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Abstract

In this paper, a unified M-estimation method in Yang (2018) is extended to the matrix expo-
nential spatial dynamic panel specification (MESDPS) with fixed effects in short panels. Similar
to the STLE model which includes the spatial lag effect, the space-time effect and the spatial
error effect in Yang (2018)), the quasi-maximum likelihood (QML) estimation for MESDPS also
has the initial condition specification problem. The initial-condition free M-estimator in this
paper solves this problem and is proved to be consistent and asymptotically normal. An outer
product of martingale difference (OPMD) estimator for the variance-covariance (VC) matrix of
the M-estimator is also derived and proved to be consistent. The finite sample property of the
M-estimator is studied through an extensive Monte Carlo study. The method is applied to US
outward FDI data to show its validity.
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1 Introduction

Dynamic panel data (DPD) models are important elements in Economics literature. Spatial
dependence can be incorporated into DPD models to discuss topics in applied economics like regional
markets (Keller and Shiue [2007)), labor economics (Foote 2007)) and technological interdependence
(Ertur and Koch 2007). The resulting spatial dynamic panel data (SDPD) models have gained
much attention. Some papers (Lee and Yu 2010c, 2013; Xu and Lee [2019) provide excellent surveys
on these models.

Depending on the type of dynamic features allowed in the SDPD model, four categories can
be generated (Anselin et al. 2008; Lee and Yu 2010c): “pure space recursive” with only a spatial
time lag, “time-space recursive” with an individual time lag and a spatial time lag, “time-space
simultaneous” with an individual time lag and a contemporaneous spatial lag and “time-space
dynamic” with all forms of lags. Recent studies have also used the terminology, weak and strong
spatial dependence, to refer to the regression models that have spatial lag terms and interactive
fixed effects respectively (Chudik et al. [2011; Kuersteiner and Prucha [2020; Shi and Lee [2017)).
While most of the literature in the SDPD models focus on the long panel setting with a large time
period T' (Anselin [2001; Lee and Yu |2010a; Yu and Lee [2010; Yu et al. 2008), the setup with a large
cross-sectional unit n and a small time period 7', named short panels, has also gained more interest
recently. Some papers discuss the likelihood based estimators for short panels (Elhorst |2010; Su
and Yang 2015; Yang [2018)).

However there is one difficulty with the quasi-maximum likelihood (QML) estimation for the
short panel SDPD model: the “initial condition” problem (Hsiao et al.2002). The first observation
for the first differenced data is endogenous in models with fixed effects, no matter whether the
initial observation is endogenous or exogenous. To solve this problem, the traditional way is to
use the predicted value obtained from the values of regressors (Elhorst 2010; Hsiao et al. [2002; Su
and Yang [2015). But this method has its disadvantages. First process starting time is unknown
and the time-varying regressors need to be trend or first-difference stationary. Second, the method
cannot be applied to the SDPD models with spatial lags (SL) because the initial difference contains
spatial effect in the exogenous part when expanded using backward substitutions. To deal with
this problem, Yang (2018]) proposes an initial-condition free M-estimator for the STLE model that
includes a dynamic effect, a spatial lag (SL), a space-time effect (STL) and a spatial error (SE).
The estimator is derived from a set of estimating equations based on the unbiased adjusted quasi
score (AQS) functions and is consistent and asymptotically normal. He also proposes an outer
product of martingale difference (OPMD) estimator for the variance-covariance (VC) matrix of the
M-estimator and proves that it is consistent.

The matrix exponential spatial specification (MESS) is first proposed by LeSage and Pace
(2007)). They introduce the cross-sectional MESS and show that it has advantages over the tradi-
tional spatial autoregressive (SAR) models: a simpler log-likelihood function without the Jacobian
matrix and an unrestricted parameter space for its spatial coefficients. Debarsy et al. (2015]) derive
the QML estimator and the GMM estimator of the MESS in cross-sectional setting and explore



their large sample properties. Similar to the SPD models, MESS can be extended to the panel data
models (Figueiredo and Da Silva 2015; LeSage and Chih 2018; Zhang et al. 2019)). There has been
a growing interest in recent literature in using MESS to explore various topics such as technological
spillover (LeSage and Pace [2000), housing price (LeSage and Pace [2004), third-country effect on
FDI (Debarsy et al. [2015), cigarette demands (Figueiredo and Da Silva |2015), wage rates (LeSage
and Chih 2018)) and geographical spillover (Zhang et al. 2019).

In this paper, the M-estimation method in Yang (2018) is extended to the matrix exponential
spatial dynamic panel specification (MESDPS) with fixed effect in short panels, which assumes
large n and small T and is typical for most real world datasets. Similar to the STLE model, the
MESDPS also suffers from the “initial condition” problem. As discussed above, the traditional way
of solving this problem, which is to use the predicted value derived from the values of the regressors,
does not provide a satisfactory solution. A consistent way to estimate the coefficients and its VC
matrix is needed. We first derive a set of conditional quasi score (CQS) functions treating the
initial differences as exogenous, even if they are not. Then we modify these score functions to get
the adjusted quasi score (AQS) functions which are unbiased. The M-estimator thus is derived by
setting the AQS functions equaling to zero. To get a consistent estimate for the VC matrix of the M-
estimator, a martingale difference (M.D.) of the AQS functions at the true value is established. The
average of the outer product of M.D. (OPMD) is shown to generate a consistent estimate of the VC
matrix when being substituted into the “sandwich” estimate of it, which is referred to as the OPMD
estimator. In Monte Carlo simulations six types of submodels, MESDPS(1,1,1), MESDPS(1,1,0),
MESDPS(1,0,1), MESDPS(0,1,1), MESDPS(1,0,0) and MESDPS(0,1,0) are estimated, where 1’s
denote the MESS in the dependent variable, the lagged dependent variable and the disturbances
respectively. The results show that the M-estimator has good finite sample properties and is robust
to the way the initial observation is generated, which implies that it solves the “initial condition”
problem. The OPMD estimator of the VC matrix generates asymptotic standard errors that’s much
closer to the true standard deviation than the other candidates, especially when the disturbance
is non-normal, emphasizing its importance in research when the normality of disturbances is in
doubt. MESDPS(1,1,1) is applied to US outward FDI data to examine the validity of the model.
The estimation results for the STLE model that includes the spatial lag, the space-time effect
and the spatial error from Yang (2018) are also reported to emphasize the relation for the spatial
coefficients of these two models.

The contribution of this paper is two-fold. First the unified M-estimation method is extended to
MESDPS. The unified M-estimation is designed for the STLE model in Yang (2018). The MESDPS
and the STLE model are non-nested. So it remains to be explored whether the M-estimation method
designed for the STLE model can be extended to the MESDPS. Second, to our best knowledge, this
is the first paper to consider MESS in a dynamic panel setting. Previous literature (Figueiredo and
Da Silva 2015; LeSage and Chih 2018} Zhang et al. [2019) study the MESS in a panel data model.
As mentioned previously, the “initial condition” problem remains when the spatial effects in the

dynamic panel data model are in forms of the MESS, so consistent estimators for the coefficients



and corresponding standard errors need to be designed, which is accomplished in this paper.

The rest of the paper is organized as follows. Section 2 introduces the M-estimation method.
Section 3 presents the asymptotic distribution of the M-estimator and introduces the OPMD esti-
mator of its VC matrix. Section 4 presents Monte Carlo simulation results. Section 5 applies the
model to US outward FDI. Section 6 concludes. All technical parts and proofs are provided in a

web appendix which is available through the journal webpage.

2 M-estimation of Matrix Exponential Spatial Dynamic

Panel Specification

In this section we first discuss the literature that incorporate the MESS in the panel data setting.
Although these papers discuss the panel data instead of the dynamic panel data, we include them
in the review to underline the importance of our study, i.e., MESDPS has not been explored in the
previous literature. The M-estimator and the OPMD estimator thus provide researchers who want
to work with the MESDPS a reliable method to estimate the parameters and conduct inference.
In the second subsection we present the M-estimation in MESDPS(1,1,1) in short panel. Short
panel assumes large n and small T', which is typical for most real world datasets. M-estimation
first formulates a set of conditional quasi score (CQS) functions assuming that the initial difference
is exogenous, and then modifies it to get a set of adjusted quasi score (AQS) functions which result

in consistent parameter estimates.

2.1 Matrix Exponential Spatial Dynamic Panel Specification

The matrix exponential spatial dynamic panel specification with fixed effects is given by
Wiy =y + €222y X B4+ Zy+ pA MNln+ug, €W =, t=1,2,...,T, (2.1)

where y; is an n X 1 vector of observations on the dependent variable; W,. for » = 1,2, 3 are three
n X n spatial weight matrices, with corresponding spatial coefficients «,- capturing the MESS in the
dependent variable, the lagged dependent variable and the disturbances respectively; 31 is the
lagged vector of y; with coefficient 7 capturing the dynamic effect; X; is an n x k matrix of time-
varying exogenous variables with corresponding coeflicient vector 8; Z is an n X p matrix of time-
invariant exogenous variables, which might include the intercept, with corresponding coefficient
vector ﬂ wis an n x 1 vector of unobserved individual fixed effects; )¢ is the time fixed effects; [, is
an n x 1 vector of 1; and € is a vector of disturbances independent and identically distributed across
Oci]?/!Vr]
r = 1,2 and 3 and is always invertible with inverse e=*""r (Chiu et al. 1996)). The reduced form of
the model is given by y; = e Wi (7L, +e2W2)y, | + e WH( X, B4+ Zy+ p+ Mlp +e~3W3¢,). The

i and ¢ with mean zero and variance o2. The matrix exponential e®""r is defined as Z?io for

! As kindly pointed out by a referee, since the estimation approach is based on the first difference of the model,
we cannot estimate the parameters of time-invariant variables.



model is stationary if all eigenvalues of e=*tW1(7 [, + e%2W2) lie inside the unit circle. (Proposition
10.1, Hamilton (1994).

