Xβ0 + [At−2

12,0 At−3
12,0 . . . In 0

. . . 0]e−α10W1e−α30W3∆ε.

Stacking them in one column we have:

∆Y = G∆y1 + Je−α10W1∆Xβ0 + Je−α10W1e−α30W3∆ε = G∆y1 + δ +K∆ε.

3



Similarly for ∆Y−1 we have:

∆Y−1 = G−1∆y1 +J−1e
−α10W1∆Xβ0 +J−1e

−α10W1e−α30W3∆ε = G−1∆y1 + δ−1 +K−1∆ε.

Proof of Lemma 3.2. First note R
′
∆ε =

∑T
i=1R

′
t∆εt =

∑n
i=1

∑T
t=2R

′
it∆εit =

∑n
i=1 a1i. Here we

partition R
′
∆ε by time periods in the first equality and then by time periods and individuals in

the second equality.

Second E(∆ε
′
O∆ε) = E[tr(∆ε

′
O∆ε)] = tr[E(∆ε

′
∆ε)O] = σ2

ε0tr(BO) = σ2
ε0

∑n
i=1

∑T
t=2 dit,

where dit is the itth diagonal element of BO. So we have:

∆ε
′
O∆ε− E(∆ε

′
O∆ε) =

T∑
t=2

T∑
s=2

∆ε
′
t(O

u
ts +Olts +Odts)∆εs − σ2

ε0

n∑
i=1

T∑
t=2

dit

=
T∑
t=2

T∑
s=2

[∆ε
′
sO

u
′

ts∆εt + ∆ε
′
t(O

l
ts +Odts)∆εs]− σ2

ε0

T∑
t=2

T∑
s=2

dit

=
n∑
i=1

T∑
t=2

(∆εit∆ηit + ∆εit∆ε
∗
it − σ2

ε0dit)

=
n∑
i=1

a2i,

where ∆ηt =
∑T

s=2(Ou
′

st + Olts)∆εs and ∆ε∗t =
∑T

s=2O
d
ts∆εs. Here we change the way ∆ε

′
O∆ε is

partitioned from by time periods to by individuals and time periods.

Third we first write ∆ε
′
F∆y1 as following:

∆ε
′
F∆y1 =

T∑
t=2

∆ε
′
tF

+
t ∆y1 = ∆ε

′
2F

+
2 ∆y1 +

T∑
t=3

∆ε
′
tF

+
t ∆y1

= ∆ε
′
2F

+
2 e
−α10W1e−α30W3eα30W3eα10W1∆y1 +

T∑
t=3

∆ε
′
tF

+
t ∆y1

= ∆ε
′
2F

++
2 ∆y�1 +

T∑
t=3

∆ε
′
t∆y

∗
1t,

where F++
2 = F+

2 e
−α10W1e−α30W3 , ∆y�1 = eα30W3eα10W1∆y1 and ∆y∗1t = F+

t ∆y1. Also note ∆y�1 =

eα30W3A20∆y0 + eα30W3∆X1β0 + ∆ε1, where A20 = τ0In + eα20W2 . By Assumption 1, ∆y0 is

independent of εt for t ≥ 1. So E(∆ε
′
2F

++
2 ∆y�1) = E(ε

′
2F

++
2 ∆ε1) = −σ2

ε0tr(F++
2 ), which leads to

the following:

∆ε
′
2F

++
2 ∆y�1 − E(∆ε

′
2F

++
2 ∆y�1) = ∆ε

′
2(F++u

2 + F++l
2 )∆y�1 + ∆ε

′
2F

++d
2 ∆y�1 + σ2

ε0tr(F++
2 )

=

n∑
i=1

∆ε2i∆ξi +

n∑
i=1

F++
2,ii (∆ε2i∆y

�
1i + σ2

ε0),

4



where ∆ξ = (F++u
2 + F++l

2 )∆y�1. Combining the equations above, we get the following:

∆ε
′
F∆y1 − E(∆ε

′
F∆y1)

= ∆ε
′
2F

++
2 ∆y�1 − E(∆ε

′
2F

++
2 ∆y�1) +

T∑
t=3

∆ε
′
t∆y

∗
1t − E(

T∑
t=3

∆ε
′
t∆y

∗
1t)

=
n∑
i=1

∆ε2i∆ξi +
n∑
i=1

F++
2,ii (∆ε2i∆y

�
1i + σ2

ε0) +
T∑
t=3

∆ε
′
t∆y

∗
1t

=
n∑
i=1

a3i,

where a3i = ∆ε2i∆ξi+F
++
2,ii (∆ε2i∆y

�
1i+σ

2
ε0)+

∑T
t=3 ∆ε

′
it∆y

∗
1it. Here E(

∑T
t=3 ∆ε

′
t∆y

∗
1t) = 0 according

to Assumption 1.

Because E[(a
′
1i, a2i, a3i)|Φn,i−1] = 0, where Φn,i−1 = Φn,0 ⊗ Πn,i−1 is the Cartesian product

generated by subsets of X1 × X2, with X1 ∈ Φn,0 and X2 ∈ Πn,i−1, {(a′1i, a2i, a3i),Φn,i} form a

vector MDS.

C Proofs of Theorems 3.1-3.3

Proof of Theorem 3.1. Given Assumption 7, we need to prove supζ∈Z
∥∥S∗c(ζ)− S∗c(ζ)

∥∥ p−−→ 0.

Note S∗c(ζ) has four elements by (2.18). So

S∗c(ζ)− S∗c(ζ) =

1
σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1∆Y−1 − 1

σ2
ε,M (ζ)

E[∆u(ζ)
′
Σ−1∆Y−1],

− 1
σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1W1e

α1W1∆Y + 1
σ2
ε,M (ζ)

E
[
∆u(ζ)

′
Σ−1W1e

α1W1∆Y
]
,

1
σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1W2e

α2W2∆Y−1 − 1
σ2
ε,M (ζ)

E[∆u(ζ)
′
Σ−1W2e

α2W2∆Y−1],

− 1
2σ̂2
ε,M (ζ)

∆û(ζ)
′
(B−1 ⊗ E3)∆û(ζ) + 1

2σ2
ε,M (ζ)

E
[
∆u(ζ)

′
(B−1 ⊗ E3)∆u(ζ)

]
.

Now each function can be written as, while neglecting 1
2 , positive or negative

σ2
ε,M (ζ)−σ̂2

ε,M (ζ)

σ2
ε,M (ζ)σ̂2

ε,M (ζ)
f [∆û(ζ)] + 1

σ2
ε,M (ζ)

[
f [∆û(ζ)] − Ef [∆u(ζ)]

]
, where f [∆û(ζ)] and f [∆u(ζ)] are

functions of ∆û(ζ) and ∆u(ζ) respectively. To show that these functions are op(1), we need to

prove the following:

(i) infζ∈Z σ
2
ε,M (ζ) > c > 0 for some positive number c,

(ii) supζ∈Z |σ̂2
ε,M (ζ)− σ2

ε,M (ζ)| = op(1),

(iii) supζ∈Z
1

n(T−1)

∣∣∆û(ζ)
′
Σ−1∆Y−1 − E[∆u(ζ)

′
Σ−1∆Y−1]

∣∣ = op(1),

(iv) supζ∈Z
1

n(T−1)

∣∣∆û(ζ)
′
Σ−1W1e

α1W1∆Y − E
[
∆u(ζ)

′
Σ−1W1e

α1W1∆Y
]∣∣ = op(1),
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(v) supζ∈Z
1

n(T−1)

∣∣∆û(ζ)
′
Σ−1W2e

α2W2∆Y−1 − E[∆u(ζ)
′
Σ−1W2e

α2W2∆Y−1]
∣∣ = op(1),

(vi) supζ∈Z
1

n(T−1)

∣∣∆û(ζ)
′
(B−1 ⊗ E3)∆û(ζ)− E

[
∆u(ζ)

′
(B−1 ⊗ E3)∆u(ζ)

]∣∣ = op(1).

Proof of (i): Utilizing (3.5), σ2
ε,M (ζ) can be expressed as:

σ2
ε,M (ζ) =

1

n(T − 1)
E[∆u(ζ)

′
Σ−1∆u(ζ)] =

1

n(T − 1)
E[∆u∗(ζ)

′
∆u∗(ζ)]

=
1

n(T − 1)
E
[
(eα1W∗

1∆Y † −A∗2∆Y †−1)
′
P (eα1W∗

1∆Y † −A∗2∆Y †−1)

+ (eα1W∗
1∆Y −A∗2∆Y−1)

′
M(eα1W∗

1∆Y −A∗2∆Y−1)
]

=
1

n(T − 1)
E
[
tr[(eα1W∗

1∆Y † −A∗2∆Y †−1)
′
(eα1W∗

1∆Y † −A∗2∆Y †−1)]
]

+
1

n(T − 1)
E
[
(eα1W∗

1E∆Y −A∗2E∆Y−1)
′
M(eα1W∗

1∆Y −A∗2∆Y−1)
]

+
1

n(T − 1)
E
[
(eα1W∗

1∆Y † −A∗2∆Y †−1)
′
M(eα1W∗

1E∆Y † −A∗2E∆Y †−1)
]

=
1

n(T − 1)
tr[Var(eα1W∗

1∆Y −A∗2∆Y−1)]

+
1

n(T − 1)
(eα1W∗

1E∆Y −A∗2E∆Y−1)
′
M(eα1W∗

1E∆Y −A∗2E∆Y−1)

where we used E(∆Y †) = E(∆Y †−1) = 0 in the last equality.

For the first term, note

1

n(T − 1)
tr[Var(eα1W∗

1∆Y −A∗2∆Y−1)] =
1

n(T − 1)
tr[Σ−1

3 Var(eα1W1∆Y −A2∆Y−1)]

=
1

n(T − 1)
tr[(B−1 ⊗ eα3W

′
3eα3W3) Var(eα1W1∆Y −A2∆Y−1)]

≥ 1

n(T − 1)
γmin(B−1)γmin(eα3W

′
3eα3W3)tr[Var(eα1W1∆Y −A2∆Y−1)],

where γmin(B−1) > 0 given the structure of B, γmin(eα3W
′
3eα3W3) > 0 by Assumption 4 and

tr[Var(eα1W1∆Y −A2∆Y−1)] > 0 by the assumption of the theorem. So 1
n(T−1)tr[Var(eα1W1∆Y −

A∗2∆Y−1)] > 0.

For the second term, since M is positive semi-definite, we have 1
n(T−1)(eα1W∗

1E∆Y −
A∗2E∆Y−1)

′
M(eα1W∗

1E∆Y −A∗2E∆Y−1) ≥ 0 uniformly in ζ ∈ Z. So (i) holds.

Proof of (ii): We first express ∆û∗(ζ) as ∆û∗(ζ) = Σ−
1
2 ∆û(ζ) = eα1W∗

1∆Y − A∗2∆Y−1 −
P (eα1W∗

1∆Y − A∗2∆Y−1) = M(eα1W∗
1∆Y − A∗2∆Y−1). So σ̂2

ε,M (ζ) = 1
n(T−1)∆û∗(ζ)

′
∆û∗(ζ) =

1
n(T−1)(eα1W∗

1∆Y −A∗2∆Y−1)
′
M(eα1W∗

1∆Y −A∗2∆Y−1). Utilizing the function in the third equal-
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ity in the expression in the proof of (i) for σ2
ε,M (ζ), we have the following:

σ̂2
ε,M (ζ)− σ2

ε,M (ζ) =
1

n(T − 1)
(eα1W∗

1∆Y −A∗2∆Y−1)
′
M(eα1W∗

1∆Y −A∗2∆Y−1)

− 1

n(T − 1)
E
[
(eα1W∗

1∆Y † −A∗2∆Y †−1)
′
P (eα1W∗

1∆Y † −A∗2∆Y †−1)

+ (eα1W∗
1∆Y −A∗2∆Y−1)

′
M(eα1W∗

1∆Y −A∗2∆Y−1)
]

=
1

n(T − 1)
[N1 − E(N1)]− 2

n(T − 1)
[N2 − E(N2)] +

1

n(T − 1)
[N3−

E(N3)]− 1

n(T − 1)
E(N4),

where N1 = ∆Y
′
eα1W∗

1

′
Meα1W∗

1∆Y , N2 = ∆Y
′
eα1W∗

1

′
MA∗2∆Y−1, N3 = ∆Y

′
−1A

∗′
2 MA∗2∆Y−1

and N4 = (eα1W∗
1∆Y † − A∗2∆Y †−1)

′
P (eα1W∗

1∆Y † − A∗2∆Y †−1). We need to prove 1
n(T−1) [Nr −

E(Nr)]
p−−→ 0 uniformly in ζ ∈ Z for r = 1, 2, 3 and 1

n(T−1)E(N4) −−→ 0 uniformly in ζ ∈ Z.

To prove 1
n(T−1) [Nr − E(Nr)]

p−−→ 0 uniformly in ζ ∈ Z for r = 1, 2 and 3, we need to prove

the pointwise convergence of 1
n(T−1) [Nr − E(Nr)] in each ζ ∈ Z and the stochastic equicontinuity

of 1
n(T−1)Nr.

Proof of pointwise convergence: By Lemma 3.1, we can express Nr’s for r = 1, 2 and 3 as a function

of ∆y1, δ and ∆ε as follows:

N1 = ∆y
′
1G
′
eα1W∗

1 ′Meα1W∗
1G∆y1 + δ

′
eα1W∗

1

′
Meα1W∗

1δ + ∆ε
′
K
′
eα1W∗

1

′
Meα1W∗

1K∆ε

+ 2∆y
′
1G
′
eα1W∗

1

′
Meα1W∗

1δ + 2δ
′
eα1W∗

1

′
Meα1W∗

1K∆ε+ 2∆y
′
1G
′
eα1W∗

1

′
Meα1W∗

1K∆ε

N2 = ∆y
′
1G
′
eα1W∗

1

′
MA∗2G−1∆y1 + ∆y

′
1G
′
eα1W∗

1

′
MA∗2δ−1 + ∆y

′
1G
′
eα1W∗

1

′
MA∗2K−1∆ε

+ δ
′
eα1W∗

1

′
MA∗2G−1∆y1 + δ

′
eα1W∗

1

′
MA∗2δ−1 + δ

′
eα1W∗

1

′
MA∗2K−1∆ε

+ ∆ε
′
K
′
eα1W∗

1

′
MA∗2G−1∆y1 + ∆ε

′
K
′
eα1W∗

1

′
MA∗2δ−1 + ∆ε

′
K
′
eα1W∗

1

′
MA∗2K−1∆ε

N3 = ∆y
′
1G
′
−1A

∗
2MA∗2G−1∆y1 + δ

′
−1A

∗′
2 MA∗2δ−1 + ∆ε

′
K
′
−1A

∗′
2 MA∗2K−1∆ε

+ 2∆y
′
1G
′
−1A

∗′
2 MA∗2δ−1 + 2∆y

′
1G
′
−1A

∗
2MA∗2K−1∆ε+ 2δ

′
−1A

∗
2MA∗2K−1∆ε

Denote N1 =
∑6

q=1N1,q, N2 =
∑9

q=1N2,q and N3 =
∑6

q=1N3,q, where each q denotes the corre-

sponding term in N1, N2 and N3. We can prove that each element satisfies Nr,q − E(Nr,q) = op(1)

for all r and q. First note that N1,2 − E(N1,2) = 0, N2,5 − E(N2,5) = 0 and N3,2 − E(N3,2) = 0

because they are nonstochastic. For the rest of the terms, we group them into five categories:

(A) ∆y
′
1C1∆y1 : N1,1, N2,1 and N3,1;

(B) ∆ε
′
C2∆ε : N1,3, N2,9 and N3,3;

(C) ∆y
′
1c3 : N1,4, N2,2, N2,4 and N3,4;

(D) ∆y
′
1C4∆ε : N1,6, N2,3, N2,7 and N3,5;
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(E) ∆ε
′
c5 : N1,5, N2,6, N2,8 and N3,6,

where C1, C2 and C4 are n(T −1)×n(T −1) nonstochastic matrices and c3 and c5 are n(T −1)×1

nonstochastic vectors comprised of G, G−1, K, K−1, δ, δ−1, eα1W∗
1 , A∗2 and M . Note G, G−1, K,

K−1, δ and δ−1 are functions of the true parameters, eα1W∗
1 is a function of α1 and α3, A∗2 is a

function of τ , α2 and α3 and M is a function α3.

For (A), we can write 1
n(T−1)∆y

′
1C1∆y1 = 1

n∆y
′
1C
∗
1∆y1, where C∗1 = 1

T−1

∑
s

∑
tC1,st.