The specification in is comprehensive. It incorporates different submodels by setting the
spatial coefficients o, = 0 for r = 1,2 or 3. By setting as = 0, we have MESDPS(1,0,1) with MESS

in the dependent variable and the disturbances:
eWiy, — (T+ Dyr—1+ XiB+ Zy + p+ Ml + wy, Wiy, —¢, t=1,2,...,T. (2.2)

Without (74 1)yt—1, Z7 and merging A\, into X;3, Zhang et al. (2019) study the QML estimation
of in panel data setting. They allow large n and small or large T" and establish the consistency
and asymptotic normality under unknown heteroskedasticity when the spatial weight matrices in
MESS for y; and u; are commutable, i.e., W1 W3 = Wngﬂ

By setting ag = 0 and ag = 0, we get MESDPS(1,0,0):

€a1W1yt: (T—I_l)yt*l+Xt/8+Z’7+,u+)\tln+€t7 t:1727"'7T' (23)

Figueiredo and Da Silva (2015) discuss without (7 + 1)y;—1 and Z~. They use the deviation
from mean operator to get rid of the individual and time fixed effects and present the ML estima-
tion of the transformed model. This approach, however, results in linearly dependent disturbance
terms after transformation. Instead, we can pre- and post-multiply the model by the orthonormal
eigenvector matrix of the individual and time mean deviation operators respectively (Lee and Yu
2010b)).

The literature above incorporate MESS into a panel data model. To the best of our knowledge,
MESS in a dynamic panel setting has not been studied in the previous literature. The M-estimation
proposed in this paper provides consistent and asymptotically normal estimates. The OPMD
estimator for the VC matrix is also consistent and provides good finite sample properties. The

method is useful for those who want to utilize the MESDPS in empirical research.

2.2 The M-estimation of MESDPS

Different from the geometrical decay in the STLE model, has an exponential decay. It also
has a simpler quasi log-likelihood function without the Jacobian of the transformation. However,
they suffer from the “initial condition” problem discussed below.

Denote the true value of the parameter vector by 6y = (B),02%,0,q)), where ap =
(a10, (a0, a30)’. Let Asg = oI, + e®20W2, Taking first difference for , we get:

ealeAyt = AgoAyt_l + AXtﬁ() + Aut, 60‘30W3Aut = Aft, t = 2, 3, ce ,T. (24)

where AN, is merged into AX;5p. Here we abuse the notation and let AX;(y in (2.4]) denote

2In this paper the commutability is not required since it is a dynamic panel data setting instead of panel data
setting.



the merged variable of first differenced AX;5y and AN, from . Note is not defined
for t = 1 because Ay; depends on Ayy and the latter is unobserved. So even if yy and Ay is
exogenous, the likelihood function which conditions on Ayg cannot be formulated. Also y; and
thus Ay; are not exogenous. This “initial condition” problem prevents us from deriving consistent
estimates for the MESDPS. The traditional way is to use the predicted values based on the observed
values of regressors (Elhorst [2010; Hsiao et al. [2002; Su and Yang 2015)). However, it requires that
the time-varying regressors be trend or first-difference stationary. Besides, for the MESDPS with
MESS in the dependent variable, for example MESDPS(1,0,0), the first differenced equation is
given by e®1oW1 Ay, = (194+1)Ays_1 + AX By + Ae;. By backward substitution, we get Ay = (10 +
D™ (e 0WmAy 3 0+ 1) (e 0V AKX Bo+ 3 (1) (e 0 W Ay,
where —m is the process starting time. Note the exogenous part contains the MESS e~®10W1_ The
linear structure no longer exists due to the existence of the MESS and the linear projection method
fails. Thus we need a unified way to estimate the model.

To express the model in vector form, we define the following: AY = (Ay;, el Ay:f)/, AY | =
(Ayy, .. Ayp ) AX = (AX,, ..., AXL) Au = (Auy, ..., Aug), Ae = (Aey, ..., Aeg)', Agg =
It_1 @ Asg, W, = Ip_1 @ W, and e*°oWr = [ | @ e®oWr for r = 1,2 and 3. Stacking the

observations vertically, the model can be expressed as:
e®1oW1y — Ao AY | + AX By + Au, e3°WsAy = Ae. (2.5)

So Var(Au) = Var(e=*30Ws A¢) = 02 (B @ e~ ®0Wse=20Ws) = 52 51(a30), where

2 -1 0 0 0 0
-1 2 -1 0 0 0

B=1: 0
o 0 0 - -1 2 -1
o 0 0 -+ 0 -1 2

Under normally distributed €;, the joint distribution of Awu; can be used to derive the log-

likelihood function of parameters 6:

(8) =~ Diog(ams?) — Liog|(aas)| + logle™ V1| — 5 Au(g) S(ay) " du(g),  (26)

with 6 = (6l, o2, T, o) and ¢ = (8,7, n1, 042)/ where ¢ are the parameters in Au(¢) = e*1W1AY —
AyAY_ | — AXB. Note log|S(as)| = nlog|B| + 2(T — 1)log(e~3(Ws)) = nlog|B| which is a
constant and log(|e®*W1|) = (T — 1)log(e***"(W1)) = 0 because the spatial weight matrices have
zero diagonals. So we can ignore the constants and simplify the log-likelihood function to:

n(T —1)

£0) = —Tlog(af) -

1
202

Au(¢) S(az) " Au(g). (2.7)



Given ¢ = (1,0) with a = (a1, as, a3)’, we can derive the estimators of 8 and o2 as following:

B(¢) = (AX'S(a3) 'AX) TTAX S(as) (e WIAY — ApAY. ), (2.8)
70 = gy ) () A0, (29)

where Au(¢) = e®*WIAY — AyAY_; — AXB(¢). Substituting them back into ([2.7), ignoring
constants, we get the concentrated log-likelihood function:

(¢ = - Miog(ai(¢) S(a) 2] (2.10)
The conditional QML (CQML) estimators ¢ = (7,& )" are then derived by maximizing (2.10). The
CQML estimators 3 = B(E) and 62 = 662(5 ) are subsequently derived by substituting ¢ into (2.8)
and .

The comprehensive model in Yang (2018) that includes the spatial lag (SL), the space-time
lag (STL) and the spatial error (SE) is denoted as the STLE model. Consider the STLE model
given by yr = pyr—1 + MWiyr + eWayr—1 + Xi8 + Zv + po + aely + ut, up = AgWsug + €. The
log-likelihood function and the concentrated log-likelihood function are simpler without
the Jacobian log|B1(A1)| where Bi(A1) = I7—1 ® B1(A1) and By(A1) = I, — MiWi. It makes the
MESDPS computationally easier, especially for large sample sizes. A correspondence of relation
for the parameters also exists for the MESDPS and the STLE model. Consider , assume
the spatial weight matrix is row-normalized and a shock Oz is applied to all spatial units on
the kth independent variable X, so that the new variable becomes X;; + [,0xy. Then the
contemporaneous total impact for the MESDPS is given by 0y; = e~*'"W11,,024, 0, so the average
contemporaneous total impact is %l%@yt = e~ M0, fk. Similarly for the STLE model, the average
contemporaneous total impact is given by ﬁaxtkﬁk. Equating them gives us the relation A\; =
1 —e*. For y—1, a shock i1 leads to the average total impact e~ (7 4+ €*2)0v_; for the
MESDPS and ffif Ovy_1 for the STLE model. So 7+ e* = p 4+ Xo. Setting as = 0 and Ay = 0
gives us p = 7 + 1, which implies Ao = e“2 — 1. On contrary to the negative relation between

and A1, the relation between ag and Ao is positive. When —1 < Ay < 0, a9 also takes negative
values and vice versa.
The CQML estimator 6 = (B/, 52,7, d/)/ derived above encounters a bias when T is small as

shown below. We simplify the notation by denoting ¥ = ¥(as) and ¥y = X(asp). Using the
simplified log-likelihood function in (2.7)), the conditional quasi score (CQS) function S(6) = 827(50)



is derived as

B U%AX'E_lAu(qb),
o2 MU 4 L Au(g) B Au(e),
so -1 (}EAlu(Cb)E_,lAj/h y 1)
Qg : —U—SAu(qb)Z Wie*tWiAY,
s : UigAu(gﬁ)/z—lwgeaszAy_l,
(@31 —gAu(9) (B~ @ Es)Au(9),

where F3 = e®Ws (W3 +W;)e®3Ws. We will show that the 7, a; and oy elements of the CQS function
(2.11]) are biased, meaning their expected values are nonzeros at the true parameter values, leading

to the inconsistency of the CQML estimator. First let’s make Assumption [1| below.

Assumption 1. For model (2.1)), (i) the processes started m periods before the start of data collec-
tion, the Oth period, (ii) if m > 1, Ayp is independent of future disturbances {e;,t > 1}; if m =0,
yo 1s independent of future disturbances {e;, t > 1}.

Assumption [I)is the same as the Assumption A in Yang (2018). Compared with the assumptions
in previous literature (Elhorst 2010; Hsiao et al. 2002; Su and Yang 2015), Assumption 1 requires
minimum information about the past processes. It does not require the time-varying regressors
to be trend or first-difference stationary. This is one of the advantages of M-estimation, i.e.,
some restrictive assumptions on the initial values and initial differences are removed. Denote

Asip = Agpe~10W1 The following lemma is necessary to compute the bias of the CQS function.

Lemma 2.1. Under Assumption 1, E(AY A€') = —o2e~®10W1Dge~30Ws gnd B(AY_1A€)

I, 0
A2 — 21, I,
= _Ugoe—a10W1D_1’Oe—a30W37 where D—LO = <A21,0 _ In)2
Agf(;l(Am,o —1,)?% ... (Ano—1I1,)? Axpo-—2I,
AQLO - 21, I, .. .. 0
Agi o —I,)? Agi o — 21,
and Dy — ( 21,0' n) 21,0' n
: : . . I,
A3 (Agr o — In)? . oo (Agro —1)? Agip — 21

Qro W'r

Here we used the fact that ¢;; is i.i.d. across ¢ and ¢, and that e is always invertible for




r =1 and 3. Using Lemma [2.I] we have

E(AuSIAY 1) = —o2tr(D_; gB le™@10W1), (2.12)
E(Au S5 'We®0WiAY) = — 62 tr(DeB™'W)), (2.13)
E(AU,IEEIWQGC’QOWzAY_I) = —Uzotl‘(D_LoB_lWQl,()), (214)

where Wiy o = Woe20W2e—10W1 and B = B®1,,. These equations imply that E(%@), E(%@)
and E(%@) are nonzero, making 7, a; and ag elements of the CQS function biased. The
set of CQS functions are estimating functions for the CQML estimator. The consistency of an
M-estimator requires that the estimating functions need to have a probability limit of zero at the
true parameter values, i.e., plim,_ . =S(f) = 0 (Vaart 2000). However Lemma implies that

it does not hold for the CQML estimator. Typically E(ag(f)), E(%ZT(?)) and E(aaé—@

o, ) are of order n,
which implies E[v/nT(8 — 6y)] = O( 7). The bias thus does not vanish in short panels when T
is fixed. The bias vanishes when 7 — 0, which refers to a long panel and is not of interest in our
study. So the CQML estimation fails to produce consistent estimates.

To have a set of unbiased estimating functions, we modify the CQS functions in to get
the adjusted quasi score (AQS) functions:

B:  HAX'S T Au(e),

ot =M+ g Au(e) S Au(@),
s 17 rAu(¢) STTAYy + tr(Do B lem W), (2.15)
ar: — 5 Au(¢) STIWietWIAY — tr(DBT'W)), |

az:  HAu(P) TTIWoe®2W2AY ) + tr(D_1B~1Wy),
as —ﬁAu((;S)'(B_l ® E3)Au(e).

\

The M-estimator derived from the AQS functions is consistent and asymptotically normal, which
will be shown in the next section. It is interesting to compare the AQS functions with those for
the STLE model in Yang (2018)). First the bias term tr(D_;B~'e™®1W1) in the 7 element has
similar format with that for the p elementlﬂ in the STLE model (with SAR process being replaced
by MESS). This means that while the inherent spatial processes are different, the format of the bias
that comes from the dynamic effect is not affected by the nature of the spatial structure. Second
thing to note is that, similar to the STLE model, the adjustments in the AQS functions are free
from MESS in the disturbance term, i.e., e®*"3 does not appear in the trace terms. This implies
that the AQS adjustments will not change if MESS in the disturbance term changes to other forms
of spatial relationship, e.g., higher order MESS, autoregressive, moving average, etc. Third the
adjustments modify the estimation of 7, &1 and as so that they become nonlinear.

To derive the M-estimator, we first solve for the constrained M-estimators of 8 and o2, given

3Note the differences in the definition of matrix D and D_; with those in Yang (2018).



1\’

(= (r,a), as
By () = (AX'STIAX) TAX S (e WIAY — AyAY ), (2.16)

1 /
~2 _ ~ 1A~
where AT(¢) = e®WIAY — ApAY ;| — AXEM(C). Then BM(C) and EE’M(C) are substituted back
into the other four elements of the AQS function S*(6) to get the concentrated AQS function:

(. LS AU STIAY 4 (D BTlem W),
O, M

i —5m Q) 2 'WieW1AY — tr(DB~'W)),
az: oo )Au(C) Y IWoe2W2AY ;| + tr(D_1 B 1Wy),

Au(¢) (B~ @ E3)Au(().

\ as: B 23? M( )
The unconstrained M-estimator ZM = (Far, Q) can be solved by letting $*¢(¢) = 0. The uncon-
strained M-estimators 3,; and 82, s are then derived by substituting Cyy into B m(Q) and o2 M(C ).
Note the CQML estimator (CQMLE) and the M-estimator use the same set of estimators of 3

and o2 to derive unconstrained ones, i.c., 3(¢) = B,(¢) and 62(¢) = 8?7M(C), which are from

, , and respectively. The advantage of M-estimation comes from the AQS
function . It adjusts the estimation functions so that they become unbiased. For the CQML
estimation, the estimators 3(¢) and 62(6 ) are biased because of the spillover from the bias of the
estimator C when being substituted into and ( .

3 Asymptotic Properties of the M-estimator

In this section we explore the asymptotic properties of the M-estimator. We first prove it is
consistent and then derive its asymptotic distribution. To facilitate valid inference, an OPMD
estimator of the VC matrix is also proposed. Valid inference can thus be based on the standard
errors implied by the OPMD estimator of the VC matrix.

3.1 Consistency of the M-estimator

To prove the consistency and to later derive the asymptotic distribution of the M-estimator, we
first make some regularity assumptions. Let C,, be an n x n matrix. Then C,, tr(C,), |Cul, [|Cyll,
Ymin(Cr) and ymax(Cy) denote the transpose, trace, determinant, Euclidean norm, the smallest and

largest eigenvalues of C,, respectively.

Assumption 2. Matrices {W1}, {Wa} and {W3} are bounded in both row and column sum norms.

The diagonal elements of W1, Wo and W3 are zeroes.
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Assumption 3. The time-varying regressors {X;, t = 1,...,T} are exogenous with uniformly

bounded elements and have full column rank. Also lim, s ﬁAX "AX exists and is nonsingular.

Assumption 4. There exists a constant § > 0 such that || < 0 for r =1,2 and 3, and the true
o is in the interior of the parameter space Z. Also there exist a lower bound c, and an upper
bound ¢, such that(0 < c, <infq cz, Yrmin (e¥Wr eorWr)

forr=1,2 and 3.

!
< Supy,.ez, Ymax (€ VrerWr) <2, < oo

Assumption 5. The {e;} are i.i.d. with mean zero and variance o2, and E|ey|*t exists for some
a>0.

Assumption 6. For an n x n matriz C,, uniformly bounded in row and column sums with el-

~1/2
ements of uniform order g,', and an n x 1 wvector ¢, with elements of uniform order g / ,

(i) @Ay Calyr = Op(1) and %Ay Crles = Op(1); (i) % [Ayr — E(Ay1)] en = 0p(1); (i)
2 [Ay; Colyr — E(Ay; Coldyr)] = 0p(1); (iv) % [Ay1CpAes — E(Ay; Conler)] = 0p(1).

Assumptions are standard in the literature (see, e.g., Lee (2004), Debarsy et al. (2015))).
Assumption |§| is the same as Assumption F in Yang (2018]). It imposes some mild conditions on
the initial difference Ay; which will be used in the later proofs.

First note that the consistency of Oy = (E,M,A? M,?M, a’yy) follows from the consistency of

ZM = (?M,&/M), since BM BM(CM) and o O'E M= O'EM(CM) To prove the consistency of ZM, we
first define the population counterpart of the AQS function as:

LE[AX'S 7 Au(g)],
o2 =250 4+ SLEAu(e) T Au(g)),
5*(6) — E[5*(9)] = T JgEl[Au(@ b) IIAY—l] +tr(D_;B~le=@1W1), 3.1)
ar: —zE[Au(g) E 'WieWIAY] — tr(DB~'Wy),
a2 E[Au(gb) Y IWoe®2W2AY (] + tr(D_1B7'Wyy),
a3:  —5E[Au(¢) (B~ @ E)Au(e)].

Similar to the process of deriving the M-estimator, we can first solve for 5,,(¢) and 627 w(€) as:

Bu(Q) = (AX'SIAX) TAX S e WIE(AY) — ALE(AY_ )], (3.2)
7201(0) = oy FIAR(O 2 Au(C)] (3.3)

where A%(¢) = e*W1AY — AyAY_ | —AX3,,(¢). By substituting them into the last four elements
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of §*(0), we get the population counterpart of the concentrated AQS function (2.18)) as

(

T =t E[AT(C) STTAY ] + tr(D_ B et W),
52 1,(©)
B o : —=t—E[Au(¢) 2'W,eW1AY] — tr(DB~'W)),
5*(¢) = o m(©) , (3.4)
s ﬁE[Aa(C) YIWoe®2W2AY_ 4] + tr(D_1B71'Wy,),
e,M
Gk —WIM(OE[M(C)'(B‘1 ® E3)Au(()].

Note (p is a zero of S**(¢). According to Theorem 5.9 of Vaart (2000), ifZM is a zero of $*¢(¢) and (o
is a zero of S*¢((), then (s i a consistent estimator of (g if SUPgezﬁ |57¢(¢) = S*(¢) || 250

and the following assumption holds.

Assumption 7. infe.qic )50 HS‘*C(C)H > 0 for every v > 0, where d((, () is a measure of distance
between ¢ and (.

Before we show supgezﬁ HS*C(C) - S’*C(C)H 2 0, let’s first define some convenient ex-
pressions. Let Au*(¢) = S 2Aa(¢), e Wi = N2eW1 A3 = ¥ 2A,, AYT = AY — E(AY),
AY! =AY, —E(AY.)), P = S 2 AX(AX'S'AX)'AX'S 72 and M = Ip_q) — P. Then we

have
ATH(() = P(eWiAYT — AJAYT ) + M(e®WiAY — A3AY. ). (3.5)

The expression will be useful in deriving 62’ 1(€) in (3.3)) in the proof for Theorem H below.