By Lemma A.1 and Lemma A.2, it is uniformly bounded in row or column sums. Hence
1

n(T−1) [∆y
′
1C1∆y1 − E(∆y

′
1C1∆y1)] = 1

n [∆y
′
1C
∗
1∆y1 − E(∆y

′
1C
∗
1∆y1)] is pointwise convergent

by Assumption 6(iii).

For (B), we can write 1
n(T−1)∆ε

′
C2∆ε = 1

T−1

∑
s

∑
t

1
nε
′
C2,stε. By Lemma A.3(v), 1

n [ε
′
C2,stε−

E(ε
′
C2,stε)] is pointwise convergent for each s and t.

For (C), the pointwise convergence of 1
n(T−1) [∆y

′
1c3−E(∆y

′
1c3)] follows from Assumption 6(ii).

For (D), we can write ∆y
′
1C4∆ε =

∑
s ∆y1C

∗
4,s∆εs and the pointwise convergence follows from

Lemma A.3(vii) and Assumption 6(iv).

For (E), we can write ∆ε
′
c5 = Σs∆εsc5,s. Note E(∆εsc5,s) = 0. By Chebyshev’s inequality,

∆εsc5,s is pointwise convergent for each s.

Proof of stochastic equicontinuity : Denote each Nr,q for r = 1, 2 and 3 by Nr,q(ζ). Then for

any two parameter vectors ζ1 ∈ Z and ζ2 ∈ Z, we have by mean value theorem: Nr,q(ζ1) −
Nr,q(ζ2) =

∂Nr,q(ζ)

∂ζ′
(ζ1 − ζ2), where ζ is between ζ1 and ζ2 elementwise. We can prove each of

supζ∈Z

∣∣∣ 1
n(T−1)

∂Nr,q(ζ)

∂ζ′

∣∣∣ is Op(1) for the five categories above. For example for N1,1(ζ) we have:

supζ∈Z

∣∣∣∣ 1

n(T − 1)

∂N1,1(ζ)

∂α1

∣∣∣∣ = supζ∈Z

∣∣∣∣ 2

n(T − 1)
∆y

′
1G
′
eα1W1

′
W
′
1Σ−

1
2MΣ−

1
2eα1W1G∆y1

∣∣∣∣
≤ γmax(W1Σ−1)γmax(eα1W1

′
eα1W1)

2

n(T − 1)

∣∣∣∆y′1G′G∆y1

∣∣∣
= Op(1)

where we used γmax(M) = 1 and Assumption 6(i). So supζ∈Z

∣∣∣ 1
n(T−1)

∂N1,1(ζ)

∂ζ′

∣∣∣ = Op(1) and
1

n(T−1)N1,1(ζ) is stochastic equicontinuous. The proofs for stochastic equicontinuity of each of the re-

mainingNr,q(ζ) follow similarly. By Corollary 2.2 in Newey (1991), 1
n(T−1) [Nr,q(ζ)−E(Nr,q(ζ))]

p−−→
0 uniformly in ζ ∈ Z for all r and q. Hence 1

n(T−1) [Nr(ζ) − E(Nr(ζ))]
p−−→ 0 uniformly in ζ ∈ Z

for r = 1, 2 and 3.
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To prove 1
n(T−1)E[N4(ζ)] −−→ 0 uniformly in ζ ∈ Z, first note that

1

n(T − 1)
E[N4(ζ)] =

1

n(T − 1)
E[(Y †

′
eα1W∗

1

′
− Y †

′

−1A
∗′
2 )Σ−

1
2PΣ−

1
2 (eα1W∗

1Y † −A∗2Y
†
−1)]

=
1

n(T − 1)
tr[Σ−1∆X(∆X

′
Σ−1∆X)−1∆X

′
Σ−1 Var(eα1W1∆Y −A2∆Y−1)]

≤ γmax(Σ−2)

n(T − 1)
γ−1

min(∆X
′
Σ−1∆X)tr[∆X

′
Var(eα1W1∆Y −A2∆Y−1)∆X]

≤ γmax(Σ−2)

n(T − 1)
γ−1

min

[
∆X

′
Σ−1∆X

n(T − 1)

]
1

n(T − 1)
tr[∆X

′
Var(eα1W1∆Y −A2∆Y−1)∆X].

By Assumption 4, there exists two positive constants c
¯α3

and cα3 such that 0 < c
¯α3

≤
infα3∈Z3 γmin(Σ−1) ≤ supα3∈Z3

γmax(Σ−1) ≤ cα3 < ∞. So there exists two other constants

c
¯∆X and c∆X such that 0 < c

¯∆X ≤ infα3∈Z3 γmin(Σ−1)γmin[∆X
′
∆X

n(T−1) ] ≤ γmin[∆X
′
Σ−1∆X

n(T−1) ] ≤

γmax[∆X
′
Σ−1∆X

n(T−1) ] ≤ supα3∈Z3
γmax(Σ−1)γmax[∆X

′
∆X

n(T−1) ] ≤ c∆X < ∞, which can be used in the in-

equality above and leads to

1

n(T − 1)
E[N4(ζ)] ≤ 1

n(T − 1)
c2
α3
c
¯∆X

1

n(T − 1)
tr[∆X

′
Var(eα1W1∆Y −A2∆Y−1)∆X]

≤ 1

n(T − 1)
c2
α3
c
¯∆Xc∆Y

1

n(T − 1)
tr(∆X

′
∆X)

= O(
1

n
)

by assumption of the theorem and bounds on Rayleigh quotient. Hence σ̂2
ε,M (ζ)− σ2

ε,M (ζ) = op(1)

uniformly in ζ ∈ Z and (ii) holds.

Proof of (iii)-(vi): Using the similar transformations in the proof of (ii), by letting W̃r =

Σ−
1
2WrΣ

1
2 for r = 1 and 2, we can express the functions in (iii)-(vi) as follows:
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∆û(α)
′
Σ−1∆Y−1 − E

[
∆u(α)

′
Σ−1∆Y−1

]
= ∆Y

′
eα1W∗

1

′
MΣ−

1
2 ∆Y−1 − E(∆Y

′
eα1W∗

1

′
MΣ−

1
2 ∆Y−1)

−∆Y
′
−1A

∗′
2 MΣ−

1
2 ∆Y−1 + E(∆Y

′
−1A

∗′
2 MΣ−

1
2 ∆Y−1)

− E(∆Y †
′
eα1W∗

1

′
PΣ−

1
2 ∆Y−1) + E(∆Y †

′

−1A
∗′
2 PΣ−

1
2 ∆Y−1)

∆û(α)
′
Σ−1W1e

α1W1∆Y − E
[
∆u(α)

′
Σ−1W1e

α1W1∆Y
]

= ∆Y
′
eα1W∗

1

′
MW̃1e

α1W∗
1

′
∆Y − E(∆Y

′
eα1W∗

1

′
MW̃1e

α1W∗
1∆Y )

−∆Y
′
−1A

∗′
2 MW̃1e

α1W∗
1∆Y + E(∆Y

′
−1A

∗′
2 MW̃1e

α1W∗
1∆Y )

− E(∆Y †
′
eα1W∗

1

′
PW̃1e

α1W∗
1∆Y ) + E(∆Y †

′

−1A
∗′
2 PW̃1e

α1W∗
1∆Y )

∆û(α)
′
Σ−1W2e

α2W2∆Y−1 − E
[
∆u(α)

′
Σ−1W2e

α2W2∆Y−1

]
= ∆Y

′
eα1W∗

1

′
MW̃2e

α2W∗
2∆Y−1 − E(∆Y

′
eα1W∗

1

′
MW̃2e

α2W∗
2∆Y−1)

−∆Y
′
−1A

∗′
2 MW̃2e

α2W∗
2∆Y−1 + E(∆Y

′
−1A

∗′
2 MW̃2e

α2W∗
2∆Y−1)

− E(∆Y †
′
eα1W∗

1

′
PW̃2e

α2W∗
2∆Y−1) + E(∆Y †

′

−1A
∗′
2 PW̃2e

α2W∗
2∆Y−1)

∆û(α)
′
(B−1 ⊗ E3)∆û(α)− 1

σ2
ε,M (α)

E
[
∆u(α)

′
(B−1 ⊗ E3)∆u(α)

]
= ∆Y

′
eα1W∗

1

′
M(B−1 ⊗ E3)Meα1W∗

1∆Y − E[∆Y
′
eα1W∗

1

′
M(B−1 ⊗ E3)Meα1W∗

1∆Y ]

+ ∆Y
′
−1A

∗′
2 M(B−1 ⊗ E3)MA∗2∆Y−1 − E[∆Y

′
−1A

∗′
2 M(B−1 ⊗ E3)MA∗2∆Y−1]

− 2∆Y
′
eα1W∗

1

′
M(B−1 ⊗ E3)MA∗2∆Y−1 − 2E[∆Y

′
eα1W∗

1

′
M(B−1 ⊗ E3)MA∗2∆Y−1]

− 2E[(eα1W∗
1∆Y † −A∗2∆Y †−1)

′
P (B−1 ⊗ E3)P (eα1W∗

1∆Y † −A∗2∆Y †−1)]

− 2E[(eα1W∗
1∆Y † −A∗2∆Y †−1)

′
P (B−1 ⊗ E3)M(eα1W∗

1∆Y † −A∗2∆Y †−1)]

Using Lemma 3.1, we can express these terms as functions of ∆y1, δ and ∆ε. Similar proofs follow

from those for (ii) and thus are omitted.

Proof of Theorem 3.2. By the mean value theorem, we have
√
n(T − 1)(θ̂M − θ0) =

−[ 1
n(T−1)H

∗(θ)]−1 1√
n(T−1)

S∗(θ0), where H∗(θ) = ∂S∗(θ)

∂θ′
and θ is between θ̂M and θ0 element-

wise. To obtain the asymptotic distribution of
√
n(T − 1)(θ̂M − θ0), we will thus first prove that

1
n(T−1)H

∗(θ) = 1
n(T−1)H

∗(θ0) + op(1) = 1
n(T−1)E[H∗(θ0)] + op(1) and then 1√

n(T−1)
S∗(θ0)

d−−→
N [0, limn→∞Ω∗(θ0)].

10



The generic form H∗(θ) = ∂S∗(θ)

∂θ′
is comprised of the following elements:

H∗ββ(θ) = − 1

σ2
ε

∆X
′
Σ−1∆X,

H∗βσ2
ε
(θ) = H∗

′

σ2
εβ

(θ) = − 1

σ4
ε

∆X
′
Σ−1∆u(φ),

H∗βτ (θ) = H∗
′
τβ(θ) = − 1

σ2
ε

∆X
′
Σ−1∆Y−1,

H∗βα1
(θ) = H∗

′
α1β(θ) =

1

σ2
ε

∆X
′
Σ−1W1e

α1W1∆Y,

H∗βα2
(θ) = H∗

′
α2β(θ) = − 1

σ2
ε

∆X
′
Σ−1W2e

α2W2∆Y−1,

H∗βα3
(θ) = H∗

′
α3β(θ) =

1

σ2
ε

∆X
′
(B−1 ⊗ E3)∆u(φ),

H∗σ2
εσ

2
ε
(θ) =

n(T − 1)

2σ4
ε

− 1

σ6
ε

∆u(φ)
′
Σ−1∆u(φ),

H∗σ2
ε τ

(θ) = H∗τσ2
ε
(θ) = − 1

σ4
ε

∆Y
′
−1Σ−1∆u(φ),

H∗σ2
εα1

(θ) = H∗α1σ2
ε
(θ) =

1

σ4
ε

∆Y
′
eα1W1

′
W
′
1Σ−1∆u(φ),

H∗σ2
εα2

(θ) = H∗α2σ2
ε
(θ) = − 1

σ4
ε

∆Y
′
−1e

α2W2
′
W
′
2Σ−1∆u(φ),

H∗σ2
εα3

(θ) = H∗α3σ2
ε
(θ) =

1

2σ4
ε

∆u(φ)
′
(B−1 ⊗ E3)∆u(φ),

H∗ττ (θ) = − 1

σ2
ε

∆Y
′
−1Σ−1∆Y−1 + tr(D−1,τB

−1e−α1W1),

H∗τα1
(θ) =

1

σ2
ε

∆Y
′
eα1W1

′
W
′
1Σ−1∆Y−1 + tr(D−1,α1B

−1e−α1W1 −D−1B
−1W1e

−α1W1),

H∗τα2
(θ) = − 1

σ2
ε

∆Y
′
−1e

α2W2W
′
2Σ−1∆Y−1 + tr(D−1,α2B

−1e−α1W1),

H∗τα3
(θ) =

1

σ2
ε

∆u(φ)
′
(B−1 ⊗ E3)∆Y−1,

H∗α1τ (θ) =
1

σ2
ε

∆Y
′
eα1W1

′
W
′
1Σ−1∆Y−1 − tr(DτB

−1W1),

H∗α1α1
(θ) = − 1

σ2
ε

[∆Y
′
eα1W1

′
W
′
1Σ−1W1e

α1W1∆Y + ∆u(φ)
′
Σ−1W2

1e
α1W1∆Y ]

− tr(Dα1B
−1W1),

H∗α1α2
(θ) =

1

σ2
ε

∆Y
′
−1e

α2W2
′
W
′
2Σ−1W1e

α1W1∆Y − tr(Dα2B
−1W1),

H∗α1α3
(θ) = − 1

σ2
ε

∆u(φ)
′
(B−1 ⊗ E3)W1e

α1W1∆Y,

H∗α2τ (θ) = − 1

σ2
ε

∆Y
′
−1e

α2W2
′
W
′
2Σ−1∆Y−1 + tr(D−1,τB

−1W21),

H∗α2α1
(θ) =

1

σ2
ε

∆Y
′
−1e

α2W2
′
W
′
2Σ−1W1e

α1W1∆Y + tr(D−1,α1B
−1W21 + D−1B

−1W21,α1),
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H∗α2α2
(θ) =

1

σ2
ε

[−∆Y
′
−1e

α2W2
′
W
′
2Σ−1W2e

α2W2∆Y−1 + ∆u(φ)
′
Σ−1

3 W2
2e
α2W2∆Y−1]

+ tr(D−1,α2B
−1W21 + D−1B

−1W21,α2),

H∗α2α3
(θ) =

1

σ2
ε

∆u(φ)
′
(B−1 ⊗ E3)W2e

α2W2∆Y−1,

H∗α3α3
(θ) = − 1

2σ2
ε

∆u(φ)
′
(B−1 ⊗ E33)∆u(φ),

where Dω = ∂D
∂ω , D−1,ω = ∂D−1

∂ω , W21,ω = ∂W21
∂ω for ω = τ, α1, α2 and E33 = ∂E3

∂α3
= eα3W3

′
(W

′
3 +

W3)2eα3W3 .

We will first prove 1
n(T−1) [H∗(θ)−H∗(θ0)] = op(1). Note there are stochastic and nonstochastic

elements in H∗(θ). The stochastic elements are comprised of all the terms other than the trace terms

and the nonstochastic elements are the trace terms. By the model assumptions and Lemma A.1, all

elements in H∗(θ0) are uniformly bounded in both row and column sums and thus 1
n(T−1)H

∗(θ0) =

Op(1). Note θ̂M
p−−→ θ0 by Theorem 3.1. So θ

p−−→ θ0 as well because θ is between θ̂M and θ0. It

follows that 1
n(T−1)H

∗(θ) = Op(1). For σ−2
ε , σ−4

ε and σ−6
ε in H∗(θ), note σ−2

ε
p−−→ σ−2

ε0 , σ−4
ε

p−−→
σ−4
ε0 and σ−6

ε
p−−→ σ−6

ε0 which is implied by θ
p−−→ θ0. So they can be replaced by σ−2

ε0 , σ−4
ε0 and σ−6

ε0

respectively during the proof, i.e., we need to show 1
n(T−1) [H∗(β, σ2

ε0, τ , α) −H∗(β0, σ
2
ε0, τ0, α0)] =

op(1). Note that ∆u(φ) = eα1W1∆Y −A2∆Y−1−∆Xβ and ∆u = eα10W1∆Y −A20∆Y−1−∆Xβ0,

which leads to the expression

∆u(φ) = ∆u+ (eα1W1 − eα10W1)∆Y − (A2 −A20)∆Y−1 −∆X(β − β0). (C.1)

By Lemma A.5 we have

∥∥eαrWr − eαr0Wr
∥∥
∞ =

∥∥∥(e(αr−αr0)Wr − In(T−1))e
αr0Wr

∥∥∥
∞

≤
∥∥∥e(αr−αr0)Wr − In(T−1)

∥∥∥
∞

∥∥eαr0Wr
∥∥
∞

= op(1) (C.2)

for r = 1, 2, 3 by Lemma A.51. Similarly

Σ−1 = Σ−1
0 +B−1 ⊗ (eα3W ′3eα3W3 − eα30W ′3eα30W3). (C.3)

By lemma A.6 we have∥∥∥eα3W ′3eα3W3 − eα30W ′3eα30W3

∥∥∥
∞

=
∥∥∥eα30W ′3 [e(α3−α30)W ′3e(α3−α30)W3 − In(T−1)]e

α30W3

∥∥∥
∞

≤
∥∥∥eα30W ′3

∥∥∥
∞

∥∥∥e(α3−α30)W ′3e(α3−α30)W3 − In(T−1)

∥∥∥
∞

∥∥eα30W3
∥∥
∞

= op(1). (C.4)

1Note that in general eA+B 6= eAeB for two matrices A and B. It is only true when A and B commute, i.e.,
AB = BA (Chiu et al., 1996). Here W commutes with itself so the equation holds.
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We can first write 1
n(T−1) [H∗(β, σ2

ε0, τ , α)−H∗(β0, σ
2
ε0, τ0, α0)] as functions that contain eαrWr−

eαr0Wr and Σ−1 − Σ−1
0 . For example, for H∗σ2

εα1
(θ), we have

1

n(T − 1)
[H∗σ2

εα1
(β, σ2

ε0, τ , α)−H∗σ2
εα1

(β0, σ
2
ε0, τ0, α0)

=
1

n(T − 1)σ4
ε0

[∆Y
′
(eα1W1

′
− eα10W1

′
)W

′
1Σ−1∆u(φ) + ∆Y

′
eα10W1

′
W
′
1(Σ−1 − Σ−1

0 )∆u(φ)

+ ∆Y
′
eα10W1

′
W
′
1Σ−1

0 (∆u(φ)−∆u)].

Then by substituting (C.1) and (C.3) into H∗(θ), we know that the stochastic elements in
1

n(T−1) [H∗(β, σ2
ε0, τ , α) − H∗(β0, σ

2
ε0, τ0, α0)] are linear, bilinear or quadratic in ∆Y , ∆Y−1 or ∆u.

By Lemma 2, we can express these elements in terms of ∆y1 and ∆ε. Using (C.2) and (C.4) and

the fact that θ
p−−→ θ0, we can prove all the stochastic elements are op(1) using the similar proof

to Theorem 3.1.

For the nonstochastic elements, we will prove that all the trace terms are op(1). There are

two types of trace terms, the first being tr(DωB
−1W1), tr(D−1,ωB

−1W21), tr(DωB
−1e−αrWr)

and tr(D−1,ωB
−1e−αrWr) and the second being tr(D−1B

−1W21,ω) for ω = τ, α1, α2 and r = 1, 2.

For the first type, for example, tr(Dα1B
−1W1), assume (α̌1, α̌2) is between (α1, α2) and (α10, α20)

elementwise. By the mean value theorem:

1

n(T − 1)
[tr(Dα1(α1, α2)B−1W1)− tr(Dα1(α10, α20)B−1W1)]

=
1

n(T − 1)

[
(α1 − α10)[tr(Dα1α1(α̌1, α̌2)B−1W1)] + (α2 − α20)[tr(Dα1α2(α̌1, α̌2)B−1W1)]

]
where Dα1α1(α̌1, α̌2) and Dα1α2(α̌1, α̌2) are the derivatives of Dα1 with respect to α1 and α2

respectively evaluated at (α̌1, α̌2). WLOG we assume T = 3, then

Dα1α1 =

(
A2W

2
1 e
−α1W1 0n×n

2[A2W1e
−α1W1A2W1e

−α1W1 + (A2e
−α1W1 − In)A2W

2
1 e
−α1W1 ] A2W

2
1 e
−α1W1

)

Dα1α2 =

(
−W2A2W1e

−α1W1 0n×n

−2[W2A2e
−α1W1A2W1e

−α1W1 + (A2e
−α1W1 − In)W2A2W1e

−α1W1 ] −W2A2W1e
−α1W1

)
,

By Lemma A.1, Dα1α1 and Dα1α2 are uniformly bounded in a matrix norm in the neighborhood

of (α10, α20), leading to 1
n(T−1) [tr(Dα1(α1, α2)B−1W1) − tr(Dα1(α10, α20)B−1W1)] = op(1). The

rest of the first type are proved similarly. For the second type, for example tr(D−1B
−1W21,α2), we

similarly apply the mean value theorem and get the following:

1

n(T − 1)
[tr(D−1(α1, α2)B−1W21,α2(α1, α2))− tr(D−1(α10, α20)B−1W21,α2(α10, α20))]

=
1

n(T − 1)

[
(α1 − α10)[tr(D−1,α1(α̌1, α̌2)B−1W21,α2(α̌1, α̌2)) + tr(D(α̌1, α̌2)B−1W21,α2α1(α̌1, α̌2))]

+ (α2 − α20)[tr(D−1,α2(α̌1, α̌2)B−1W21,α2(α̌1, α̌2)) + tr(D(α̌1, α̌2)B−1W21,α2α2(α̌1, α̌2))]
]
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where D−1,α1(α̌1, α̌2) and D−1,α2(α̌1, α̌2) are the derivatives of D−1 with respect to α1 and α2

respectively and W21,α2α1(α̌1, α̌2) and W21,α2α2(α̌1, α̌2) are derivatives of W21,α2 with respect to

α1 and α2 respectively, all evaluated at (α̌1, α̌2). Again WLOG assuming T=3, we have

D−1,α1 =

(
In 0n×n

−eα2W2W1e
−α1W1 In

)
, D−1,α2 =

(
In 0n×n

W2e
α2W2e−α1W1 In

)
,

W21,α2α1 =

(
−W 2

2 e
α2W2W1e

−α1W1 0n×n

0n×n −W 2
2 e

α2W2W1e
−α1W1

)
and

W21,α2α2 =

(
W 3

2 e
α2W2e−α1W1 0n×n

0n×n W 3
2 e

α2W2e−α1W1

)
.

Here D−1,α1 ,D−1,α2 ,W21,α2 and W21,α2α1 are uniformly bounded in a matrix norm by Lemma A.1.

So 1
n(T−1)

[
tr(D−1(α1, α2)B−1W21,α2(α1, α2))− tr(D−1(α10, α20)B−1W21,α2(α10, α20))] = op(1). It

follows that 1
n(T−1) [H∗(θ)−H∗(θ0)] = op(1).

Next let’s prove 1
n(T−1) [H∗(θ0) − E(H∗(θ0))] = op(1). The term is comprised of differences of

linear, bilinear or quadratic forms in ∆Y , ∆Y−1 or ∆u and their expected values at the true values.

For terms involving ∆Y and ∆Y−1, using Lemma 3.1, they can be expressed as formulas of sums

of terms linear in ∆y1, quadratic in ∆y1, bilinear in ∆y1 and ∆ε and quadratic in ∆ε. Using

Lemma A.1, Lemma A.4 and Assumption 6, these terms are op(1). For terms involving ∆u, note

∆u = e−α30W3∆ε = e−α30W3Cε, where C is an n(T − 1)× nT matrix:

C =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 −1 1

 . (C.5)

So we have, for example, H∗σ2
εα3

(θ0)− E[H∗σ2
εα3

(θ0)] = 1
2σ4
ε0

[
ε
′
C
′
eα30W3

′
(B−1 ⊗ E30)eα30W3Cε−

E(ε
′
C
′
eα30W3

′
(B−1 ⊗ E30)eα30W3Cε)

]
. By Lemma A.3(v), 1

n(T−1) [H∗σ2
εα3

(θ0) − E(H∗σ2
εα3

(θ0))] =

op(1). Similar proofs can be done for all other terms involving ∆u. So 1
n(T−1) [H∗(θ0)−E(H∗(θ0))] =

op(1).

Finally let’s prove 1√
n(T−1)

S∗(θ0)
d−−→ N [0, limn→∞Ω∗(θ0)]. From (3.8) we know S∗(θ0) con-

sists of three types of components: R
′
∆ε, ∆ε

′
F∆y1 and ∆ε

′
O∆ε where subscripts r for Rr, Fr

and Or are suppressed for simplicity. Partitioning them using matrix C in (C.5) above gives us the

following: R
′
∆ε =

∑T
t=1R

∗′
t εt, ∆ε

′
F∆y1 =

∑T
t=1 ε

′
tF
∗
t ∆y1, ∆ε

′
O∆ε =

∑T
s=1

∑T
t=1 ε

′
tO
∗
t εt, where

R∗t = R
′
tCt, F

∗
t = C

′
tFt and O∗t = C

′
tOtCt are n× k, n× n and n× n partitioned matrices of R

′
C,

C
′
T and C

′
OC respectively. By substituting ∆y1 = (e−α10W1A2−In)y0 +c1 +e−α10W1eα30W3ε1 into

ε
′
tF
∗
t ∆y1, where c1 is a non-stochastic term, we get

∑T
t=1 ε

′
tF
∗
t ∆y1 =

∑T
t=1 ε

′
tF
∗
t1y0 +

∑T
t=1 ε

′
tF
∗
t c1 +∑T

t=1 ε
′
tF
∗
t2ε1. So for an (k + 5) × 1 vector of constants a, a

′
S∗(θ0) =

∑T
s=1

∑T
t=1 ε

′
tAtsεs +∑T

t=1 ε
′
tBtε1+

∑T
t=1 ε

′
tf(y0)+a

′
d for nonstochastic matrices Ats, Bt, vector d and f(y0) as a function
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of y0. By Assumption 1, y0 is independent of εt for t = 1, ..., T . Also ε1, ..., εT are independent of

each other by Assumption 5. Hence 1
n(T−1)a

′
S∗(θ0) is asymptotically normal by Lemma A.4. Since

every fixed linear combination of elements of S∗(θ0) converges in distribution, by Cramer-Wold

device, 1
n(T−1)S

∗(θ0)
d−−→ N [0, limn→∞Ω∗(θ0)].

Proof of Theorem 3.3. To prove Ω̂
∗

= 1
n(T−1)

∑n
i=1 âiâ

′

i
p−−→ Ω∗(θ0) = 1

n(T−1)

∑n
i=1 E(aia

′
i), we

need to prove the following:

(i) 1
n(T−1)

∑n
i=1 âiâ

′

i
p−−→ 1

n(T−1)

∑n
i=1 aia

′
i;

(ii) 1
n(T−1)

∑n
i=1 aia

′
i

p−−→ 1
n(T−1)

∑n
i=1 E(aia

′
i).

Proof of (i): For θ between θ̂M and θ0 elementwise, we can utilize the mean value theorem to each

of the elements in 1
n(T−1)

∑n
i=1(âliâ

′

mi−alia
′
mi) for l,m = 1, 2, 3 and prove each of them is op(1). For

example, for the first element when l = m = 1, a11ia
′
11i is an k×k matrix where k is the number of re-

gressors in ∆X, and 1
n(T−1)(â11iâ

′

11i−a11ia
′
11i) = − 2

n(T−1)a11i
∑k

j=1

∑T
t=2R

′
it(e

α3W3∆Xj)it(β̂jM −
βj0) − 2

n(T−1)a11i(
∑T

t=2
1
σ4
ε
R
′
it∆εit)

′
(σ̂2
ε,M − σ2

ε0) − 2
n(T−1)a11i[

∑T
t=2R

′
it(e

α3W3∆Y−1)it]
′
(τ̂M −

τ0) + 2
n(T−1)a11i[

∑T
t=2R

′
it(e

α3W3W1e
α3W3∆Y )it]

′
(α̂1M − α10) −

2
n(T−1)a11i[

∑T
t=2R

′
it(e

α3W3W2e
α2W2∆Y−1)it]

′
(α̂2M − α20) + 2

n(T−1)a11i

[∑T
t=2[( 1

σ2
ε
(B−1 ⊗

W3e
α3W3)∆X)

′
it∆εit + R

′
1it(W3∆ε)it]

]′
(α̂3M − α30), where the terms with bars on top denote the

values implied by θ which is between θM and θ0. By model assumptions and Lemma A.1, all the

multipliers before the differences of parameters θ̂M − θ0 are Op(1). Since θ̂M − θ0 = op(1) by

Theorem 3.1, 1
n(T−1)(â11iâ

′

11i − a11ia
′
11i) = op(1). The proofs for other terms follow similarly.

Proof of (ii): We need to prove 1
n(T−1)

∑n
i=1[alia

′
mi − E(alia

′
mi)]

p−−→ 0 for l,m = 1, 2, 3. We will

prove it for l = m = 1, l = m = 2 and l = m = 3 and the cross multiplied cases are done in a

similar way. Before proceeding with the proof we define the following notations.

(1) For n(T − 1) × 1 vector ∆ε, we denote ∆ε·t as the n × 1 vector that selects all elements

corresponding to period t and denote ∆εi· as the (T − 1) × 1 vector that selects all elements

corresponding to individual i.

(2) For n(T − 1)×n(T − 1) matrix O, we denote O·t,·s as the n×n matrix that selects all elements

corresponding to period (t, s), denote Oi·,j· as the (T − 1)× (T − 1) matrix that selects all elements

corresponding to individual (i, j) and denote Oit,j· as the (T − 1)× 1 vector that is the tth column

of Oi·,j·.

Then we can express a1i, a2i and a3i as a1i =
∑T

t=2R
′
itεit = Ri·∆εi·, a2i =

∑T
t=2(∆εit∆ηit +

∆εit∆ε
∗
it − σ2

ε0dit) = ∆ε
′
i·∆ηi· + ∆ε

′
i·∆ε

∗
i· − σ2

ε0l
′
T−1di· and a3i = ∆ε2i∆ξi + F++

2,ii (∆ε2i∆y
�
1i + σ2

ε0) +∑T
t=3 ∆εit∆y

∗
1it = ∆ε2i∆ξi + F++

2,ii (∆ε2i∆y
�
1i + σ2

ε0) + ∆ε
′
i−∆y∗1i−, where − in ∆y∗1i− denotes the

selection of all element from t = 3 to T . These expressions will be convenient to use in the proof

below.

For a1i,
1

n(T−1)

∑n
i=1[a1ia

′
1i − E(a1ia

′
1i)] = 1

n(T−1)

∑n
i=1R

′
i·(∆εi·∆ε

′
i· − σ2

ε0B)Ri =
1

n(T−1)

∑n
i=1 zn,i. Note zn,i is a MDS since {zn,i} are independent and E(zn,i) = 0. Given As-

sumption 6, we know from Lemma A.1 that the elements of Ri· are uniformly bounded in row and
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column sums. Then E|zn,i|1+ζ is bounded above by some constant for ζ > 0 which implies zn,i is

uniformly integrable. Also for the multiplying coefficient, limsupn→∞
∑n

i=1
1

n(T−1) = 1
T−1 <∞ and

limn→∞
∑n

i=1[ 1
n(T−1) ]2 = limn→∞

1
n(T−1)2

= 0. By Theorem 19.7 on Weak Law of Large Numbers

for MD array (Davidson, 1994), 1
n(T−1)

∑n
i=1 zn,i

p−−→ 0.

For a2i, first note E(∆ε
′
i·∆ηi·) = 0 for i = 1, ..., n because each multiplying group of ele-

ments in ∆εi· and ∆ηi· are from different individuals. Then we have 1
n(T−1)

∑n
i=1[a2

2i − E(a2
2i)] =

1
n(T−1)

∑n
i=1[((∆ε

′
i·∆ηi·)

2 − E(∆ε
′
i·∆ηi·)

2) + ((∆ε
′
i·∆ε

∗
i·)

2 − E(∆ε
′
i·∆ε

∗
i·)

2) + 2(∆ε
′
i·∆ηi·)(∆ε

′
i·∆ε

∗
i·)−

2σ2
ε0l
′
T−1di·(∆ε

′
i·∆ηi·) − 2(σ2

ε0l
′
T−1di·(∆ε

′
i·∆ε

∗
i· − E(∆ε

′
i·∆ε

∗
i·)))]. We can prove that each of the five

terms is op(1). For example, for the first term, subtracting and adding a same term and noticing

E(∆εi·∆ε
′
i·) = σ2

ε0B, it equals 1
n(T−1)

∑n
i=1 ∆η

′
i·(∆εi·∆ε

′
i· − σ2

ε0B)∆ηi· +
σ2
ε0

n(T−1)

∑n
i=1[∆η

′
i·B∆ηi· −

E(∆η
′
i·B∆ηi·)]. Let Nn,i = ∆η

′
i·(∆εi·∆ε

′
i· − σ2

ε0B)∆ηi·. Since ∆ηi· is Πn,i−1 measurable,

E(Nn,i|Πn,i−1) = 0. To be a MD array, it is also necessary that E(Nn,i) < ∞ (e.g. Davidson

(1994) p232), which is obviously satisfied. Thus {Nn,i,Πn,i−1} is a MD array. Also E|N1+ζ
n,i | is

bounded above by some positive constant for some ζ > 0. So {Nn,i} is uniformly integrable. The

multiplier 1
n(T−1) is shown in proof of a1i to satisfy the other two conditions of Theorem 19.7 in

Davidson (1994). So 1
n(T−1)

∑n
i=1Nn,i = op(1).