Theorem 3.1. Suppose Assumptions hold and further the following condition 0 < cay <
infeez Ymin[Var(e®tW1AY — AyAY )] < SUPcez Ymax | Var(e®tWiAY — Ay AY )] < éay < oo,
we have EM SN 0y as n — oo.

3.2 Asymptotic Distribution of the M-estimator

To derive the asymptotic distribution of EM, we apply the mean value theorem (MVT) to

X (A _ —7. a1 95 (@)\-1_ 1 «
S*(Opr) = 0 at the true 6y to get \/n(T — 1)(0r —6p) = (n(T—1)7 50 ) ms (fg) for some
6 between y and §M elementwise. Then we show that ﬁa%@ carries appropriate asymptotic
1
n(T-1)
might not be exogenous and is unspecified, so the regular law of large numbers (LLN) and central

properties and that S*(0y) is asymptotically normal. One thing to note here is that Ay,
limit theorem (CLT) for linear-quadratic forms from Kelejian and Prucha (2001)) is not sufficient.
Instead we use the extended LLN and CLT for bilinear-quadratic forms from Yang (2018) and Su
and Yang (2015), which are listed in Lemmas A.3 and A.4 in the web appendix. The following
lemma that expresses AY and AY_; in a convenient format will be crucial in deriving the asymptotic
distribution and later a consistent estimate of the VC matrix. Let blkdiag(C1, ..., Cy) be the block

diagonal matrix with diagonal n x n matrices C1, ..., C,. Denote A3 = e~ 101 4,0
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Lemma 3.1. Under Assumptions[1], [3 and [3,

AY = GAy; + 0 + KAe, (3.6)
AY_| = G_lAyl +0_1+ K_1Ae, (37)
where A?h = IT_1 &® Ayl, G = blkdiag[Alg,g, <A12’0)2, ceuy (A1270)T71]; G_l =
blkdlag[In, A1270, ceey (Alg,g)T_Q} , o = Je_alowl AX,B(), 6,1 = J,le_o‘lowl AXﬂo,

K = Je—alowle—QSOWS’ K_= J_le—oélowle—asows’

I 0 0 0 0 0
A2 : I,
J=1 AL, o L and J-1 =1 Ay
: . 0 : . . .
AlGS oAby Apg In AlsS 0 Ao I, 0

By substituting (3.6) and (3.7) into 7, a1 and as elements and substituting Au = e~ 30 W3 A
into the 3,02 and a3 elements of the AQS function (2.15)) at the true value 6y, we get

B: R)Ae
o2 n(QTzl)—f—Ae O1Ae,
. A€ Fi Ay, 4+ RyAc + A€ OsAc + tr(D_1 gB~le=®10W1),
S*(6y) = T € F1Ay; + RyAe + Ae O2Ae +tr(D_q e ) (3.8)

oq —AengAyl — R;}Ae — A€ O3Ae — tr(DgB~'Wy),
Qa9 . AéngAyl -+ RZLAE + A€,O4A€ -+ tI‘(D,L()B_1W2170),

Qs : Ae/Og,Ae,
where Rl 10 (B 1®ea30W3)AX Ry = O(B—1®€a30W3)5_1’ Rs = 0120 (B—1®ea30W3)Wlea1W15’
R4 = o (Bl @ et )Wyea2Wag 3 Or= g (BT @ 1), Op = (BT @ e K 4, O3 =
(B 1 &® 6a30W3)Wlea1W1K Oy = (B 1 ® €a30W3)W26a2W2K 1, O5 = ?[Bfl ® (W3 +
Wg)], F = UO(B 1 ® ea30W3)G71’ F2 — UO(B 1 ® ea30W3)W1ea1W1G and I3 = 0120 (B—l ®

60‘30W3)W2e°‘2W2G,1.
Using S*(6p) in (3.8]), we can derive the expected score and the variance of the AQS function
at the true value to get the the asymptotic distribution of the M-estimator.

Theorem 3.2. Suppose assumptions of Theorem [3.1] hold, we have, as n — oo,

(T —1)(Oar — o) —L N[0, limpsoo 51 (60)2 (60) ¥V (60)] (3.9)
* _ 1 95* (o) * _ 1 * ;
where U*(0y) = ST E | T and *(6y) = ar—) var [S*(6p)] are assumed to exist and

U*(0y) is assumed to be positive definite for sufficiently large n.
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3.3 The OPMD Estimator of VC Matrix

In this section we derive a feasible estimator for the VC matrix U*~1(60)2* (6)U*~ Y (). Denote
the Hessian matrix by H*(6) = 8559@
substituting the consistent M-estimates in, i.c., U*(6) = —ﬁﬂ' *(Aar). The detailed expression
of \I/*(EM) and the proof for the consistency of it are provided in the proof of Theorem in the
web appendix.

For Q*(6p), however, this method does not work. This is because from we know that

7, aq and ay elements of S*(6p) contain the initial difference Ay;, which is unspecified. So we

. Then a consistent estimate of ¥*(fy) is easily derived by

need to design a method that is free from the initial condition. Following Yang (2018), we propose
an outer product of martingale difference (OPMD) method to consistently estimate *(6p). The
OPMD method first transforms S*(6p) in into a sum of vector martingale difference sequence
(MDS). Specifically, we will write R, Ae, Ae O,Ae — E(A€ O,A¢) and A€ F,Ay, — E(Ae F,Ay,)
for suitable r as sums of MDS. The transformation enables us to write 2*(6y), which is the variance
of the outer product of the sum of elements of a vector MDS, as the expected outer product of the
elements of MDS because MDS has mean zero and the terms in the sum are independent (See
below). Then the averaged sum of the outer product of elements of the estimated vector MDS can
be computed to be a consistent estimate of Q*(6y).

For a square matrix A = A" + A' + A4, let A%, Al and A? be the upper-triangular, lower-
triangular and diagonal matrix of A respectively. In the following we suppress the subscripts in
R,., O, and F, for suitable r to simplify notations. Let R; be the n x k submatrix or n x 1
subvector of R, where R could be a n(T" — 1) x K matrix (R;) or n(T — 1) x 1 vector (Rg, R3
and Ry). Let O and Fis be the n x n submatrix of n(T — 1) x n(T — 1) matrix O and F
respectively. Note Ry, O and Fys are partitioned by t,s = 2,...,T. Define Ft+ = ZZ:Q Fis,
for t = 2,...,T, BT = FemaoWieasoWs - Ay = easWsearoWi Ay A¢ = (F T + F;H)Ayf,
An, = ZZZQ(O?;; + 0L Aey, Aes =S, O Ae, and Ayt, = F;F Ayy. Let di; be the itth diagonal
element of BO, where B = B® I, is defined after in section [2.2] Let {IL,;} be the increasing
sequence of o-fields generated by {€;1,...,¢j7,5 = 1,...,i},i =1,...,n,n > 1. Let ®, be the
o-field generated by {ep, Ayo}. Define ®,; = @, o ® II,,; as the o-field on the Cartesian product
generated by subset of the form ¢, o X m,;, where ¢, 0 € ®,0 and 7,; € II,,;. We show in the

following lemma that S*(6y) can be written as sums of vector MDS.

Lemma 3.2. Suppose the assumptions of Lemma hold, define ay; = 23:2 R;tAeit, ag; =
Z?:Q(AeitAnit + AeitAﬁft — U?odit) and ag; = Aeg; A& + F;{;(AegiAyi}i + 0'620) + 23;3 AeitAyTit.
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Then

R Ae = Z avi, (3.10)
A€ OAe — E(Ac OAe) Zam, (3.11)
Ae FAy, — E(A€ FAy,) = Z asi, (3.12)

and {(a/h-,a%,agi)/, ®,,i 1" forms a vector MDS.

Now using Lemma H for each R,, define ay,; = Zt 9 RmtAeit for r = 1,2,3 and 4; for each
O,., define ag,; = Zt o (A€ Anriy + A€jr A€, — EOdmg) for r = 1,2,3,4 and 5; for each F,., define
azpi = ZtZQ[AEQZA&«Z FQJTZ‘Z(A@,AyM +02) + Zfzg AeitAyly,) for ¥ = 1,2 and 3. Then we
can construct a vector a; = (alli, as1i, @315 + a12; + a29;, —a32; — A13; — A23;, A33; + A14; + a24;, (1251),.
Here for the first element F(RjAe) = 0. For the second element E(A€ O1A¢) = (2 > U For the
third element E(A¢ Fly, + RyAe + Ae OgA¢) = —tr(D_1 oB~le=®10W1), For the fourth element
E(A€ Foy; + RyAe + A O3A¢) = —tr(DoB~'W)). For the fifth element E(A€ F3Ay, + RyAe +

A€ O4A€) = —tr(D_1 oB~'Wae~®10W1)_ For the sixth element E(Ae OsA¢) = 0. So

S*(ao) = iai. (313)

i=1

Since E(ai|®yi—1) =0, {ai, P, ;} form a vector MDS. Together with (3.13]), we thus have

Var [S*(6)] = E (g ai) (g ai>/ - [E (g al)]

A consistent estimator of Q*(6p) is then given by Q* = ﬁ Yoy @id;, where @, is derived by

E(éa)] ZE(a) (3.14)

replacing 6y in a; by the M-estimator /éM, The consistency of Q* and thus of the VC matrix
U L(0,)Q*T*1(0,) follow in the theorem below.

Theorem 3.3. Under the assumptions of Theorem[3.1, as n — oo,

Q* — Q*(6) = (Tl—l) [ Zal ] (3.15)
and thus
T O QT Y (0ar) — U (0)Q(60) TV (6p) — 0. (3.16)

The M-estimator and the OPMD estimator of the VC matrix subsume submodels that contain
MESS in the dependent variable, the lagged dependent variable and/or the disturbances. Their
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formats are derived in the web appendix. Different submodels are also explored in the Monte Carlo

simulations in the next section.