For the second term, we can express ∆η
′
i·B∆ηi· =

∑T−1
t=1

∑T−1
s=1 ∆ηitBts∆ηit, where ∆ηit is the

ith element of the n × 1 vector ∆ηt =
∑T

s=2(Ou
′

st + Olts)∆εs. Here O is an n(T − 1) × n(T − 1)

matrix and Ost is its stth n × n block matrix. So ∆ηit =
∑T

s=2

∑i−1
j=1(Ojs,it + Oit,js)∆εjs =∑i−1

j=1

∑T
s=2(Ojs,it+Oit,js)∆εjs =

∑i−1
j=1O

′
ijt∆εj·, where Oijt = Oj·,it+Oit,j·. Then for ∆ηis = ∆ηit,

we have (∆ηit)
2 − E[(∆ηit)

2] =
∑i−1

j=1O
′
ijt(∆εj·∆ε

′
j· − σ2

ε0B)Oijt + 2
∑i−1

j=1

∑j−1
k=1O

′
ijt∆ε

′
j·∆ε

′
k·Oikt,

which implies

1

n(T − 1)

n∑
i=1

[(∆ηit)
2 − E((∆ηit)

2)]

=
1

n(T − 1)

n∑
i=1

 i−1∑
j=1

O
′
ijt(∆εj·∆ε

′
j· − σ2

ε0B)Oijt + 2
i−1∑
j=1

j−1∑
k=1

∆ε
′
j·OijtO

′
ikt∆εk·


=

1

n(T − 1)

n−1∑
j=1

 n∑
i=j+1

[O
′
ijt(∆εj·∆ε

′
j· − σ2

ε0B)Oijt]

+
2

n(T − 1)

n−1∑
j=1

∆ε
′
j·

n∑
i=j+1

j−1∑
k=1

OijtO
′
ikt∆εk·.

Now the terms in the summation in the first element are independent, and∑n
i=j+1

∑j−1
k=1OijtO

′
ikt∆εk· is Πn,j−1-measurable. By Theorem 19.7 in Davidson (1994),

1
n(T−1)

∑n
i=1[(∆ηit)

2 − E((∆ηit)
2)] = op(1). Similar proofs can be done for ∆ηis 6= ∆ηit.

Thus 1
n(T−1)

∑n
i=1[∆η

′
i·B∆ηi· − E(∆η

′
i·B∆ηi·)] = op(1). It follows that the first term in

1
n(T−1)

∑n
i=1[a2

2i − E(a2
2i)] is op(1). The proofs for the second and the fifth term are similar to that

of the first element of the first term, the proofs for the third and fourth terms are similar to that

of the second element of the first term and thus they are omitted.
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For a3i, we have:

1

n(T − 1)

n∑
i=1

[a2
3i − E(a2

3i)]

=
1

n(T − 1)

n∑
i=1

(∆ε22i∆ξ
2
i − 2σ2

ε0∆ξ2
i ) +

2

n(T − 1)

n∑
i=1

[σ2
ε0(∆ξ2

i − E(∆ξi)
2)]

+
1

n(T − 1)

n∑
i=1

(F++
2,ii )2[∆ε2i∆y

�
1i − E(∆ε2i∆y

�
1i)

2]

+
1

n(T − 1)

n∑
i=1

[(∆ε
′
i−∆y∗1i−)2 − E(∆ε

′
i−∆y∗1i−)2]

+
2

n(T − 1)

n∑
i=1

[F++
2,ii ∆ε22i∆ξi∆y

�
1i − E(F++

2,ii ∆ε22i∆ξi∆y
�
1i)]

+
2

n(T − 1)

n∑
i=1

[σ2
ε0(F++

2,ii ∆ε2i∆ξi)]

+
2

n(T − 1)

n∑
i=1

[(∆ε2i∆ξi∆ε
′
i−∆y∗1i−)− E(∆ε2i∆ξi∆ε

′
i−∆y∗1i−)]

+
2

n(T − 1)

n∑
i=1

{F++
2,ii σ

2
ε0[∆ε2i∆y

�
1i − E(∆ε2i∆y

�
1i)]}

+
2

n(T − 1)

n∑
i=1

{F++
2,ii [∆ε2i∆y

�
1i∆ε

′
i−∆y∗1i− − E(∆ε2i∆y

�
1i∆ε

′
i−∆y∗1i−)]}

+
2

n(T − 1)

n∑
i=1

[F++
2,ii σ

2
ε0(∆ε

′
i−∆y∗1i− − E(∆ε

′
i−∆y∗1i−))],

where we subtracted and added 2
n(T−1)

∑n
i=1 σ

2
ε0∆ξ2

i and used the fact that F++
2,ii is nonstochastic.

Note ∆ξ2
i is Φn,i−1-measurable, which implies that the first term is the average of a MD ar-

ray. By Theorem 19.7 in Davidson (1994), the first term is op(1). The sixth term is thus also

convergent. Note ∆ξ = (F++u
2 + F++l

2 )∆y�1 = (F++u
2 + F++l

2 )eα30W3eα10W1∆y1, so the second

term equals 2
n(T−1)

∑n
i=1[σ2

ε0(∆y
′
1e
α10W

′
1eα30W

′
3(F++u

2 + F++l
2 )

′
(F++u

2 + F++l
2 )eα30W3eα10W1∆y1 −

E(∆y
′
1e
α10W

′
1eα30W

′
3(F++u

2 +F++l
2 )

′
(F++u

2 +F++l
2 )eα30W3eα10W1∆y1))]. Since eα10W

′
1eα30W

′
3(F++u

2 +

F++l
2 )

′
(F++u

2 + F++l
2 )eα30W3eα10W1 is uniformly bounded in row and column sums by Lemma

A.1, the convergence of the second term follows from Assumption 6. For the third, fifth and

eighth term, we can substitute ∆y�1 = eα30W3eα10W1∆y0 + eα30W3∆X1β0 + ∆ε1 in them and

prove they are convergent. For the fourth and tenth term, we can prove they are convergent

using Assumption 6 since ∆εi− are from t = 3 to T and ∆y∗1i− is constructed based on ∆y1

which implies they are independent. For the seventh and ninth term, note ∆y∗1t = F+
t ∆y1 =

F+
t ∆y0 + F+

t e
−α10W1∆X1β0 + F+

t e
−α10W1e−α30W3∆ε1. The convergence follows.
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D Estimation of Submodels

The M-estimation proposed in the main paper can be modified to incorporate different submodels

by getting rid of matrix exponential in dependent variable, lagged dependent variable and/or dis-

turbance. In this part of the appendix we describe the estimation of submodels used in the Monte

Carlo simulation.

MESDPS(1,0,0). By setting α2 = 0 and α3 = 0 we get MESDPS(1,0,0). Let A0 = It−1 ⊗A0

with A0 = τ0 + 1. The first differenced model is given by

eα10W1∆Y = A0∆Y−1 + ∆Xβ0 + ∆ε, (D.1)

and the conditional quasi loglikelihood is thus given by

`(1,0,0)(θ) = −n(T − 1)

2
log(σ2

ε )−
1

2σ2
ε

∆ε(φ)
′
B−1∆ε(φ), (D.2)

where θ = (β
′
, σ2

ε , τ, α1)
′
, φ = (β

′
, τ, α1)

′
, B = B ⊗ In and ∆ε(φ) = eα1W1∆Y −A∆Y−1 −∆Xβ.

Given ζ = (τ, α1)
′
, the estimators of β and σ2

ε are given by

β̃(ζ) = (∆X
′
B−1∆X)−1∆X

′
B−1(eα1W1∆Y −A∆Y−1), (D.3)

σ̃2
ε (ζ) =

1

n(T − 1)
∆ε̃(ζ)

′
B−1∆ε̃(ζ), (D.4)

where ∆ε̃(ζ) = eα1W1∆Y − A∆Y−1 − ∆Xβ̃(α1). Substituting them back into (D.2), ignoring

constants, the concentrated log-likelihood function is derived as:

lc(1,0,0)(ζ) = − log[∆ε̃(ζ)
′
B−1∆ε̃(ζ)], (D.5)

Maximizing (D.5) gives us CQMLE ζ̃ and then CQMLEs β̃ = β̃(ζ̃) and σ̃2
ε = σ̃2

ε (ζ̃).

The conditional quasi score (CQS) function corresponding to (2.11) in the paper is given by

S(1,0,0)(θ) =



β : 1
σ2
ε
∆X

′
B−1∆ε(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆ε(φ)

′
B−1∆ε(φ),

τ : 1
σ2
ε
∆ε(φ)

′
B−1∆Y−1,

α1 : − 1
σ2
ε
∆ε(φ)

′
B−1W1e

α1W1∆Y.

Note here the expectations in Lemma 2.1 reduce to E(∆Y∆ε
′
) = −σ2

ε0e
−α10W1D0 and

E(∆Y−1∆ε
′
) = −σ2

ε0e
−α10W1D−1,0, where D0 =

A0e−α10W1 − 2In In . . . . . . 0

(A0e−α10W1 − In)2 A0e−α10W1 − 2In
. . . . . .

...

..

.
..
.

. . .
. . . In

(A0e−α10W1 )T−3(A0e−α10W1 − In)2 . . . . . . (A0e−α10W1 − In)2 A0e−α10W1 − 2In

 ,
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and D−1,0 =



In 0 . . . . . . 0

A0e−α10W1 − 2In In
. . . . . .

...

(A0e−α10W1 − In)2
. . .

. . .
. . .

...

...
...

. . .
. . . 0

(A0e−α10W1 )T−4(A0e−α10W1 − In)2 . . . (A0e−α10W1 − In)2 A0e−α10W1 − 2In In


.

The adjusted quasi score (AQS) corresponding to (2.15) in the paper is thus given by

S∗(1,0,0)(θ) =



β : 1
σ2
ε
∆X

′
B−1∆ε(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆ε(φ)

′
B−1∆ε(φ),

τ : 1
σ2
ε
∆ε(φ)

′
Σ−1∆Y−1 + tr(D−1B

−1e−α1W1),

α1 : − 1
σ2
ε
∆ε(φ)

′
B−1W1e

α1W1∆Y − tr(DB−1W1),

Given ζ = (τ, α1)
′
, the constrained M-estimators of β and σ2

ε are first solved as

β̂M (ζ) = (∆X
′
B−1∆X)−1∆X

′
B−1(eα1W1∆Y −A∆Y−1), (D.6)

σ̂2
ε,M (ζ) =

1

n(T − 1)
∆ε̂(ζ)

′
B−1∆ε̂(ζ), (D.7)

where ∆ε̂(ζ) = eα1W1∆Y −A∆Y−1 −∆Xβ̂M (ζ). Then β̂M (ζ) and σ̂2
ε,M (ζ) are substituted back

into the third and fourth elements of the AQS function to get the concentrated AQS function:

S∗(1,0,0)(ζ) =


τ : 1

σ̂2
ε,M (ζ)

∆ε̂(ζ)
′
B−1∆Y−1 + tr(D−1B

−1e−α1W1),

α1 : − 1
σ̂2
ε,M (ζ)

∆ε̂(ζ)
′
B−1W1e

α1W1∆Y − tr(DB−1W1)

The unconstrained M-estimators τ̂M and α̂1M can be solved by letting S∗c(1,0,0)(ζ) = 0 and conse-

quently the unconstrained M-estimators β̂M = β̂M (ζ̂M ) and σ̂2
ε,M = σ̂2

ε,M (ζ̂M ).

MESDPS(0,1,0). By setting α1 = 0 and α3 = 0, MESDPS(0,1,0) appears. Let A0 = IT−1⊗A0

with A0 = τ0In + eα20W2 . The first differenced model is given by

∆Y = A0∆Y−1 + ∆Xβ0 + ∆ε,

and the conditional quasi loglikelihood is subsequently given by

`(0,1,0)(θ) = −n(T − 1)

2
log(σ2

ε )−
1

2σ2
ε

∆ε(φ)
′
B−1∆ε(φ), (D.8)

where θ = (β
′
, σ2

ε , τ, α2)
′
, φ = (β

′
, τ, α2)

′
, B = B ⊗ In and ∆ε(φ) = ∆Y −A∆Y−1 −∆Xβ. Given
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ζ = (τ, α2)
′
, the estimators of β and σ2

ε are given by

β̃(ζ) = (∆X
′
B−1∆X)−1∆X

′
B−1(∆Y −A∆Y−1), (D.9)

σ̃2
ε (ζ) =

1

n(T − 1)
∆ε̃(ζ)

′
B−1∆ε̃(ζ), (D.10)

where ∆ε̃(ζ) = ∆Y −A∆Y−1 −∆Xβ̃(ζ). Substituting them back into (D.8), ignoring constants,

the concentrated log-likelihood function is:

lc(0,1,0)(ζ) = − log[∆ε̃(ζ)
′
B−1∆ε̃(ζ)], (D.11)

Maximizing (D.11) gives us CQMLE ζ̃ and then CQMLEs β̃ = β̃(ζ̃) and σ̃2
ε = σ̃2

ε (ζ̃).

The conditional quasi score (CQS) function corresponding to (2.11) in the paper is given by

S(0,1,0)(θ) =



β : 1
σ2
ε
∆X

′
B−1∆ε(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆ε(φ)

′
B−1∆ε(φ),

τ : 1
σ2
ε
∆ε(φ)

′
B−1∆Y−1,

α2 : 1
σ2
ε
∆ε(φ)

′
B−1W2e

α2W2∆Y−1.

In this case the expectation in Lemma 2.1 reduces to E(∆Y−1∆ε
′
) = −σ2

ε0D−1,0, where

D−1,0 =



In 0 . . . . . . 0

A0 − 2In In
. . . . . .

...

(A0 − In)2 . . .
. . .

. . .
...

...
...

. . .
. . . 0

(A0)T−4(A0 − In)2 . . . (A0 − In)2 A0 − 2In In


, and

D0 =


A0 − 2In In . . . . . . 0

(A0 − In)2 A0 − 2In
. . . . . .

...
...

...
. . .

. . . In

AT−3
0 (A0 − In)2 . . . . . . (A0 − In)2 A0 − 2In

 .

The adjusted quasi score (AQS) corresponding to (2.15) in the paper is then given by

S∗(0,1,0)(θ) =



β : 1
σ2
ε
∆X

′
B−1∆ε(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆ε(φ)

′
B−1∆ε(φ),

τ : 1
σ2
ε
∆ε(φ)

′
Σ−1∆Y−1 + tr(D−1B

−1),

α2 : 1
σ2
ε
∆ε(φ)

′
Σ−1W2e

α2W2∆Y−1 + tr(D−1B
−1W2e

α2W2).
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To derive the M-estimator, the constrained M-estimators of β and σ2
ε are first solved as

β̂M (ζ) = (∆X
′
B−1∆X)−1∆X

′
B−1(∆Y −A∆Y−1), (D.12)

σ̂2
ε,M (ζ) =

1

n(T − 1)
∆ε̂(ζ)

′
B−1∆ε̂(ζ), (D.13)

where ∆ε̂(ζ) = ∆Y −A∆Y−1−∆Xβ̂M (ζ). Then β̂M (ζ) and σ̂2
ε,M (ζ) are substituted back into the

third and fourth elements of the AQS function:

S∗c(0,1,0)(ζ) =


τ : 1

σ̂2
ε,M (ζ)

∆ε̂(ζ)
′
Σ−1∆Y−1 + tr(D−1B

−1),

α2 : 1
σ̂2
ε,M (ζ)

∆ε̂(ζ)
′
Σ−1W2e

α2W2∆Y−1 + tr(D−1B
−1W2e

α2W2),

which is the concentrated AQS function. The unconstrained M-estimators ζ̂M can be solved by

letting S∗c(0,1,0)(ζ) = 0. The unconstrained M-estimators are then derived as β̂M = β̂M (ζ̂M ) and

σ̂2
ε,M = σ̂2

ε,M (ζ̂M ).