4 Monte Carlo Simulation

To fully investigate the performance of the M-estimator and the OPMD-based standard error, we

establish the following models in the Monte Carlo simulation.

MESDPS(1,0,0):
MESDPS(0,1,0):

e Wiy, = (1 + Dy—1 + Boln + XiB1 + Zy + p + &,
ye = Tys1 + €222y + Bolp + XS+ Zy + p+ e

MESDPS(1,1,1):  e*Wiy, = 7y 1 + €2y 1 + Boln + XuBr + Zy + p+w,  e*WVouy, =,
MESDPS(1,1,0):  e™Wiy, = 7y, 1 4+ €22y, 1 + Boly + Xuf1 + Zy + p + €1,
MESDPS(1,0,1): €Wy, = (7 + V)y—1 + Boly + XeB1 + Zy + p+up, eV, = ¢,
MESDPS(0,1,1):  y = Tyi—1 + eWoy, 1+ Boln + XiB1 + Zy + p+up, eV, = ¢,
(1,0,0)
(0,1,0)

The elements of X; is drawn from N(0,4). Elements of Z and u are drawn from U(0,1) and N (0, 1)
respectively. The spatial weight matrices are based on rook and queen contiguity. To this end, n
spatial units are randomly allocated into y/n X \/n square lattice graph. In the rook contiguity case,
w;j = 1 if the j'th observation is adjacent (left/right/above or below) to the i’th observation on the
graph. In the queen contiguity case, w;; = 1 if the j’th observation is adjacent to, or shares a border
with the i’th observation. The weights matrices are then row normalized. Three specifications of
the disturbances ¢, are generated: (i) normal, (ii) normal mixture (10% N (0,5?) and 90% N (0, 1)),
(iii) standardized gamma (2,1). Both (ii) and (iii) are standardized to have the same mean and
variance with (i). Four sample sizes are considered, corresponding to n = (49,100) and 7' = (3, 7).

The values of parameters are g = 10, 31 = 1, v = 1 and 02 = 1. For p and o, 7 = 1,2, 3,
we select from a set of values (—1.5,—1.1,—0.5,—0.1,0,0.5,1.1,1.5) in different submodels. Each
experiment is replicated 1000 times. To compare the performance of the OPMD estimator, we
report the empirical standard deviations (sd), OPMD-based standard errors (se), standard errors
based on Q*~! (se) and standard errors based on \If*_l(/éM) (se). Better performance is represented
by closer approximation to sd. We only show the results from the full model MESDPS(1,1,1) in
the main paper and put the rest of estimated results in the web appendix.

Table presents results for the empirical means of the CQMLE and the M-estimator
and Table [4.2] presents the empirical standard deviations and the standard errors for MES-
DPS(1,1,1). For the empirical means in Table the M-estimator provides closer results to
the true values of parameters than the CQMLE in most cases. It gives nearly unbiased re-
sults in many cases. For example, when n = 49, T = 3 and (fy, 0620,7'0, a10, 20, 30) =
(1,1,0.5,1.1,1.1,1.1), the CQMLE are (0.9606,0.8833,0.4102,1.0856,1.1123,1.1516) respectively,
leading to the biases of (—0.0394, —0.1167, —0.0898, —0.0144,0.0123,0.0516). On the other hand,
the M-estimators are (1.0016,0.9446,0.5024,1.1060,1.1053,1.1726) respectively, with the biases
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(0.0016, —0.0554, 0.0024, 0.0060, 0.0053, 0.0726). The M-estimator thus provides better results than
the CQMLE except for ag. For 5,7, a7 and a9, the M-estimates are nearly unbiased. For ag, the
bias of the M-estimator is relatively larger than that of the CQMLE. When n increases to 100,
the biases of the CQMLE does not vanish for 5,7, «;. But when T grows bigger, the biases of the
CQMLE are getting smaller. On the other hand, the M-estimators remain unbiased for all n and T,
while the bias of a3 also vanishes as n and T grows bigger. For example, when n =49 and T' =7,
the biases of the CQMLE reduce to (0.0002, —0.0176, —0.0034, 0.0034, 0.0051, 0.0125) and the biases
of the M-estimator remains small at (0.0009, —0.0128,0.0000, 0.0004, 0.0005, 0.0208). The rational
choice of n and T means that the M-estimator is useful in many real-world applications. It brings
nearly unbiased results for studies with short panels. For the standard errors in Table the
OPMD estimator has good performance, exhibiting much closer approximation to the empirical sd
than the other two candidates in most cases. The OPMD estimator stays close to the empirical sd
for most parameters under all n and T'. Paying specific attention to 7 under disturbance that follows
gamma distribution, we find that the OPMD estimator gives especially better performance than
the other two candidates of se. For example, when (3,02, 7, a1, as, a3) = (1,1,0.5,1.1,1.1,1.1) and
n =49, T = 3, under the gamma disturbances, sd for o2 is 0.218. The OPMD based se = 0.196.
The other two candidates have estimates se = 0.139 and sé = 0.149. We can see that se is much
closer to sd than the other two candidates. This highlights the importance of conducting inference
using the OPMD estimator when the normality of the disturbance is in doubt. Overall the M-
estimator and the OPMD-based estimator for the standard error provide unbiased estimates and
exhibit good finite sample properties.

The estimation results for other submodels are provided in the web appendix. The main con-
clusion does not change. The CQMLE is biased while the M-estimator provides nearly unbiased
estimates in most cases, regardless of n and T. The OPMD estimator for the VC matrix pro-
vides closer approximation to sd in most cases than the other two candidates, especially when the

disturbance is non-normal.
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Table 4.1: Empirical mean of CQMLE and M-estimator, MESDPS(1,1,1)

dis  par CQMLE  M-est CQMLE  M-est CQMLE  M-est CQMLE  M-est
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9606 1.0016 0.9629 1.0013 1.0002 1.0009 0.9993 1.0001

1 0.8833 0.9446 0.9214 0.9812 0.9824 0.9872 0.9858 0.9903

0.5 0.4102 0.5024 0.4136 0.5028 0.4966 0.5000 0.4967 0.5000
1.1 1.0856 1.1060 1.0828 1.1013 1.1034 1.1004 1.1032 1.1001
1.1 1.1123 1.1053 1.1085 1.1001 1.1051 1.1005 1.1048 1.1002
1.1 1.1516 1.1726 1.1069 1.1301 1.1125 1.1208 1.1084 1.1168
2 1 0.9602 1.0030 0.9625 1.0015 1.0000 1.0009 0.9994 1.0002
1 0.8958 0.9605 0.9165 0.9754 0.9778 0.9826 0.9856 0.9900
0.5 0.4124 0.5069 0.4133 0.5013 0.4968 0.5001 0.4968 0.5000
1.1 1.0839 1.1075 1.0838 1.1039 1.1031 1.1001 1.1032 1.1001
1.1 1.1095 1.1054 1.1098 1.1037 1.1046 1.1001 1.1047 1.1002
1.1 1.1531 1.1749 1.1062 1.1254 1.1129 1.1210 1.1018 1.1099
3 1 0.9629 1.0047 0.9628 1.0009 0.9976 0.9984 1.0002 1.0010
1 0.8934 0.9593 0.9131 0.9720 0.9783 0.9831 0.9840 0.9884
0.5 0.4132 0.5075 0.4137 0.5015 0.4967 0.5001 0.4967 0.5000
1.1 1.0855 1.1066 1.0841 1.1023 1.1033 1.1003 1.1033 1.1001
1.1 1.1112 1.1044 1.1100 1.1017 1.1049 1.1004 1.1049 1.1002
1.1 1.1514 1.1752 1.1047 1.1255 1.1149 1.1230 1.1054 1.1135

1 1 0.9383 1.0016 0.9379 1.0005 1.0006 1.0004 1.0018 1.0012
1 0.8768 0.9537 0.9039 0.9779 0.9725 0.9856 0.9821 0.9943
0 —0.1288  0.0062 —0.1289  0.0022 —0.0203  0.0017 —0.0207  0.0005

1.1 1.0445 1.1037 1.0424 1.1013 1.1155 1.0999 1.1176 1.1011
1.1 1.0890 1.1017 1.0869 1.1007 1.1220 1.0992 1.1243 1.1009
1.1 1.1804 1.1768 1.1490 1.1408 1.0971 1.1238 1.0824 1.1095

2 1 0.9378 1.0008 0.9398 1.0016 0.9998 0.9998 1.0015 1.0009
1 0.8801 0.9566 0.9084 0.9822 0.9710 0.9838 0.9785 0.9907
0 —0.1286  0.0058 —0.1295  0.0005 —0.0211  0.0006 —0.0209  0.0004

1.1 1.0398 1.0979 1.0473 1.1049 1.1171 1.1017 1.1178 1.1010
1.1 1.0844 1.0960 1.0918 1.1047 1.1238 1.1014 1.1245 1.1008
1.1 1.1786 1.1742 1.1351 1.1284 1.0965 1.1218 1.0818 1.1089

3 1 0.9396 1.0039 0.9377 0.9994 1.0013 1.0014 1.0001 0.9996
1 0.8749 0.9531 0.9052 0.9798 0.9672 0.9799 0.9760 0.9884
0 —0.1299  0.0054 —0.1270  0.0035 —0.0209  0.0006 —0.0204 0.0011

1.1 1.0446 1.1050 1.0433 1.1007 1.1167 1.1014 1.1170 1.1004
1.1 1.0895 1.1034 1.0872 1.0996 1.1234 1.1011 1.1236 1.1000
1.1 1.1750 1.1704 1.1442 1.1373 1.0906 1.1158 1.0807 1.1079

1 1 0.9360 0.9979 0.9392 1.0001 0.9839 1.0003 0.9840 1.0004
1 0.8965 0.9568 0.9269 0.9868 0.9702 0.9845 0.9767 0.9909
-0.5 —-0.6370 —0.4984 —0.6328 —0.4961 —0.5502 —0.4997 —0.5506  —0.5002
1.1 1.0286 1.1000 1.0337 1.1031 1.0815 1.1013 1.0805 1.1000
1.1 1.0893 1.1006 1.0913 1.1019 1.1016 1.1012 1.1009 1.1002
1.1 1.1984 1.1643 1.1591 1.1287 1.1277 1.1169 1.1235 1.1131

2 1 0.9392 1.0009 0.9409 1.0013 0.9826 0.9994 0.9831 0.9994
1 0.8995 0.9604 0.9209 0.9798 0.9666 0.9808 0.9778 0.9919
—-0.5 —0.6339 —0.4945 —-0.6354 —0.4998 —0.5509 —-0.5004 —0.5510 —0.5007
1.1 1.0290 1.1001 1.0333 1.1024 1.0796 1.0996 1.0802 1.0997
1.1 1.0882 1.0990 1.0916 1.1022 1.1002 1.0998 1.1007 1.1001
1.1 1.2135 1.1844 1.1568 1.1275 1.1332 1.1226 1.1175 1.1074

3 1 0.9357 0.9969 0.9400 1.0001 0.9841 1.0010 0.9851 1.0013
1 0.8995 0.9607 0.9172 0.9759 0.9717 0.9862 0.9764 0.9905
—-0.5 —0.6364 —0.4982 —0.6329 —0.4985 —0.5509 —0.5001 —0.5489  —0.4988
1.1 1.0241 1.0944 1.0302 1.0985 1.0807 1.1009 1.0815 1.1007
1.1 1.0856 1.0957 1.0883 1.0986 1.1012 1.1010 1.1010 1.1003
1.1 1.2181 1.1889 1.1647 1.1360 1.1320 1.1209 1.1202 1.1102

Note:  Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters 0 =
(6,062,7,041,042,043)/. W1, Wy and W3 are generated by queen, rook and queen contiguity re-
spectively. 18



Table 4.2: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(1,1,1)

dis par  sd se se se sd se se se sd se se se sd se se se
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7
1 1 .0564 .054 .057 .052 .037 .037 .038 .037 .024 .023 .026 .024 .017 .017 .017 .017
1 152 148 163 .146 .105 .107 .112 .106 .081 .089 .090 .085 .058 .062 .060 .059

0.5 .049 .049 .047 .045 .032 .034 .030 .031 .004 .004 .004 .004 .003 .003 .002 .003
1.1 072 .082 .074 .073 .050 .057 .050 .052 .006 .006 .005 .005 .004 .004 .004 .004
1.1 088 104 .092 .092 .062 .072 .061 .065 .008 .009 .007 .007 .005 .006 .005 .005
1.1 224 226 231 214 149 154 153 .149 .116 .113 .120 .111 .080 .080 .082 .079
2 1 057 .054 .058 .053 .037 .037 .038 .037 .025 .024 .026 .024 .017 .017 .017 .017
1 154 150 .168 .149 .109 .107 .111 .105 .083 .087 .090 .084 .057 .062 .060 .059
0.5 .049 .049 .047 .045 .032 .033 .030 .031 .004 .004 .004 .004 .003 .003 .002 .002
1.1 077 .083 .074 .074 .049 .057 .049 .051 .005 .006 .005 .005 .004 .004 .004 .004
1.1 094 104 .092 .092 .061 .072 .061 .064 .007 .008 .007 .007 .005 .006 .005 .005
1.1 228 227 229 214 151 153 153 148 112 .111 .121 111 .080 .079 .082 .079
3 1 .057 .054 .060 .053 .038 .038 .039 .036 .024 .023 .027 .024 .017 .017 .018 .017
1 218 196 139 149 144 141 .088 .105 .123 .126 .065 .084 .085 .090 .042 .059
0.5 053 .052 .049 .046 .034 .034 .031 .031 .004 .004 .004 .004 .003 .003 .002 .003
1.1 .074 .085 .077 .074 .051 .057 .051 .051 .005 .006 .006 .005 .004 .004 .004 .004
1.1 089 .107 .096 .093 .064 .072 .063 .064 .007 .008 .008 .007 .005 .006 .005 .005
1.1 225 227 240 215 149 153 157 .148 111 111 124 111 .078 .078 .084 .079

1 1 062 .060 .064 .059 .042 .042 .042 .041 .026 .026 .028 .026 .019 .019 .019 .018
1 162 148 168 149 .109 .106 .113 .106 .083 .084 .091 .083 .059 .059 .061 .059
0 .067 .059 .059 .056 .045 .040 .038 .038 .014 .016 .014 .014 .010 .011 .009 .010

1.1 091 .093 .090 .087 .058 .065 .059 .061 .028 .032 .026 .027 .020 .023 .018 .019
1.1 090 .096 .092 .089 .057 .066 .060 .062 .031 .037 .030 .031 .022 .026 .020 .022
1.1 238 .229 235 218 153 .155 .156 .151 .117 118 .124 .115 .081 .084 .084 .082

2 1 .061 .060 .064 .059 .043 .042 .042 .041 .026 .027 .028 .026 .018 .019 .018 .018
1 159 147 170 149 114 106 113 106 .083 .083 .091 .083 .058 .059 .061 .059
0 066 .058 .059 .055 .044 .040 .038 .038 .014 .016 .014 .014 .010 .011 .009 .010

1.1 .088 .093 .090 .087 .060 .066 .060 .061 .027 .032 .026 .028 .019 .023 .018 .019
1.1 087 .096 .092 .089 .060 .067 .061 .062 .031 .037 .030 .031 .021 .026 .020 .022
1.1 233 227  .236 .218 .155 .156 .155 .151 .118 .119 .123 .115 .081 .083 .084 .082

3 1 .064 .060 .067 .059 .044 .042 .043 .041 .027 .027 .028 .026 .018 .019 .019 .018
1 203 188 143 149 152 140 .091 .106 .116 .118 .066 .083 .085 .087 .043 .058
0 068 .060 .061 .056 .046 .042 .039 .038 .014 .016 .014 .014 .010 .011 .009 .010

1.1 088 .094 .094 .087 .063 .065 .062 .061 .026 .033 .027 .028 .019 .023 .018 .019
1.1 088 .097 .096 .089 .063 .067 .062 .062 .029 .037 .031 .031 .022 .026 .021 .022
1.1 227 226 .248 219 163 .153 .162 .151 .120 .117 .128 .115 .083 .083 .085 .082

1 1 064 .063 .067 .062 .045 .044 .044 .043 .033 .032 .034 .032 .022 .022 .023 .022
1 152 147 167 148 106 .107 113 .107 .085 .082 .091 .083 .056 .058 .061 .058
—-0.5 .070 .062 .068 .061 .048 .043 .045 .043 .027 .026 .028 .026 .019 .018 .019 .018
1.1 095 100 .099 .094 .066 .069 .065 .065 .048 .048 .049 .046 .033 .034 .033 .033
1.1 075 .080 .080 .076 .053 .056 .053 .053 .041 .041 .042 .040 .028 .029 .028 .028
1.1 231 229 240 221 .161 .158 .158 .153 .121 .121 .130 .120 .084 .086 .088 .085

2 1 063 .063 .067 .061 .043 .044 .044 .043 .033 .032 .034 .032 .022 .022 .023 .022
1 153 147 168 149 108 106 .112 .106 .082 .082 .091 .083 .057 .059 .061 .058
—-0.5 .070 .062 .068 .061 .047 .043 .044 .042 .028 .025 .029 .026 .019 .018 .019 .018
1.1 093 100 .099 .094 .063 .068 .065 .065 .048 .048 .049 .046 .033 .034 .033 .033
1.1 .075 .081 .080 .076 .051 .055 .052 .052 .041 .041 .042 .040 .028 .029 .028 .028
1.1 235 228 239 220 .156 .157 .158 .153 .125 .121 .130 .120 .085 .086 .088 .085

3 1 .064 .062 .070 .061 .044 .044 .045 .043 .032 .032 .035 .032 .023 .022 .023 .022
1 209 192 141 149 151 140 .090 .105 .129 .118 .067 .083 .086 .086 .043 .058
—-0.5 .072 .063 .070 .061 .049 .043 .045 .042 .029 .025 .029 .026 .019 .018 .019 .018
1.1 097 100 .104 .095 .063 .068 .067 .065 .047 .048 .050 .046 .032 .034 .033 .033
1.1 078 .081 .084 .076 .050 .055 .054 .052 .040 .041 .043 .040 .027 .029 .029 .028
1.1 236 .227 252 221 151 .155 .163 .153 .121 .119 .134 .120 .085 .085 .090 .085

Note: Same configuration as Table Here sd is empirical standard deviation, se is OPMD
estimator, se is standard error based on Q*~! and se based on U*~1(6,/).
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5 Empirical Application to US Outward FDI

In this section we apply the M-estimation method to US foreign direct investment to explore its
usefulness. Recent literature explore third market as a determinant of bilateral FDI. Coughlin and
Segev (1999) is the first paper to study FDI using spatial econometrics. They find a positive spatial
lag (SL) and spatial error (SE) effect for China’s inward FDI for neighboring regions. Baltagi et al.
(2007) use the industries and countries FDI data to explore the knowledge-capital model of US
outbound FDI using generalized moments (GM) estimators. They find that the spatial coefficients
are significant while evidence of various modes of FDI emerges. Blonigen et al. (2007)) study the
US outward FDI by including spatial lag in the model and find that the estimates of the traditional
determinants of FDI are robust to the inclusion of spatial lag. They find a positive and significant
spatial lag using the whole sample which suggests complex-vertical motivations for MNE activity.
Garretsen and Peeters (2009) apply a spatial lag model (SLM) and spatial error model (SEM) for
Dutch FDI and find positive and significant spatial effects in both. Debarsy et al. (2015]) utilize
a cross-sectional MESS model on Belgium’s outward FDI and find evidence of pure vertical FDI.
They argue that this is because Belgium has high production costs such as labor. In our study, the
focus will be placed on the spatial coefficients since the dynamic nature of the model changes the
situation in a significant way.