MESDPS(1,1,0). By setting α3 = 0, MESDPS(1,1,0) appears. Again let A0 = IT−1 ⊗ A0

with A0 = τ0In + eα20W2 . The first differenced model is given by

eα10W1∆Y = A0∆Y−1 + ∆Xβ0 + ∆ε,

and the conditional quasi loglikelihood is thus given by

`(1,1,0)(θ) = −n(T − 1)

2
log(σ2

ε )−
1

2σ2
ε

∆ε(φ)
′
B−1∆ε(φ), (D.14)

where θ = (β
′
, σ2

ε , τ, α1, α2)
′
, φ = (β

′
, τ, α1, α2)

′
, B = B ⊗ In and ∆ε(φ) = eα1W1∆Y −A∆Y−1 −

∆Xβ. Given ζ = (τ, α1, α2)
′
, the estimators of β and σ2

ε are given by

β̃(ζ) = (∆X
′
B−1∆X)−1∆X

′
B−1(eα1W1∆Y −A∆Y−1), (D.15)

σ̃2
ε (ζ) =

1

n(T − 1)
∆ε̃(ζ)

′
B−1∆ε̃(ζ), (D.16)

where ∆ε̃(ζ) = eα1W1∆Y − A∆Y−1 − ∆Xβ̃(ζ). Substituting them back into (D.14), ignoring

constants, the concentrated log-likelihood function is given by:

lc(1,1,0)(ζ) = − log[∆ε̃(ζ)
′
B−1∆ε̃(ζ)]. (D.17)

Maximizing (D.17) gives us CQMLE ζ̃, with the implied CQMLEs β̃ = β̃(ζ̃) and σ̃2
ε = σ̃2

ε (ζ̃).
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Correspondingly, the conditional quasi score (CQS) function (2.11) in the paper becomes

S(1,1,0)(θ) =



β : 1
σ2
ε
∆X

′
B−1∆ε(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆ε(φ)

′
B−1∆ε(φ),

τ : 1
σ2
ε
∆ε(φ)

′
B−1∆Y−1,

α1 : − 1
σ2
ε
∆ε(φ)

′
B−1W1e

α1W1∆Y,

α2 : 1
σ2
ε
∆ε(φ)

′
B−1W2e

α2W2∆Y−1.

Here the expectations in Lemma 2.1 are simplified to E(∆Y∆ε
′
) = −σ2

ε0e
−α1W1D0 and

E(∆Y−1∆ε
′
) = −σ2

ε0e
−α1W1D−1,0, where D0 and D−1,0 have the same expression as those in

Lemma 2.1.

The adjusted quasi score (AQS) in (2.15) in the main paper is then reduced to

S∗(1,1,0)(θ) =



β : 1
σ2
ε
∆X

′
B−1∆ε(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆ε(φ)

′
B−1∆ε(φ),

τ : 1
σ2
ε
∆ε(φ)

′
Σ−1∆Y−1 + tr(D−1B

−1e−α1W1),

α1 : − 1
σ2
ε
∆ε(φ)

′
B−1W1e

α1W1∆Y − tr(DB−1W1),

α2 : 1
σ2
ε
∆ε(φ)

′
B−1W2e

α2W2∆Y−1 + tr(D−1B
−1W21),

where W21 = W2e
α2W2e−α1W1 .To derive the M-estimator, the constrained M-estimators of β

and σ2
ε are first solved as

β̂M (ζ) = (∆X
′
B−1∆X)−1∆X

′
B−1(eα1W1∆Y −A∆Y−1), (D.18)

σ̂2
ε,M (ζ) =

1

n(T − 1)
∆ε̂(ζ)

′
B−1∆ε̂(ζ), (D.19)

where ∆ε̂(ζ) = eα1W1∆Y −A∆Y−1 −∆Xβ̂M (ζ). Then β̂M (ζ) and σ̂2
ε,M (ζ) are substituted back

into the rest of the AQS function to get the concentrated AQS function:

S∗c(1,1,0)(ζ) =


τ : 1

σ̂2
ε,M (ζ)

∆ε̂(ζ)
′
B−1∆Y−1 + tr(D−1B

−1e−α1W1),

α1 : − 1
σ̂2
ε,M (ζ)

∆ε̂(ζ)B−1W1e
α1W1∆Y − tr(DB−1W1),

α2 : 1
σ̂2
ε,M (ζ)

∆ε̂(ζ)B−1W2e
α2W2∆Y−1 + tr(D−1B

−1W21).

The unconstrained M-estimators ζ̂M can be solved by letting S∗c(1,1,0)(ζ) = 0 and then β̂M = β̂M (ζ̂M )

and σ̂2
ε,M = σ̂2

ε,M (ζ̂M ).

MESDPS(1,0,1). By setting α2 = 0, we have MESDPS(1,0,1). Here let A0 = It−1 ⊗A0 with
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A0 = τ0 + 1. The first differenced model is given by

eα10W1∆Y = A0∆Y−1 + ∆Xβ0 + ∆u, eα30W3∆u = ∆ε,

and the conditional quasi loglikelihood is thus given by

`(1,0,1)(θ) = −n(T − 1)

2
log(σ2

ε )−
1

2σ2
ε

∆u(φ)
′
Σ(α3)−1∆u(φ), (D.20)

where θ = (β
′
, σ2

ε , τ, α1, α3)
′
, φ = (β

′
, τ, α1)

′
, Σ(α3) = B ⊗ e−α3W3e−α3W

′
3 , and ∆u(φ) =

eα1W1∆Y −A∆Y−1 −∆Xβ. Given ζ = (τ, α1, α3)
′
, the estimators of β and σ2

ε are given by

β̃(ζ) = (∆X
′
Σ(α3)−1∆X)−1∆X

′
Σ(α3)−1(eα1W1∆Y −A∆Y−1), (D.21)

σ̃2
ε (ζ) =

1

n(T − 1)
∆ε̃(ζ)

′
Σ(α3)−1∆ε̃(ζ), (D.22)

where ∆ε̃(ζ) = eα1W1∆Y − A∆Y−1 − ∆Xβ̃(ζ). Substituting them back into (D.20), ignoring

constants, the concentrated log-likelihood function is given by:

lc(1,0,1)(ζ) = − log[∆ũ(ζ)
′
Σ(α3)−1∆ũ(ζ)], (D.23)

Maximizing (D.23) gives us CQMLE ζ̃ and then the implied CQMLEs β̃ = β̃(ζ̃) and σ̃2
ε = σ̃2

ε (ζ̃).

Correspondingly, the conditional quasi score (CQS) function (2.11) in the paper becomes

S(1,0,1)(θ) =



β : 1
σ2
ε
∆X

′
Σ(α3)−1∆u(φ),

σ2
ε : n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆u(φ)

′
Σ(α3)−1∆u(φ),

τ : 1
σ2
ε
∆u(φ)

′
Σ−1∆Y−1,

α1 : − 1
σ2
ε
∆u(φ)

′
Σ(α3)−1W1e

α1W1∆Y,

α3 : − 1
2σ2
ε
∆u(φ)

′
(B−1 ⊗ E3)∆u(φ).

Now the expectations in Lemma 2.1 become E(∆Y∆ε
′
) = −σ2

ε0e
−α10W1D0e

−α30W3 and

E(∆Y−1∆ε
′
) = −σ2

ε0e
−α10W1D−1,0e

−α30W3 , where D0 =
A0e−α10W1 − 2In In . . . . . . 0

(A0e−α10W1 − In)2 A0e−α10W1 − 2In
. . . . . .

...

...
...

. . .
. . . In

(A0e−α10W1 )T−3(A0e−α10W1 − In)2 . . . . . . (A0e−α10W1 − In)2 A0e−α10W1 − 2In

 ,

and D−1,0 =



In 0 . . . . . . 0

A0e−α10W1 − 2In In
. . . . . .

...

(A0e−α10W1 − In)2
. . .

. . .
. . .

...

...
...

. . .
. . . 0

(A0e−α10W1 )T−4(A0e−α10W1 − In)2 . . . (A0e−α10W1 − In)2 A0e−α10W1 − 2In In


.
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The adjusted quasi score (AQS) in (2.15) in the main paper is then reduced to

S∗(1,0,1)(θ) =



β : 1
σ2
ε
∆X

′
Σ(α3)−1∆u(φ),

σ2
ε −

n(T−1)
2σ2
ε

+ 1
2σ4
ε
∆u(φ)

′
Σ(α3)−1∆u(φ),

τ : 1
σ2
ε
∆u(φ)

′
Σ−1∆Y−1 + tr(D−1B

−1),

α1 : − 1
σ2
ε
∆u(φ)

′
Σ(α3)−1W1e

α1W1∆Y − tr(DB−1W1),

α3 : − 1
2σ2
ε
∆u(φ)

′
(B−1 ⊗ E3)∆u(φ).

To derive the M-estimator, the constrained M-estimators of β and σ2
ε are first solved as

β̂M (ζ) = (∆X
′
Σ(α3)−1∆X)−1∆X

′
Σ(α3)−1(eα1W1∆Y −A∆Y−1), (D.24)

σ̂2
ε,M (ζ) =

1

n(T − 1)
∆ε̂(ζ)

′
Σ(α3)−1∆ε̂(ζ), (D.25)

where ∆ε̂(ζ) = eα1W1∆Y −A∆Y−1 −∆Xβ̂M (ζ). Then β̂M (ζ) and σ̂2
ε,M (ζ) are substituted back

into the rest of the AQS function to get the concentrated AQS function:

S∗c(1,0,1)(ζ) =


1

σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1∆Y−1 + tr(D−1B

−1e−α1W1),

− 1
σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1W1e

α1W1∆Y − tr(DB−1W1),

− 1
2σ̂2
ε,M (ζ)

∆û(ζ)
′
(B−1 ⊗ E3)∆û(ζ).

The unconstrained M-estimators ζ̂M can be solved by letting S∗c(1,0,1)(ζ) = 0 and then β̂M = β̂M (ζ̂M )

and σ̂2
ε,M = σ̂2

ε,M (ζ̂M ).

MESDPS(0,1,1). By setting α1 = 0, we have MESDPS(0,1,1). Let A0 = IT−1 ⊗ A0 with

A0 = τ0In + eα20W2 . The first differenced model is given by

∆Y = A0∆Y−1 + ∆Xβ0 + ∆u, eα30W3∆u = ∆ε,

and the conditional quasi loglikelihood is thus given by

`(1,0,1)(θ) = −n(T − 1)

2
log(σ2

ε )−
1

2σ2
ε

∆u(φ)
′
Σ(α3)−1∆u(φ), (D.26)

where θ = (β
′
, σ2

ε , τ, α2, α3)
′
, φ = (β

′
, τ, α2)

′
, Σ(α3) = B ⊗ e−α3W3e−α3W

′
3 , and ∆u(φ) = ∆Y −

A∆Y−1 −∆Xβ. Given ζ = (τ, α2, α3)
′
, the estimators of β and σ2

ε are given by

β̃(ζ) = (∆X
′
Σ(α3)−1∆X)−1∆X

′
Σ(α3)−1(∆Y −A∆Y−1), (D.27)

σ̃2
ε (ζ) =

1

n(T − 1)
∆ũ(ζ)

′
Σ(α3)−1∆ũ(ζ), (D.28)

where ∆ũ(ζ) = ∆Y −A∆Y−1 −∆Xβ̃(ζ). Substituting them back into (D.26), ignoring constants,
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the concentrated log-likelihood function is given by:

lc(0,1,1)(ζ) = − log[∆ũ(ζ)
′
Σ(α3)−1∆ũ(ζ)]. (D.29)

Maximizing (D.29) gives us CQMLE ζ̃ and then the implied CQMLEs β̃ = β̃(ζ̃) and σ̃2
ε = σ̃2

ε (ζ̃).

Correspondingly, the conditional quasi score (CQS) function (2.11) in the paper becomes

S(0,1,1)(θ) =



β : 1
σ2
ε
∆X

′
Σ(α3)−1∆u(φ),

σ2
ε − n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆u(φ)

′
Σ(α3)−1∆u(φ),

τ : 1
σ2
ε
∆u(φ)

′
Σ−1∆Y−1,

α2 : 1
σ2
ε
∆u(φ)

′
Σ−1W2e

α2W2∆Y−1,

α3 : − 1
2σ2
ε
∆u(φ)

′
(B−1 ⊗ E3)∆u(φ).

Now the expectations in Lemma 2.1 become E(∆Y∆ε
′
) = −σ2

ε0D0e
−α30W3 and E(∆Y−1∆ε

′
)

= −σ2
ε0D−1,0e

−α30W3 , where

D−1,0 =



In 0 . . . . . . 0

A0 − 2In In
. . . . . .

...

(A0 − In)2 . . .
. . .

. . .
...

...
...

. . .
. . . 0

(A0)T−4(A0 − In)2 . . . (A0 − In)2 A0 − 2In In


,

D0 =


A0 − 2In In . . . . . . 0

(A0 − In)2 A0 − 2In
. . . . . .

...
...

...
. . .

. . . In

AT−3
0 (A0 − In)2 . . . . . . (A0 − In)2 A0 − 2In

 .

The adjusted quasi score (AQS) in (2.15) in the main paper is then reduced to

S∗(0,1,1)(θ) =



β : 1
σ2
ε
∆X

′
Σ(α3)−1∆u(φ),

σ2
ε : −n(T−1)

2σ2
ε

+ 1
2σ4
ε
∆u(φ)

′
Σ(α3)−1∆u(φ),

τ : 1
σ2
ε
∆u(φ)

′
Σ−1∆Y−1 + tr(D−1B

−1e−α1W1),

α2 : 1
σ2
ε
∆u(φ)

′
Σ−1W2e

α2W2∆Y−1 + tr(D−1B
−1W2e

α2W2),

α3 : − 1
2σ2
ε
∆u(φ)

′
(B−1 ⊗ E3)∆u(φ).
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To derive the M-estimator, the constrained M-estimators of β and σ2
ε are first solved as

β̂M (ζ) = (∆X
′
Σ(α3)−1∆X)−1∆X

′
Σ(α3)−1(∆Y −A∆Y−1), (D.30)

σ̂2
ε,M (ζ) =

1

n(T − 1)
∆û(ζ)

′
Σ(α3)−1∆û(ζ), (D.31)

where ∆û(ζ) = ∆Y −A∆Y−1−∆Xβ̂M (ζ). Then β̂M (ζ) and σ̂2
ε,M (ζ) are substituted back into the

rest of the AQS function to get the concentrated AQS function:

S∗c(0,1,1)(ζ) =


τ : 1

σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1∆Y−1 + tr(D−1B

−1),

α2 : 1
σ̂2
ε,M (ζ)

∆û(ζ)
′
Σ−1W2e

α2W2∆Y−1 + tr(D−1B
−1W2e

α2W2),

α3 : − 1
2σ̂2
ε,M (ζ)

∆û(ζ)
′
(B−1 ⊗ E3)∆û(ζ).

The unconstrained M-estimators ρ̂M , α̂2M and α̂3M can be solved by letting S∗c(0,1,1)(ζ) = 0 and

consequently the unconstrained M-estimators β̂M = β̂M (ζ̂M ) and σ̂2
ε,M = σ̂2

ε,M (ζ̂M ).