We explore the US outward FDI using the MESDPS. Our balanced data contains 40 countries
from both developed and developing world over 7 years (2011-2017). The list of countries are listed
in Table .11

Table 5.1: List of Countries

Argentina Australia Belgium Brazil Canada Chile
China Cyprus Czech Denmark Estonia Finland
France Germany Hungary India Ireland Italy
Japan South Korea Luxembourg Malaysia  Mexico Netherland
New Zealand Norway Poland Portugal Romania Russia
Singapore South Africa Spain Sweden Switzerland Thailand
Turkey Ukraine United Kingdom Vietnam

The model to be estimated is a dynamic panel framework,

e“WILEDI, = TLFDI,_1 4+ W2 LFDI,_| + B1LGDP; + B3 LPOP; + 3 LRISK,
+ BaM Py + tly, + iy, €*Wouy = €. (5.1)

Here LF DI, is the log of stock of outward FDI from US to host countries in year ¢t. FDI are
US outward positions (stocks) from International Direct Investment Statistics. The independent
variables are a set of host country variables which includes log of GDP (LG DP), log of population
(LPOP), log of an investment risk variable (LRISK), which is found to be important in the

International Finance literature, and a surrounding-market potential variable (M P). We follow
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Garretsen and Peeters (2009) and compute it as the distance-weighted sums of other countries’
GDP in the sample where the distance is the bilateral distance between capitals from Mayer and
Zignago (2011). GDP and population data are extracted from the World Bank’s World Development
Indicators (WDI). Risk is the inverse of an investment profile index from International Country
Risk Guide. We also add a time trend ¢tl,, to capture the time-series variation. Table contains
the summary statistics of these variables. The spatial weight matrix is an inverse arc-distance
between capitals of host countries. Similar to Blonigen et al. (2007), we multiply the weights by
the shortest distance between capitals (80.98 km between capitals of Estonia and Finland). The

same spatial weight matrix will be applied to all spatial processes.

Table 5.2: Descriptive Statistics

Variable Mean Std Min Max

Log of FDI ($millions) 10.09 1.97 4.09 13.75
Log of host country GDP (2010 constant dollars) 27.02 1.34 23.77 29.95
Log of host country population 17.05 1.64 13.16 21.05
Log of investment risk —-2.22 02 -—-248 -1.73
Surrounding market potential 25.66 2.07 22.5  27.16

As discussed in section 2.2, there exists a relation between the spatial coefficients in STLE model
and MESDPSﬂ e, Ay =1—e*, p=7+1and Ay = e* — 1. The M-estimation results of corre-
sponding models in Yang (2018) are thus also reported to highlight the relation in interpretations
of the two methods.

Table summarizes the estimation results. We run two specifications: the STLE model and
MESDPS(1,1,1). The STLE models is based on Yang (2018]). Both specifications contain the
CQMLE and the M-estimator.

We make three important observations. First we would like to emphasize the fact that the results
capture the expected relation between spatial coefficients. In Table the coefficient estimate for
dynamic effects of the CQMLE for the STLE model is 0.4756 and for MESDPS(1,1,1) is —0.5619.
For the M-estimator they are 0.7038 and —0.2911 respectively. They satisfy the relation p = 7+ 1.
For W7, which represents the spatial lag in the STLE model and MESS in MESDPS(1,1,1) for the
dependent variables, we find that the signs of the CQMLE of coefficients are positive and negative
respectively. For the CQMLE, the STLE model has a coefficient of 0.3887 and MESDPS(1,1,1)
has a coefficient of —0.4772. On the other hand, for the M-estimators the coefficient estimates are
—0.1818 and 0.2569 respectively. These are in line with the relation A\; = 1 — e“!. For Wy, we find
that the coefficient estimates have the same signs. The CQMLE are —0.2388 for the STLE model
and —0.2116 for MESDPS(1,1,1). The M-estimator has estimates 0.0574 for the STLE model and
0.1489 for the MESDPS(1,1,1). Combined with their magnitudes, the expected relation Ag = e*2 —1

4STLE specification is the comprehensive model which contains the spatial lag effect, dynamic effect, space-
time effect and spatial error effect. It corresponds to our MESDPS(1,1,1). See section 2.2 for the detailed model
specification.
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holds. For W3, the CQMLE for the STLE model is —0.7770 and for MESDPS(1,1,1) is 0.7255ﬂ For
the M-estimator they are —0.1237 and —0.0191 respectively. Thus the results confirm our proposed

relation between the coefficient estimates in the theory.

Table 5.3: Estimation results of US outbound log(FDI) for STLE and MESDPS(1,1,1)

STLE MESDPS(1,1,1)
CQMLE M-Estimator CQMLE M-Estimator
LGDP 0.6958 0.2545 0.6253 0.2220
(0.328) (0.265)
LPOP 1.5881 1.3188 1.9200 1.2389
(0.987) (0.965)
RISK —0.0720 —0.1083 —0.0516 —0.0933
(0.113) (0.110)
MP 0.5506 —0.7573 0.3350 —0.9495
(2.485) (2.769)
TREND —0.0310 0.0045 —0.0262 0.009
(0.054) (0.059)
LFDI,_1 0.4756 0.7038*** —0.5619 —0.2911***
(0.139) (0.076)
Wi 0.3887 —0.1818*** —0.4772  0.2569**
(0.071) (0.131)
Wa —0.2388 0.0574 —0.2116  0.1489
(0.047) (0.099)
W3 —-0.7770  —0.1237*** 0.7255 —0.0191
(0.044) (0.120)

Note: OPMD standard errors are in parenthesis. Wy, Wy and W3 are spatial weight matrices in
terms of SAR in the STLE model and MESS in MESDPS(1,1,1).

* Correspond to significance at 10%.
** Correspond to significance at 5%.
*** Correspond to significance at 1%.

The second observation is that the inclusion of dynamic effects makes the coefficients of host

country variables insignificant compared with the panel data case. In Blonigen et al. (2007)) where
the data from 1983 to 1998 are used, the signs for LGDP is positive and for LPOP and RISK

are negative (see table 3 on p1315). The estimates are mostly significant in their study except MP

variable. In our study, however, adding in a lagged dependent variable changes the model estimates

extensively. Although the estimates (except LPOP) have the same signs with those in Blonigen

et al. (2007), they are no longer significant. The sign for spatial lag of LF DI stays significant but

becomes negative. The significance of coefficient estimate for LFDI;_; tells us that the dynamic

effect is a relatively important variable in explaining the variation in LF DI. The spatial terms are

5 As kindly pointed out by a referee, note here 0.7255 > In2, which implies the corresponding STLE coefficient is
1—€%725% = —1.0658. This is one of the advantages of the MESDPS compared with the STLE model: the parameter
space of the MESS coefficient for the disturbance term is unrestricted.
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also significant in most cases.

The third observation is the difference between of the CQMLE and the M-estimator. While
in most cases they have same signs in respective groups, their magnitudes differ. For example,
the estimate for LGDP is 0.6958 for the CQMLE and 0.2545 for the M-estimator in the STLE
model. This tells us that the M-estimator might correctly captures the impact of LGDP on LFDI.
Although we do not have a reference in this field to examine its validity, the difference do tell us
that we need to be careful in using the CQMLE which provide biased results.

To investigate the impact measures, we compute the average direct impacts for the STLE model
and MESDPS(1,1,1) and summarize them in Table We can see that the CQMLE has similar
average direct impacts for the STLE model and MESDPS(1,1,1) model for the 4 independent
variables. This is also the case for the M-estimator. Their OPMD ses are also similar, which shows
that the M-estimation method works for both MESDPS and the STLE model and provides similar

impact measures.

Table 5.4: Average direct impacts for STLE and MESDPS(1,1,1)

STLE MESDPS(1,1,1)

CQMLE M-Est OPMDse CQMLE M-Est OPMD se
LGDP 1.0296  0.2371  0.3062 1.0043  0.2010  0.2321
LPOP 24084  1.1965  0.7572 2.5437  1.0629  0.7819
RISK  —0.0378 —0.0989 0.0965 —0.0723  —0.0806 0.0901
MP  —15727 —0.4808 0.4980 —1.4253  —0.4112  0.4302

6 Conclusion

In this paper we propose a consistent M-estimator to estimate the matrix exponential spatial
dynamic panel specification (MESDPS) with fixed effects in short panels. To the best of our
knowledge, this is the first paper to tackle this problem. The comprehensive model includes matrix
exponential in the dependent variable, the lagged dependent variable and the disturbances. We
also propose an OPMD estimator for the VC matrix. Valid inference can be based on the standard
error derived from the OPMD estimator, especially when the normality of the disturbance is in
doubt. The method can be applied to submodels and works well. The method is free from the
initial condition specification and simple to use. It provides scholars a reliable way to conduct
empirical research. Future research might focus on modifying the type of disturbance in the model

to heteroskedastic.
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Web Appendix for Unified M-estimation of Matrix Exponential
Spatial Dynamic Panel Specification

Ye Yang*

This web appendix provides the following: (A) some useful lemmas that will be used in the
proofs of theorems below, (B) proofs of Lemmas 2.1, 3.1 and 3.2 in the main paper, (C) proofs of
Theorems 3.1-3.3 in the main paper, (D) estimation of submodels MESDPS(1,0,0), MESDPS(0,1,0),
MESDPS(1,1,0), MESDPS(1,0,1) and MESDPS(0,1,1), and (E) some more comprehensive Monte

Carlo simulation results.