E Some more Monte Carlo results
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Table E.1: Empirical mean of CQMLE and M-estimator, MESDPS(1,1,0)

dis par CQMLE M-est CQMLE M-est CQMLE M-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9848 0.9990 0.9862 1.0003 0.9992 1.0000 0.9993 1.0001
1 0.9363 0.9511 0.9679 0.9825 0.9898 0.9907 0.9910 0.9918
1.5 1.4853 1.5002 1.4858 1.5006 1.4999 1.5000 1.4999 1.5000
1.1 1.0986 1.1005 1.0982 1.1000 1.1001 1.1000 1.1001 1.1000
−0.5 −0.4987 −0.5005 −0.4993 −0.5006 −0.5000 −0.5000 −0.5000 −0.5000

2 1 0.9832 0.9980 0.9862 1.0004 1.0001 1.0009 0.9997 1.0004
1 0.9502 0.9654 0.9640 0.9783 0.9843 0.9852 0.9907 0.9915
1.5 1.4854 1.5007 1.4856 1.5003 1.4999 1.5000 1.4999 1.5000
1.1 1.0993 1.1014 1.0987 1.1003 1.1001 1.1000 1.1001 1.1000
−0.5 −0.4986 −0.4998 −0.4984 −0.4998 −0.5000 −0.5000 −0.5000 −0.5000

3 1 0.9871 1.0015 0.9859 0.9998 0.9971 0.9978 1.0006 1.0013
1 0.9452 0.9608 0.9617 0.9762 0.9848 0.9857 0.9890 0.9898
1.5 1.4856 1.5008 1.4861 1.5008 1.4999 1.5000 1.4999 1.5000
1.1 1.0987 1.1006 1.0983 1.1000 1.1001 1.1000 1.1001 1.1000
−0.5 −0.4993 −0.5014 −0.4987 −0.5003 −0.5000 −0.5000 −0.5000 −0.5000

1 1 0.9593 1.0004 0.9583 0.9996 0.9933 0.9992 0.9945 1.0003
1 0.9184 0.9623 0.9400 0.9822 0.9813 0.9879 0.9895 0.9957
0 −0.0544 0.0022 −0.0549 0.0011 −0.0104 −0.0003 −0.0096 0.0000
1.1 1.0513 1.1063 1.0486 1.1032 1.1135 1.1017 1.1120 1.1007
−0.5 −0.4860 −0.5004 −0.4861 −0.4996 −0.5036 −0.5007 −0.5030 −0.5002

2 1 0.9601 1.0014 0.9596 1.0007 0.9932 0.9991 0.9946 1.0005
1 0.9221 0.9662 0.9446 0.9870 0.9801 0.9865 0.9857 0.9918
0 −0.0542 0.0025 −0.0546 0.0013 −0.0098 0.0002 −0.0097 −0.0002
1.1 1.0479 1.1041 1.0484 1.1030 1.1121 1.1002 1.1120 1.1009
−0.5 −0.4909 −0.5039 −0.4860 −0.4994 −0.5031 −0.5003 −0.5029 −0.5001

3 1 0.9610 1.0025 0.9575 0.9984 0.9950 1.0010 0.9932 0.9991
1 0.9165 0.9608 0.9409 0.9838 0.9772 0.9837 0.9828 0.9890
0 −0.0531 0.0035 −0.0542 0.0018 −0.0094 0.0005 −0.0095 0.0001
1.1 1.0470 1.1029 1.0481 1.1029 1.1115 1.0998 1.1119 1.1007
−0.5 −0.4883 −0.5013 −0.4870 −0.5005 −0.5031 −0.5003 −0.5029 −0.5000

1 1 0.9865 0.9977 0.9878 0.9991 0.9981 0.9995 0.9990 1.0005
1 0.9544 0.9661 0.9784 0.9900 0.9860 0.9875 0.9913 0.9928
−1.5 −1.5307 −1.5001 −1.5295 −1.4988 −1.5098 −1.4998 −1.5095 −1.4994
1.1 1.1007 1.1031 1.1013 1.1027 1.0953 1.0986 1.0982 1.1017
−0.5 −0.4636 −0.5023 −0.4662 −0.5038 −0.4863 −0.4982 −0.4879 −0.5002

2 1 0.9892 1.0003 0.9902 1.0013 0.9980 0.9995 0.9978 0.9993
1 0.9568 0.9685 0.9728 0.9840 0.9830 0.9845 0.9923 0.9939
−1.5 −1.5285 −1.4978 −1.5302 −1.5001 −1.5096 −1.4995 −1.5102 −1.5001
1.1 1.1012 1.1027 1.0985 1.1002 1.0958 1.0992 1.0958 1.0991
−0.5 −0.4664 −0.5038 −0.4613 −0.4981 −0.4870 −0.4989 −0.4869 −0.4990

3 1 0.9854 0.9964 0.9896 1.0006 0.9990 1.0006 0.9995 1.0010
1 0.9597 0.9718 0.9694 0.9808 0.9878 0.9894 0.9900 0.9915
−1.5 −1.5313 −1.5007 −1.5301 −1.5000 −1.5089 −1.4987 −1.5093 −1.4993
1.1 1.1006 1.1028 1.0993 1.1010 1.0991 1.1025 1.0962 1.0996
−0.5 −0.4651 −0.5036 −0.4668 −0.5041 −0.4863 −0.4983 −0.4892 −0.5013

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters θ =
(β, σ2

ε , τ, α1, α2)
′
. W1 and W2 are generated by rook and queen contiguity respectively.
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Table E.2: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(1,1,0)

dis par sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 .052 .051 .057 .052 .036 .036 .038 .036 .029 .029 .032 .029 .020 .020 .021 .020
1 .143 .140 .155 .140 .098 .102 .106 .101 .081 .088 .089 .085 .058 .060 .060 .059
1.5 .015 .014 .016 .014 .010 .010 .011 .010 .000 .000 .000 .000 .000 .000 .000 .000
1.1 .014 .014 .015 .014 .010 .010 .010 .010 .000 .000 .000 .000 .000 .000 .000 .000
−0.5 .028 .027 .030 .027 .020 .019 .020 .019 .000 .000 .000 .000 .000 .000 .000 .000

2 1 .054 .051 .057 .052 .037 .036 .038 .036 .030 .029 .032 .029 .021 .020 .021 .020
1 .146 .142 .158 .142 .103 .102 .105 .101 .084 .088 .088 .084 .057 .060 .060 .059
1.5 .015 .014 .016 .015 .010 .010 .010 .010 .000 .000 .000 .000 .000 .000 .000 .000
1.1 .015 .015 .016 .014 .009 .010 .010 .010 .000 .000 .000 .000 .000 .000 .000 .000
−0.5 .028 .027 .030 .027 .019 .019 .020 .019 .000 .000 .000 .000 .000 .000 .000 .000

3 1 .052 .051 .059 .052 .037 .036 .039 .036 .029 .029 .032 .029 .020 .020 .021 .020
1 .205 .187 .126 .141 .140 .138 .081 .100 .123 .127 .063 .084 .085 .089 .041 .058
1.5 .016 .015 .015 .014 .011 .011 .010 .010 .000 .000 .000 .000 .000 .000 .000 .000
1.1 .014 .015 .016 .014 .010 .010 .011 .010 .000 .000 .000 .000 .000 .000 .000 .000
−0.5 .029 .028 .031 .027 .019 .019 .020 .019 .000 .000 .000 .000 .000 .000 .000 .000

1 1 .056 .054 .060 .055 .039 .038 .040 .038 .030 .029 .032 .030 .022 .021 .021 .021
1 .151 .150 .161 .146 .102 .107 .109 .103 .083 .105 .089 .090 .059 .070 .060 .062
0 .036 .030 .034 .031 .024 .021 .022 .021 .009 .013 .010 .011 .007 .008 .006 .007
1.1 .087 .086 .083 .080 .059 .060 .056 .056 .018 .025 .019 .020 .013 .015 .012 .013
−0.5 .066 .064 .063 .060 .043 .045 .042 .042 .007 .007 .006 .006 .004 .005 .004 .004

2 1 .057 .054 .060 .055 .040 .038 .040 .038 .030 .029 .032 .030 .021 .021 .021 .021
1 .150 .149 .163 .146 .106 .107 .109 .104 .083 .104 .089 .090 .058 .069 .060 .062
0 .037 .030 .034 .031 .025 .021 .022 .021 .009 .013 .010 .011 .006 .008 .006 .007
1.1 .089 .086 .083 .080 .060 .061 .056 .056 .018 .025 .019 .020 .012 .015 .012 .013
−0.5 .061 .063 .063 .060 .044 .045 .043 .042 .007 .007 .006 .006 .004 .005 .004 .004

3 1 .058 .054 .062 .055 .040 .038 .041 .038 .031 .029 .032 .029 .021 .021 .022 .021
1 .193 .194 .133 .146 .145 .143 .086 .104 .116 .144 .064 .090 .085 .099 .042 .062
0 .038 .033 .033 .031 .027 .023 .021 .021 .010 .013 .010 .011 .006 .008 .006 .007
1.1 .085 .087 .088 .080 .057 .060 .058 .056 .019 .026 .019 .020 .012 .016 .012 .013
−0.5 .065 .064 .065 .060 .044 .045 .043 .042 .006 .007 .006 .006 .004 .005 .004 .004

1 1 .054 .051 .057 .052 .038 .036 .038 .036 .030 .029 .032 .029 .021 .020 .021 .021
1 .141 .135 .158 .140 .100 .099 .106 .100 .084 .080 .089 .082 .056 .057 .060 .057
−1.5 .037 .034 .040 .035 .026 .024 .027 .025 .019 .018 .021 .019 .013 .013 .014 .013
1.1 .073 .071 .079 .072 .050 .051 .053 .051 .043 .043 .047 .043 .030 .031 .032 .031
−0.5 .079 .077 .084 .077 .056 .055 .057 .055 .041 .040 .044 .041 .028 .029 .030 .029

2 1 .052 .051 .057 .052 .037 .036 .038 .036 .029 .029 .032 .029 .020 .020 .021 .021
1 .141 .136 .157 .140 .103 .098 .105 .100 .080 .080 .089 .081 .057 .057 .060 .058
−1.5 .036 .034 .040 .035 .025 .024 .027 .025 .019 .018 .021 .019 .014 .013 .014 .013
1.1 .073 .071 .079 .072 .052 .050 .053 .051 .043 .043 .047 .043 .031 .030 .032 .031
−0.5 .077 .075 .083 .076 .056 .055 .056 .054 .042 .041 .044 .041 .029 .029 .030 .029

3 1 .054 .051 .060 .052 .037 .036 .039 .036 .029 .029 .033 .029 .021 .020 .021 .020
1 .206 .183 .127 .141 .145 .134 .081 .099 .128 .117 .064 .082 .085 .085 .041 .057
−1.5 .036 .034 .042 .035 .025 .024 .027 .025 .019 .018 .021 .019 .013 .013 .014 .013
1.1 .074 .071 .082 .072 .051 .050 .054 .051 .045 .043 .048 .043 .031 .030 .032 .031
−0.5 .080 .076 .086 .076 .054 .054 .058 .054 .040 .040 .045 .041 .029 .029 .030 .029

Note: Same configuration as Table E.1. Here sd is empirical standard deviation, se is OPMD
estimator, s̃e is standard error based on Ω̂∗−1 and ŝe based on Ψ∗−1(θ̂M ).
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Table E.3: Empirical mean of CQMLE and M-estimator, MESDPS(1,0,1)

dis par CQMLE M-est CQMLE M-est CQMLE M-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9734 0.9996 0.9746 1.0005 0.9956 0.9994 0.9962 1.0000
1 0.9263 0.9510 0.9576 0.9825 0.9871 0.9905 0.9885 0.9918
0.5 0.4604 0.5002 0.4610 0.5006 0.4972 0.4999 0.4973 0.5000
0.5 0.4846 0.5014 0.4835 0.5003 0.5022 0.5002 0.5019 0.5000
−1.1 −1.0778 −1.0916 −1.0861 −1.1000 −1.1049 −1.1039 −1.0990 −1.0986

2 1 0.9734 1.0004 0.9746 1.0005 0.9968 1.0005 0.9965 1.0002
1 0.9386 0.9639 0.9536 0.9781 0.9820 0.9853 0.9881 0.9914
1.5 0.4617 0.5020 0.4613 0.5003 0.4972 0.5000 0.4973 0.5000
0.5 0.4862 0.5030 0.4837 0.5002 0.5024 0.5004 0.5022 0.5002
−1.1 −1.0851 −1.0984 −1.0900 −1.1042 −1.1044 −1.1041 −1.1034 −1.1026

3 1 0.9747 1.0011 0.9748 1.0005 0.9955 0.9992 0.9969 1.0006
1 0.9341 0.9600 0.9503 0.9752 0.9823 0.9856 0.9866 0.9899
1.5 0.4617 0.5019 0.4614 0.5008 0.4973 0.5001 0.4973 0.5000
0.5 0.4855 0.5024 0.4830 0.4997 0.5021 0.5001 0.5021 0.5001
−1.1 −1.0899 −1.1027 −1.0867 −1.1012 −1.1041 −1.1034 −1.0996 −1.0992

1 1 0.9700 1.0000 0.9686 0.9990 0.9903 0.9992 0.9908 0.9996
1 0.9276 0.9591 0.9487 0.9804 0.9793 0.9875 0.9870 0.9951
0 −0.0574 0.0013 −0.0589 0.0002 −0.0140 0.0002 −0.0141 0.0000
0.5 0.4618 0.5040 0.4576 0.5010 0.5013 0.5025 0.4995 0.5007
−1.1 −1.0711 −1.1008 −1.0657 −1.0957 −1.0997 −1.1013 −1.0998 −1.1014

2 1 0.9692 0.9995 0.9703 1.0003 0.9901 0.9991 0.9911 0.9999
1 0.9314 0.9631 0.9538 0.9855 0.9784 0.9865 0.9832 0.9913
0 −0.0578 0.0012 −0.0589 −0.0001 −0.0139 0.0003 −0.0142 −0.0001
0.5 0.4619 0.5044 0.4568 0.4998 0.5001 0.5010 0.4995 0.5007
−1.1 −1.0743 −1.1046 −1.0702 −1.1000 −1.0989 −1.1002 −1.0997 −1.1011

3 1 0.9715 1.0017 0.9681 0.9980 0.9915 1.0003 0.9907 0.9994
1 0.9255 0.9572 0.9493 0.9811 0.9750 0.9832 0.9812 0.9892
0 −0.0569 0.0015 −0.0580 0.0007 −0.0136 0.0004 −0.0135 0.0005
0.5 0.4580 0.5000 0.4580 0.5010 0.4998 0.5009 0.4998 0.5012
−1.1 −1.0660 −1.0945 −1.0688 −1.0987 −1.1034 −1.1047 −1.1014 −1.1029

1 1 0.9769 0.9971 0.9793 0.9997 0.9941 0.9992 0.9956 1.0005
1 0.9374 0.9634 0.9629 0.9898 0.9809 0.9868 0.9866 0.9926
−0.5 −0.5608 −0.5012 −0.5589 −0.4982 −0.5241 −0.5010 −0.5235 −0.5000
0.5 0.4398 0.5050 0.4382 0.5067 0.4915 0.5027 0.4866 0.4998
−1.1 −1.0764 −1.1122 −1.0687 −1.1082 −1.0999 −1.1071 −1.0901 −1.0987

2 1 0.9796 0.9996 0.9802 1.0003 0.9933 0.9984 0.9948 0.9997
1 0.9419 0.9682 0.9569 0.9832 0.9783 0.9842 0.9875 0.9935
−0.5 −0.5580 −0.4983 −0.5611 −0.5012 −0.5243 −0.5011 −0.5245 −0.5010
0.5 0.4455 0.5117 0.4356 0.5035 0.4960 0.5077 0.4856 0.4986
−1.1 −1.0694 −1.1073 −1.0672 −1.1070 −1.0990 −1.1069 −1.0923 −1.1008

3 1 0.9760 0.9963 0.9788 0.9989 0.9956 1.0007 0.9956 1.0004
1 0.9436 0.9707 0.9527 0.9790 0.9836 0.9897 0.9853 0.9913
−0.5 −0.5606 −0.5004 −0.5600 −0.5004 −0.5233 −0.5000 −0.5233 −0.5000
0.5 0.4389 0.5067 0.4389 0.5070 0.4900 0.5016 0.4900 0.5026
−1.1 −1.0599 −1.0995 −1.0665 −1.1079 −1.0978 −1.1050 −1.0938 −1.1020

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters θ =
(β, σ2

ε , τ, α1, α3)
′
. W1 and W3 are generated by rook and queen contiguity respectively.
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Table E.4: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(1,0,1)

dis par sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 .041 .041 .045 .041 .029 .029 .030 .029 .022 .021 .024 .022 .015 .015 .016 .015
1 .144 .135 .156 .139 .099 .099 .107 .101 .081 .083 .089 .083 .058 .058 .060 .058
0.5 .027 .025 .029 .026 .019 .018 .019 .018 .003 .003 .004 .003 .002 .002 .002 .002
0.5 .031 .030 .033 .030 .022 .022 .023 .022 .006 .006 .006 .006 .004 .004 .004 .004
−1.1 .145 .143 .155 .142 .100 .099 .103 .099 .081 .080 .086 .080 .058 .057 .058 .056

2 1 .044 .041 .045 .041 .029 .029 .030 .029 .022 .022 .024 .022 .015 .015 .016 .015
1 .146 .137 .159 .141 .104 .099 .106 .100 .083 .082 .089 .082 .057 .058 .060 .058
1.5 .028 .025 .029 .026 .018 .018 .019 .018 .003 .003 .004 .003 .002 .002 .002 .002
0.5 .032 .031 .034 .031 .022 .022 .022 .022 .006 .006 .006 .006 .004 .004 .004 .004
−1.1 .151 .144 .154 .142 .098 .099 .103 .099 .082 .079 .086 .080 .058 .056 .058 .056

3 1 .043 .041 .046 .041 .030 .029 .031 .029 .022 .021 .024 .022 .015 .015 .016 .015
1 .206 .181 .128 .141 .140 .134 .082 .100 .123 .120 .063 .083 .085 .086 .042 .058
1.5 .030 .027 .029 .026 .020 .019 .018 .018 .004 .003 .004 .003 .002 .002 .002 .002
0.5 .030 .029 .036 .031 .022 .021 .024 .022 .006 .006 .007 .006 .004 .005 .004 .004
−1.1 .150 .142 .163 .143 .101 .097 .107 .099 .081 .079 .088 .080 .056 .056 .060 .056

1 1 .042 .041 .046 .042 .029 .029 .031 .029 .022 .022 .025 .022 .017 .016 .016 .016
1 .148 .138 .158 .141 .100 .099 .107 .101 .083 .082 .089 .083 .059 .058 .060 .058
0 .038 .034 .037 .034 .026 .024 .025 .024 .010 .010 .011 .010 .007 .007 .007 .007
0.5 .059 .057 .061 .056 .041 .040 .041 .040 .025 .025 .025 .024 .018 .018 .017 .017
−1.1 .154 .144 .156 .144 .101 .099 .105 .100 .081 .080 .086 .080 .056 .056 .059 .057

2 1 .042 .041 .046 .042 .030 .029 .030 .029 .022 .022 .024 .022 .016 .016 .016 .016
1 .145 .137 .161 .142 .104 .100 .108 .101 .082 .081 .090 .082 .058 .058 .060 .058
0 .037 .033 .037 .034 .026 .024 .025 .024 .010 .010 .011 .010 .007 .007 .007 .007
0.5 .059 .057 .061 .056 .041 .040 .041 .040 .024 .025 .025 .024 .017 .018 .017 .017
−1.1 .145 .144 .156 .143 .098 .099 .105 .100 .081 .080 .086 .080 .059 .056 .059 .057

3 1 .044 .042 .047 .042 .031 .029 .031 .029 .022 .022 .024 .022 .016 .016 .017 .016
1 .190 .179 .130 .141 .143 .134 .084 .101 .116 .117 .065 .082 .085 .086 .042 .058
0 .038 .035 .037 .034 .027 .025 .024 .024 .010 .010 .011 .010 .007 .007 .007 .007
0.5 .054 .053 .065 .056 .039 .038 .044 .040 .025 .025 .026 .024 .017 .018 .017 .017
−1.1 .148 .142 .164 .143 .103 .098 .108 .100 .082 .079 .089 .080 .057 .056 .060 .057

1 1 .044 .042 .046 .042 .031 .029 .031 .029 .024 .024 .026 .024 .017 .017 .017 .017
1 .144 .137 .159 .141 .102 .100 .108 .102 .084 .081 .089 .082 .056 .057 .060 .058
−0.5 .041 .037 .041 .037 .029 .026 .028 .027 .019 .017 .019 .018 .013 .012 .013 .013
0.5 .121 .116 .123 .115 .084 .082 .083 .081 .068 .069 .071 .068 .048 .049 .049 .048
−1.1 .159 .153 .166 .152 .110 .105 .110 .105 .087 .085 .094 .086 .059 .060 .063 .061

2 1 .044 .042 .046 .042 .029 .029 .031 .029 .025 .024 .026 .024 .016 .017 .017 .017
1 .144 .138 .159 .142 .105 .100 .107 .101 .080 .080 .089 .082 .057 .058 .060 .058
−0.5 .040 .037 .042 .037 .028 .026 .028 .026 .018 .017 .020 .018 .013 .012 .013 .013
0.5 .116 .116 .123 .114 .085 .082 .083 .081 .069 .068 .072 .068 .048 .049 .049 .048
−1.1 .158 .154 .166 .152 .109 .105 .110 .105 .085 .085 .093 .086 .061 .060 .063 .060

3 1 .044 .043 .048 .042 .029 .030 .031 .029 .024 .023 .026 .024 .017 .017 .017 .017
1 .207 .184 .129 .142 .147 .134 .083 .100 .129 .118 .064 .082 .085 .085 .042 .058
−0.5 .042 .039 .041 .037 .030 .027 .027 .026 .019 .017 .020 .018 .013 .012 .013 .013
0.5 .122 .112 .131 .114 .083 .080 .086 .080 .067 .067 .074 .067 .048 .049 .049 .048
−1.1 .152 .152 .174 .152 .106 .103 .115 .105 .085 .084 .097 .086 .062 .059 .064 .060

Note: Same configuration as Table E.3. Here sd is empirical standard deviation, se is OPMD
estimator, s̃e is standard error based on Ω̂∗−1 and ŝe based on Ψ∗−1(θ̂M ).
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Table E.5: Empirical mean of CQMLE and M-estimator, MESDPS(0,1,1)

dis par CQMLE M-est CQMLE M-est CQMLE M-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9771 0.9999 0.9781 1.0006 0.9979 0.9994 0.9985 1.0001
1 0.9304 0.9503 0.9624 0.9826 0.9889 0.9905 0.9903 0.9918
1.5 1.4704 1.5004 1.4708 1.5006 1.4997 1.5000 1.4997 1.5000
0.5 0.5167 0.4997 0.5165 0.4998 0.5002 0.5000 0.5002 0.5000
−1.1 −1.0526 −1.0531 −1.0850 −1.0848 −1.0883 −1.0886 −1.0879 −1.0882

2 1 0.9757 0.9993 0.9772 0.9999 0.9992 1.0008 0.9991 1.0006
1 0.9429 0.9634 0.9571 0.9769 0.9837 0.9852 0.9899 0.9914
1.5 1.4711 1.5017 1.4703 1.4996 1.4997 1.5000 1.4997 1.5000
0.5 0.5160 0.4987 0.5168 0.5003 0.5002 0.5000 0.5002 0.5000
−1.1 −1.0574 −1.0574 −1.0863 −1.0876 −1.0886 −1.0891 −1.0940 −1.0944

3 1 0.9784 1.0016 0.9771 0.9996 0.9971 0.9987 0.9997 1.0012
1 0.9389 0.9598 0.9551 0.9751 0.9845 0.9860 0.9885 0.9900
1.5 1.4708 1.5014 1.4709 1.5004 1.4997 1.5000 1.4997 1.5000
0.5 0.5165 0.4992 0.5166 0.5000 0.5002 0.5000 0.5002 0.5000
−1.1 −1.0582 −1.0582 −1.0868 −1.0874 −1.0873 −1.0876 −1.0906 −1.0909

1 1 0.9515 1.0001 0.9499 0.9995 0.9840 0.9992 0.9846 0.9997
1 0.9152 0.9581 0.9367 0.9802 0.9732 0.9876 0.9807 0.9950
0 −0.0960 0.0011 −0.0972 0.0003 −0.0320 0.0006 −0.0324 −0.0001
0.5 0.5540 0.4989 0.5550 0.4998 0.5192 0.4996 0.5194 0.5001
−1.1 −1.0597 −1.0602 −1.0748 −1.0753 −1.0842 −1.0872 −1.0910 −1.0948

2 1 0.9504 0.9998 0.9508 0.9998 0.9844 0.9996 0.9853 1.0004
1 0.9188 0.9623 0.9411 0.9845 0.9715 0.9858 0.9773 0.9915
0 −0.0963 0.0017 −0.0979 −0.0011 −0.0322 0.0003 −0.0323 0.0000
0.5 0.5541 0.4984 0.5555 0.5007 0.5193 0.4998 0.5193 0.5000
−1.1 −1.0674 −1.0671 −1.0834 −1.0837 −1.0822 −1.0862 −1.0912 −1.0949

3 1 0.9520 1.0010 0.9492 0.9980 0.9853 1.0006 0.9844 0.9994
1 0.9136 0.9571 0.9374 0.9812 0.9682 0.9825 0.9752 0.9896
0 −0.0968 0.0004 −0.0966 0.0004 −0.0321 0.0004 −0.0313 0.0011
0.5 0.5552 0.5003 0.5548 0.4999 0.5192 0.4997 0.5188 0.4993
−1.1 −1.0621 −1.0611 −1.0790 −1.0788 −1.0893 −1.0927 −1.0928 −1.0971

1 1 0.9915 0.9983 0.9930 0.9999 0.9985 0.9994 0.9996 1.0005
1 0.9585 0.9650 0.9821 0.9888 0.9862 0.9872 0.9916 0.9926
−1.5 −1.5282 −1.5000 −1.5264 −1.4979 −1.5097 −1.5005 −1.5090 −1.4996
0.5 0.5108 0.5011 0.5095 0.4994 0.4993 0.4999 0.5000 0.5002
−1.1 −1.0753 −1.0769 −1.0883 −1.0891 −1.0945 −1.0947 −1.0931 −1.0932

2 1 0.9936 1.0003 0.9945 1.0012 0.9988 0.9997 0.9985 0.9993
1 0.9599 0.9665 0.9775 0.9840 0.9830 0.9840 0.9928 0.9938
−1.5 −1.5253 −1.4967 −1.5284 −1.5004 −1.5098 −1.5006 −1.5095 −1.5002
0.5 0.5085 0.4983 0.5100 0.5002 0.4983 0.4987 0.4993 0.4996
−1.1 −1.0554 −1.0563 −1.0884 −1.0889 −1.0886 −1.0889 −1.0988 −1.0990

3 1 0.9894 0.9961 0.9934 1.0001 0.9996 1.0005 0.9999 1.0008
1 0.9624 0.9691 0.9731 0.9797 0.9884 0.9894 0.9904 0.9914
−1.5 −1.5299 −1.5014 −1.5275 −1.4994 −1.5090 −1.4998 −1.5087 −1.4994
0.5 0.5111 0.5009 0.5087 0.4987 0.5007 0.5011 0.4985 0.4988
−1.1 −1.0554 −1.0563 −1.0844 −1.0848 −1.0892 −1.0894 −1.0954 −1.0956

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters θ =
(β, σ2

ε , τ, α2, α3)
′
. W2 and W3 are generated by rook and queen contiguity respectively.
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Table E.6: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(0,1,1)

dis par sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 .047 .047 .052 .047 .033 .033 .035 .033 .026 .025 .028 .026 .018 .018 .019 .018
1 .143 .135 .155 .139 .099 .099 .106 .100 .081 .081 .089 .082 .058 .057 .060 .057
1.5 .022 .021 .024 .021 .016 .015 .016 .015 .000 .000 .001 .000 .000 .000 .000 .000
0.5 .016 .015 .017 .015 .011 .011 .011 .011 .000 .000 .000 .000 .000 .000 .000 .000
−1.1 .205 .197 .214 .196 .138 .138 .144 .138 .113 .109 .118 .110 .078 .078 .081 .078

2 1 .050 .047 .052 .048 .034 .033 .035 .033 .027 .025 .028 .026 .018 .018 .019 .018
1 .144 .137 .159 .141 .103 .098 .106 .100 .083 .080 .089 .081 .057 .057 .060 .057
1.5 .023 .021 .024 .022 .015 .015 .016 .015 .000 .000 .001 .000 .000 .000 .000 .000
0.5 .016 .015 .017 .015 .011 .010 .011 .011 .000 .000 .000 .000 .000 .000 .000 .000
−1.1 .208 .199 .212 .196 .141 .137 .144 .137 .108 .108 .119 .110 .079 .077 .081 .078

3 1 .048 .047 .055 .048 .034 .033 .036 .033 .025 .025 .029 .026 .018 .018 .019 .018
1 .205 .181 .127 .140 .139 .134 .082 .100 .123 .117 .063 .082 .085 .085 .041 .057
1.5 .023 .022 .025 .022 .016 .015 .016 .015 .000 .000 .001 .000 .000 .000 .000 .000
0.5 .015 .014 .018 .015 .011 .010 .012 .011 .000 .000 .000 .000 .000 .000 .000 .000
−1.1 .204 .194 .223 .197 .138 .137 .147 .138 .109 .108 .121 .110 .077 .077 .083 .078

1 1 .052 .050 .056 .051 .037 .036 .038 .036 .027 .026 .029 .027 .020 .019 .019 .019
1 .148 .141 .160 .144 .102 .102 .109 .103 .083 .081 .090 .083 .059 .058 .061 .058
0 .054 .049 .053 .049 .039 .035 .035 .034 .017 .016 .018 .016 .012 .011 .012 .011
0.5 .035 .032 .035 .032 .025 .023 .023 .022 .010 .010 .011 .010 .007 .007 .007 .007
−1.1 .212 .198 .214 .197 .140 .138 .143 .138 .112 .109 .119 .110 .077 .078 .081 .078

2 1 .052 .050 .056 .051 .037 .036 .037 .036 .027 .026 .029 .027 .019 .018 .020 .019
1 .148 .140 .163 .144 .107 .102 .109 .103 .083 .081 .090 .083 .059 .058 .060 .058
0 .055 .049 .054 .049 .037 .035 .036 .034 .017 .016 .018 .016 .012 .011 .012 .011
0.5 .035 .032 .035 .032 .024 .023 .023 .022 .011 .010 .011 .010 .007 .007 .007 .007
−1.1 .204 .196 .214 .196 .141 .139 .143 .138 .111 .110 .118 .110 .077 .077 .081 .078

3 1 .052 .050 .058 .051 .037 .036 .038 .036 .027 .026 .029 .026 .019 .019 .020 .019
1 .191 .182 .133 .143 .144 .136 .086 .103 .116 .116 .066 .082 .085 .085 .043 .058
0 .054 .050 .055 .049 .037 .035 .036 .034 .017 .016 .018 .016 .011 .011 .012 .011
0.5 .032 .031 .038 .032 .022 .022 .025 .022 .010 .009 .011 .010 .007 .007 .007 .007
−1.1 .201 .195 .224 .197 .145 .136 .148 .137 .114 .108 .122 .110 .080 .077 .082 .078

1 1 .047 .044 .050 .045 .033 .032 .034 .032 .027 .025 .028 .026 .018 .018 .019 .018
1 .140 .134 .157 .139 .099 .098 .106 .100 .084 .080 .088 .082 .056 .057 .060 .057
−1.5 .037 .035 .040 .036 .027 .025 .027 .025 .018 .018 .020 .018 .013 .013 .013 .013
0.5 .033 .032 .035 .032 .023 .023 .024 .023 .022 .021 .023 .022 .015 .015 .016 .015
−1.1 .198 .199 .214 .197 .142 .139 .143 .138 .111 .109 .119 .110 .076 .078 .081 .078

2 1 .046 .045 .050 .045 .032 .031 .033 .032 .026 .025 .028 .026 .017 .018 .019 .018
1 .141 .135 .156 .139 .102 .098 .105 .099 .080 .080 .089 .081 .057 .057 .060 .057
−1.5 .038 .035 .041 .036 .025 .024 .027 .025 .018 .018 .020 .018 .013 .013 .013 .013
0.5 .033 .032 .035 .032 .023 .022 .024 .023 .022 .021 .023 .021 .015 .015 .016 .015
−1.1 .202 .197 .213 .196 .140 .138 .144 .138 .111 .109 .119 .110 .078 .078 .081 .078

3 1 .048 .044 .052 .045 .032 .031 .034 .032 .025 .025 .029 .026 .018 .018 .019 .018
1 .204 .182 .125 .139 .145 .133 .080 .099 .128 .117 .064 .082 .085 .085 .041 .057
−1.5 .037 .035 .042 .036 .025 .025 .027 .025 .018 .018 .020 .018 .013 .013 .013 .013
0.5 .034 .032 .036 .032 .023 .023 .024 .023 .022 .021 .024 .021 .015 .015 .016 .015
−1.1 .204 .194 .224 .196 .136 .136 .148 .137 .111 .107 .122 .110 .077 .077 .083 .078

Note: Same configuration as Table E.5. Here sd is empirical standard deviation, se is OPMD
estimator, s̃e is standard error based on Ω̂∗−1 and ŝe based on Ψ∗−1(θ̂M ).
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Table E.7: Empirical mean of CQMLE and M-estimator, MESDPS(1,0,0)

dis par CQMLE M-est CQMLE M-est CQMLE M-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9659 0.9995 0.9676 1.0006 0.9963 1.0001 0.9963 1.0000
1 0.9279 0.9619 0.9549 0.9886 0.9901 0.9941 0.9897 0.9934
0.5 0.4566 0.5009 0.4571 0.5011 0.4966 0.4999 0.4970 0.4999
1.1 1.0785 1.1019 1.0776 1.1006 1.1047 1.1003 1.1039 1.1002

2 1 0.9649 0.9995 0.9677 1.0009 0.9971 1.0009 0.9968 1.0004
1 0.9419 0.9776 0.9505 0.9837 0.9845 0.9885 0.9896 0.9933
0.5 0.4574 0.5029 0.4574 0.5009 0.4966 0.5000 0.4970 0.4999
1.1 1.0795 1.1037 1.0778 1.1005 1.1046 1.1002 1.1040 1.1002

3 1 0.9684 1.0024 0.9674 1.0002 0.9943 0.9980 0.9978 1.0013
1 0.9372 0.9733 0.9480 0.9814 0.9852 0.9892 0.9880 0.9916
0.5 0.4579 0.5032 0.4578 0.5013 0.4967 0.5001 0.4971 0.5000
1.1 1.0789 1.1030 1.0775 1.1002 1.1044 1.1000 1.1037 1.1000

1 1 0.9539 1.0004 0.9528 0.9995 0.9924 0.9992 0.9938 1.0004
1 0.9231 0.9723 0.9389 0.9864 0.9837 0.9910 0.9904 0.9973
0 −0.0710 0.0026 −0.0717 0.0009 −0.0101 0.0000 −0.0099 0.0001
1.1 1.0390 1.1041 1.0371 1.1011 1.1100 1.1022 1.1098 1.1008

2 1 0.9541 1.0012 0.9539 1.0004 0.9922 0.9990 0.9939 1.0006
1 0.9250 0.9749 0.9436 0.9914 0.9828 0.9899 0.9867 0.9935
0 −0.0711 0.0029 −0.0718 0.0008 −0.0099 0.0001 −0.0100 0.0000
1.1 1.0386 1.1041 1.0367 1.1007 1.1093 1.1013 1.1099 1.1010

3 1 0.9548 1.0019 0.9522 0.9985 0.9941 1.0008 0.9926 0.9992
1 0.9198 0.9693 0.9403 0.9885 0.9795 0.9865 0.9840 0.9909
0 −0.0708 0.0028 −0.0708 0.0018 −0.0094 0.0006 −0.0096 0.0004
1.1 1.0359 1.1011 1.0378 1.1019 1.1083 1.1003 1.1091 1.1005

1 1 0.9573 0.9982 0.9598 1.0003 0.9884 0.9996 0.9896 1.0005
1 0.9351 0.9782 0.9547 0.9973 0.9793 0.9905 0.9832 0.9941
−0.5 −0.5783 −0.4976 −0.5772 −0.4964 −0.5341 −0.5003 −0.5336 −0.5001
1.1 0.9868 1.1042 0.9884 1.1061 1.0683 1.1011 1.0666 1.0994

2 1 0.9604 1.0014 0.9611 1.0012 0.9880 0.9995 0.9881 0.9990
1 0.9382 0.9820 0.9481 0.9898 0.9763 0.9875 0.9839 0.9949
−0.5 −0.5775 −0.4958 −0.5797 −0.4997 −0.5346 −0.5009 −0.5347 −0.5012
1.1 0.9892 1.1086 0.9848 1.1016 1.0709 1.1036 1.0660 1.0988

3 1 0.9565 0.9972 0.9605 1.0000 0.9896 1.0009 0.9901 1.0010
1 0.9389 0.9824 0.9427 0.9839 0.9819 0.9933 0.9821 0.9931
−0.5 −0.5785 −0.4983 −0.5787 −0.5000 −0.5332 −0.4996 −0.5333 −0.5000
1.1 0.9869 1.1037 0.9878 1.1024 1.0672 1.0998 1.0692 1.1016

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters θ = (β, σ2
ε , τ, α1)

′
.

W1 is generated by rook contiguity.
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Table E.8: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(1,0,0)

dis par sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 .055 .068 .059 .054 .037 .047 .040 .038 .030 .030 .032 .029 .020 .021 .021 .021
1 .147 .153 .157 .141 .101 .112 .108 .102 .081 .112 .088 .091 .058 .072 .060 .062
0.5 .028 .034 .027 .025 .019 .024 .018 .018 .004 .005 .004 .004 .002 .003 .002 .002
1.1 .026 .027 .026 .024 .018 .019 .018 .017 .006 .008 .006 .006 .004 .004 .004 .004

2 1 .056 .069 .059 .054 .039 .048 .039 .038 .030 .031 .031 .029 .021 .021 .021 .021
1 .150 .156 .160 .143 .105 .111 .107 .101 .084 .111 .088 .090 .057 .072 .060 .062
0.5 .028 .034 .028 .025 .019 .024 .018 .018 .004 .005 .004 .004 .002 .003 .002 .002
1.1 .026 .027 .026 .025 .018 .019 .018 .017 .006 .008 .006 .006 .004 .005 .004 .004

3 1 .054 .069 .060 .054 .039 .048 .040 .038 .029 .030 .032 .029 .021 .021 .021 .021
1 .210 .205 .128 .143 .142 .150 .083 .101 .123 .156 .063 .090 .086 .104 .041 .062
0.5 .031 .036 .027 .025 .020 .026 .018 .018 .004 .006 .004 .004 .002 .003 .002 .002
1.1 .024 .026 .029 .025 .017 .018 .019 .017 .006 .009 .006 .006 .004 .005 .004 .004

1 1 .056 .075 .060 .055 .039 .053 .040 .039 .030 .031 .032 .030 .022 .022 .021 .021
1 .153 .164 .160 .144 .104 .117 .109 .102 .083 .093 .088 .085 .059 .065 .060 .060
0 .042 .051 .038 .035 .028 .036 .026 .025 .009 .010 .009 .009 .006 .007 .006 .006
1.1 .051 .055 .049 .046 .036 .039 .033 .032 .020 .023 .020 .020 .014 .015 .013 .014

2 1 .058 .076 .060 .055 .040 .053 .040 .039 .030 .031 .032 .030 .021 .022 .021 .021
1 .152 .164 .163 .144 .108 .117 .109 .102 .083 .092 .089 .085 .058 .065 .060 .059
0 .043 .052 .038 .035 .029 .036 .026 .025 .008 .010 .009 .009 .006 .007 .006 .006
1.1 .053 .056 .049 .046 .035 .039 .033 .032 .019 .023 .020 .020 .013 .015 .013 .014

3 1 .058 .077 .062 .055 .041 .053 .041 .039 .031 .031 .032 .029 .021 .022 .021 .021
1 .195 .212 .131 .143 .147 .157 .085 .102 .116 .131 .063 .085 .085 .095 .041 .059
0 .043 .056 .038 .035 .030 .039 .025 .025 .009 .011 .009 .009 .006 .008 .006 .006
1.1 .046 .054 .054 .045 .033 .038 .036 .032 .020 .024 .020 .020 .014 .016 .013 .014

1 1 .058 .073 .060 .055 .042 .051 .040 .039 .031 .032 .032 .030 .021 .023 .022 .021
1 .150 .162 .162 .144 .105 .118 .110 .103 .084 .085 .089 .083 .056 .060 .060 .058
−0.5 .049 .059 .045 .042 .034 .042 .031 .029 .021 .021 .021 .019 .014 .015 .014 .013
1.1 .101 .107 .097 .090 .069 .076 .065 .063 .052 .051 .052 .049 .035 .036 .035 .035

2 1 .056 .073 .060 .055 .040 .051 .040 .038 .030 .032 .032 .030 .020 .023 .022 .021
1 .150 .163 .162 .145 .107 .117 .108 .102 .081 .084 .089 .082 .057 .060 .060 .058
−0.5 .048 .059 .046 .042 .033 .042 .031 .029 .021 .021 .021 .019 .014 .015 .014 .013
1.1 .099 .107 .097 .090 .070 .076 .065 .063 .052 .051 .051 .049 .036 .036 .035 .035

3 1 .058 .075 .062 .055 .040 .051 .041 .038 .030 .032 .033 .030 .021 .023 .022 .021
1 .212 .216 .131 .145 .149 .155 .084 .102 .129 .123 .064 .083 .085 .089 .042 .058
−0.5 .051 .064 .045 .042 .035 .045 .029 .029 .021 .022 .021 .019 .014 .016 .014 .013
1.1 .100 .107 .103 .090 .066 .075 .068 .063 .049 .050 .053 .049 .035 .036 .035 .035

Note: Same configuration as Table E.7. Here sd is empirical standard deviation, se is OPMD
estimator, s̃e is standard error based on Ω̂∗−1 and ŝe based on Ψ∗−1(θ̂M ).
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Table E.9: Empirical mean of CQMLE and M-estimator, MESDPS(0,1,0)

dis par CQMLE M-est CQMLE M-est CQMLE M-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9537 0.9987 0.9565 1.0007 0.9934 1.0000 0.9936 1.0001
1 0.9163 0.9607 0.9442 0.9883 0.9873 0.9942 0.9872 0.9937
0.5 0.4245 0.5000 0.4269 0.5011 0.4948 0.5000 0.4951 0.5001
−0.1 −0.0217 −0.1011 −0.0236 −0.1016 −0.0944 −0.1000 −0.0946 −0.1000

2 1 0.9529 0.9988 0.9560 1.0004 0.9947 1.0012 0.9941 1.0004
1 0.9302 0.9756 0.9393 0.9828 0.9825 0.9892 0.9865 0.9930
0.5 0.4263 0.5022 0.4265 0.5002 0.4951 0.5002 0.4950 0.5000
−0.1 −0.0237 −0.1038 −0.0231 −0.1005 −0.0947 −0.1003 −0.0946 −0.1000

3 1 0.9565 1.0023 0.9558 0.9996 0.9916 0.9981 0.9950 1.0014
1 0.9261 0.9731 0.9362 0.9801 0.9828 0.9896 0.9852 0.9917
0.5 0.4267 0.5037 0.4266 0.5005 0.4951 0.5002 0.4951 0.5001
−0.1 −0.0239 −0.1052 −0.0230 −0.1007 −0.0946 −0.1002 −0.0947 −0.1001

1 1 0.9469 0.9994 0.9465 0.9992 0.9837 0.9994 0.9848 1.0002
1 0.9174 0.9700 0.9333 0.9853 0.9754 0.9912 0.9813 0.9968
0 −0.1022 0.0010 −0.1026 0.0001 −0.0283 0.0008 −0.0286 0.0001
−0.1 0.0044 −0.1029 0.0057 −0.1008 −0.0699 −0.1011 −0.0694 −0.1001

2 1 0.9481 1.0009 0.9473 0.9994 0.9835 0.9992 0.9851 1.0004
1 0.9213 0.9743 0.9376 0.9896 0.9740 0.9897 0.9779 0.9931
0 −0.1014 0.0023 −0.1033 −0.0010 −0.0286 0.0005 −0.0285 −0.0001
−0.1 0.0036 −0.1044 0.0064 −0.0995 −0.0694 −0.1007 −0.0695 −0.1000

3 1 0.9490 1.0011 0.9460 0.9977 0.9853 1.0009 0.9842 0.9993
1 0.9148 0.9675 0.9346 0.9870 0.9709 0.9866 0.9761 0.9913
0 −0.1015 0.0009 −0.1013 0.0008 −0.0281 0.0008 −0.0272 0.0009
−0.1 0.0044 −0.1019 0.0044 −0.1016 −0.0699 −0.1009 −0.0708 −0.1011

1 1 0.9523 0.9960 0.9555 0.9994 0.9898 0.9995 0.9908 1.0006
1 0.9298 0.9733 0.9511 0.9952 0.9808 0.9904 0.9846 0.9942
−0.5 −0.6050 −0.5026 −0.6011 −0.4982 −0.5390 −0.5011 −0.5384 −0.5002
−0.1 0.0074 −0.0982 0.0040 −0.1023 −0.0594 −0.0991 −0.0595 −0.0996

2 1 0.9565 1.0002 0.9570 1.0007 0.9895 0.9994 0.9895 0.9992
1 0.9345 0.9780 0.9450 0.9880 0.9781 0.9877 0.9855 0.9951
−0.5 −0.6006 −0.4987 −0.6032 −0.5017 −0.5390 −0.5010 −0.5394 −0.5012
−0.1 0.0027 −0.1028 0.0056 −0.0990 −0.0602 −0.1000 −0.0589 −0.0989

3 1 0.9523 0.9964 0.9570 1.0003 0.9907 1.0006 0.9914 1.0011
1 0.9359 0.9811 0.9411 0.9841 0.9828 0.9926 0.9836 0.9932
−0.5 −0.6035 −0.5005 −0.6008 −0.5000 −0.5389 −0.5007 −0.5374 −0.4996
−0.1 0.0056 −0.1010 0.0030 −0.1012 −0.0589 −0.0989 −0.0611 −0.1008

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters θ = (β, σ2
ε , τ, α2)

′
.

W2 is generated by rook contiguity.
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Table E.10: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(0,1,0)

dis par sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe sd se s̃e ŝe

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 .056 .055 .060 .055 .039 .039 .040 .039 .030 .029 .032 .030 .021 .020 .021 .021
1 .148 .143 .159 .144 .103 .103 .109 .103 .082 .082 .088 .083 .059 .057 .060 .058
0.5 .040 .040 .041 .036 .027 .028 .027 .025 .004 .004 .004 .004 .003 .003 .003 .003
−0.1 .045 .049 .042 .041 .030 .034 .027 .028 .004 .005 .004 .004 .003 .003 .003 .003

2 1 .058 .056 .060 .055 .040 .039 .040 .038 .031 .029 .032 .030 .021 .021 .021 .021
1 .149 .145 .162 .146 .106 .103 .108 .103 .083 .081 .088 .082 .058 .057 .060 .058
0.5 .040 .040 .041 .036 .027 .028 .027 .025 .004 .004 .004 .004 .003 .003 .003 .003
−0.1 .044 .049 .042 .041 .030 .034 .027 .028 .004 .005 .004 .004 .003 .003 .003 .003

3 1 .055 .055 .062 .055 .040 .038 .041 .038 .029 .029 .032 .029 .021 .020 .022 .021
1 .209 .188 .131 .146 .142 .137 .084 .103 .123 .118 .063 .082 .086 .085 .041 .058
0.5 .042 .039 .042 .037 .028 .026 .027 .025 .004 .004 .004 .004 .003 .003 .003 .003
−0.1 .045 .047 .044 .041 .031 .031 .029 .028 .004 .004 .004 .004 .003 .003 .003 .003

1 1 .057 .057 .061 .056 .041 .040 .041 .039 .030 .030 .032 .030 .022 .021 .022 .021
1 .153 .148 .161 .147 .103 .105 .109 .104 .084 .082 .089 .083 .059 .058 .060 .059
0 .052 .052 .052 .046 .037 .036 .035 .032 .015 .014 .015 .013 .010 .010 .010 .009
−0.1 .059 .064 .052 .052 .041 .044 .035 .036 .017 .017 .015 .015 .011 .012 .010 .011

2 1 .057 .057 .061 .056 .041 .040 .041 .039 .031 .030 .032 .030 .022 .021 .022 .021
1 .150 .147 .164 .147 .109 .105 .110 .105 .083 .081 .090 .083 .059 .058 .060 .058
0 .052 .052 .052 .046 .036 .035 .035 .032 .015 .014 .015 .014 .010 .010 .010 .009
−0.1 .058 .064 .053 .052 .040 .043 .035 .036 .017 .018 .015 .015 .011 .012 .010 .011

3 1 .059 .056 .063 .056 .040 .039 .042 .039 .031 .030 .033 .030 .021 .021 .022 .021
1 .195 .188 .133 .146 .146 .138 .087 .104 .117 .117 .065 .083 .086 .085 .042 .058
0 .053 .049 .053 .046 .038 .034 .035 .032 .014 .014 .015 .013 .010 .010 .010 .009
−0.1 .058 .059 .055 .051 .040 .040 .036 .036 .015 .017 .016 .015 .011 .012 .010 .011

1 1 .058 .055 .060 .055 .042 .039 .041 .039 .031 .029 .032 .030 .021 .021 .022 .021
1 .149 .143 .161 .146 .104 .104 .110 .104 .084 .081 .089 .083 .056 .057 .060 .058
−0.5 .055 .052 .057 .050 .040 .037 .038 .035 .024 .022 .026 .023 .016 .015 .017 .016
−0.1 .062 .065 .058 .056 .044 .046 .039 .040 .027 .027 .026 .026 .018 .020 .018 .018

2 1 .057 .055 .060 .055 .039 .039 .040 .038 .030 .029 .032 .030 .020 .021 .021 .021
1 .147 .144 .162 .146 .107 .103 .108 .103 .081 .081 .089 .082 .057 .058 .060 .058
−0.5 .053 .052 .057 .050 .037 .036 .038 .035 .023 .022 .026 .023 .017 .015 .017 .016
−0.1 .060 .065 .058 .056 .042 .045 .039 .039 .027 .028 .027 .026 .019 .020 .018 .018

3 1 .058 .055 .062 .055 .041 .038 .041 .038 .030 .029 .033 .030 .021 .021 .022 .021
1 .212 .191 .132 .147 .149 .137 .085 .103 .129 .118 .064 .083 .085 .086 .042 .058
−0.5 .057 .053 .058 .050 .040 .035 .038 .035 .025 .022 .026 .023 .017 .015 .018 .016
−0.1 .063 .064 .060 .056 .043 .043 .040 .039 .028 .027 .027 .026 .019 .019 .018 .018

Note: Same configuration as Table E.9. Here sd is empirical standard deviation, se is
OPMD estimator, s̃e is standard error based on Ω̂∗−1 and ŝe based on Ψ∗−1(θ̂M ).
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