A Some Useful Lemmas

In the following, Lemma can be found in Kelejian and Prucha (1999). Lemma can be
found in, e.g., Debarsy et al. (2015) and Lee (2004). Lemma[A 3| can be found in, e.g., Yang (2015)
and Yang (2018). Lemma[A.4] a central limit theorem for bilinear quadratic forms, can be found
in Yang (2018)). Lemma can be found in Debarsy et al. (2015). The proofs are contained in

these papers and thus are omitted. Let UB stand for “bounded in both row and column sum norms”.

Lemma A.1. Suppose that n x n matrices {A,} and {B,} are UB and C,, is a sequence of

conformable matrices whose elements are uniformly O(g;*). Then

(i) the sequence {A, By} are UB,
(ii) the elements of A, are uniformly bounded and tr(A,) = O(n), and

(iii) the elements of AnCy and CnA, are uniformly O(g,?1).

Lemma A.2. Suppose that elements of n x k matriz X, are uniformly bounded and
lim,, oo n_lX;an exists and is nonsingular, then P, = Xn(X,;Xn)_lX; and M,, = I,, — P, are
UB.

Lemma A.3. Suppose that n x n matrices {A,} are uniformly bounded in either row or column
sum norm and the elements ay;; of Ay, are O(g; ') uniformly in all i and j. Also suppose that e,
is an n x 1 random wvector of i.i.d. elements with mean zero, variance o and finite 4th moment

and by, is an n x 1 vector with constant elements of uniform order O(gﬁlm). Then (i) E(e, Ane,) =

*School of Accounting, Capital University of Economics and Business, Beijing, China, email: yang.ye@cueb.edu.cn



O(L); (ii) Var(e,Anen) = O(L2); (iii) Var(e’ Anen + byen) = O(22); (iv) € Anen = Op(2); (v)
€, Apen — E(€, Aney) = O [(gn)l/Q] (vi) €, Anb, = O [( )1/2] (mz) The results in (iii) and (vi)
remain valid if by, is an n X 1 random vector mdependent of €, such that {E(b2)} are of uniform
order O(g; ).

Lemma A.4. Suppose that n x n matrices {A,} is UB with elements of uniform order O(g, ).
Suppose {e,} is a n x 1 random vector of i.i.d. elements with mean zero, variance o2 and finite
(442v)th moment for some vy > 0. Suppose an nx 1 random vector b, = {bn;} is independent of €y,
and satisfies the following conditions (i) {E(b2,)} are of uniform order O(g,; '), (i) sup; E|bn;|* T <

o0, (tii) 223" [Anii(bni — E(bni))] = 0p(1) where {Ay i} are the diagonal elements of Ay, (i)

n

%" Zi:l[b%i —E(b2,)] = 0p(1). Define the bilinear-quadratic form as Cp, = b, e, + €, Apen — o2tr(A,)
with variance O'%«n. If limy, 00 gn+2/'/0/n = 0 and {g"ac } are bounded away from zero, then

C’n/o-Cn L N(07 1)

Lemma A.5. Let A be any n(T — 1) x n(T — 1) matriz that is UB and a = op(1). Then
et — I, H = 0p(1) and ||e® — In||, = 0p(1).

Lemma A.6. Let A, and B, be any two n x n matrices that are UB. Also an, = op(1) and

by, = 0p(1). Then enAn gbnBn _ I,)| =o,(1) and enAngbnBn _ I"H1 = o0p(1).

(e 9]

B Proofs of Lemmas A.6, 2.1, 3.1 and 3.2

Proof of Lemma A.6. We have

> Bl © i Al © 17 i
anAl, _bnBn a, A’ b, By, ab A b, B),
ee—an Z Zﬂ+ZZ-! 2.7
j=1 i=1 j=1

[e.o]

ooz b’ HB oo

1) (elenllBrlloe — 1)

Z Z\M HB oo Z

i=1 =1

elaanAnH lan\HA%Hoo

= op(1).

!
€a"Aneb"B" _ In

= op(1).

Proof of Lemma 2.1. First note the reduced form of AY is given by AY = e~ ®10W1 A, 0AY_



+ e~ @10W1 A X 3 4 e~ @10W1g—a30Ws A¢ - For cach element of AY, we have:

(1) E(Ay1Ac)

= Bl(e ™ AyoAys_o + e MOWIAX, 18y + e @10Wiem 0 Ws A, | )A¢]
— _0.6206—0410W16—a30W3;

(2) E(AyAe)

= E[(e_o‘ww1 Ag0Ayi—1 + e_amwlAXtBo + e_o‘lowle_o‘3°W3Aet)A6;]

— _06206—&10W1 (AQOe—a10W1 _ 2In)e_a3OW3;

(3) E(Ayt+1AE;)

= B[(e" ™1 Ayo Ay 4+ e “OWIAX, 1 By + e 0Wiem 0 Ws Ag, 1) Ag]

2 e—ale (AQOe—ale _ In)26—0130W3;

= "0«
(4) Fort>s+1lands > 2,
E(AytAels) — 70.6206—0410W1 (A206—6¥10W1)t—(8+1)(A206—0é10W1 _ In)Ze—a30W3;

(5) All the remaining terms E(AytAe;H) =0fort>1.

Combining all elements, we have

Ay
E(AY—IAel) =E X (AEQ . AET) = _0—620e—a10W1D_1,0e—0430W3
Ayr—1
Ay
and E(AYAG,) =k : X (Aez AET) = —ote10WiDje~30Ws,
Ayr

Proof of Lemma 3.1. Recall A2y = e~ 10W1 4,0 By the reduced form of Ay, and continuous

substitution, we have:

Ay = A pAyi1 + e “OVTAX, By + e 10T a0 W A g

t—2 t—2
= Aig}oAyl + E A,l1270€_a10W1AXt—i,80 + E Aizoe_aloWle_O%Owg‘AEt_i
=0 i=0

= ApAy + ALY AGG oo Lo 0 ... 0eT™OWIAX Gy + [Afyh Alyp .. Ta O
. O]e_alowle_a3°W3Ae.

Stacking them in one column we have:

AY = GAy, + Je ®1oWiIA X[ + Je MoWiegmaoWa A — GAy, + 5 + K Ae.



Similarly for AY_; we have:

AY | =G 1Ay, +J 167 OWVIAX By 4 J_ e @0WigmasoWsAe — G Ay, +6_ 1+ K_|Ae.

Proof of Lemma 3.2. First note R Ae = 3.1 RiAe; = S0 L, R Aeiy = 27| ay;. Here we
partition R Ae by time periods in the first equality and then by time periods and individuals in
the second equality.

Second E(A€ OA¢) = Eftr(Ae OA¢)] = tr[E(A€ Ae)O] = o2tr(BO) = o33, Z?:Q dit,
where d;; is the itth diagonal element of BO. So we have:

Aet(Ots + O + Of) Aes — Te0 Z Z dit

=1 t=2

Il
M=
E

A OAe — E(Ac OAe)

o~
||
I\
@
[|
I\

[AC.O% Acy + Ac,(OL, + OL)Ae,] — GOZZdn
t=2 s=2

Il
1
1= £

(A€t Anie + A€t A€, — Ugodit)

I

~
I
—_
o~
||
(]

|
INgh

)

IS4

-
Il
—

where A, = Y7, (0% + OL)Aeg and Ae; = Yo7, O Ae,. Here we change the way Ae OAc is
partitioned from by time periods to by individuals and time periods.

Third we first write Ae FAy, as following:

T T
Ae FAy, = Z Ae;Ft"'Ayl = AG;F;Ayl + Z AegFﬁAyl
t=2 t=3

T
! ’
— AezF;re—ale6—0130W360£30W36a10W1Ay1 + E AftFt+Ayl
t=3

T
= Ay Py P AyS + > Aei Ay,
t=3

where )T = Ffe0Wie=asoWs = Aye = e@0Wse10Wi Ayy and Ay, = F;T Ay;. Also note Ays =
e®30W3 Ao Ayy + e®OW3A X, By + Aer, where Asy = 19l, + e®2W2. By Assumption 1, Ayg is
independent of ¢ for t > 1. So E(Aey Fy TAYS) = E(eyFy T Aer) = —o2tr(F; ), which leads to
the following:

Aey FstAyS — B(Aey Fy TAY) = Aen(F T + F Y AYS + Aey Ff T4AYS + o2tr(F5 )

- Z Aeg; A& + Z Ffif(AeuiAysi + %),



where A = (Fy T + Fif H)Ayf. Combining the equations above, we get the following:
A€ FAy, — E(A€ FAy,)

T T
= Aer T Ays — B(Ae FTAY) + >~ AqAyt, —E(D | AqAyi,)
t=3

T
= Z AeQzAéz + Z F2+szr Ae?iAyfi + 0620) + Z AE;AyTt
t=3
=Y a
=1

where as; = Aeg; A&+ F;r;(AegiAy%—kago)—i—Z?:?) Ae; Ayt Here (Y] Aq,Ayt,) = 0 according
to Assumption 1.

Because E[(alli,agi,agi)]q)n’i_l] = 0, where ®,, 1 = ®,9 ® I, ;1 is the Cartesian product
generated by subsets of X; x Xg, with X; € &, ¢ and Xy € II,, ;1, {(a;i,agi,agi),Q)n’i} form a
vector MDS.

C Proofs of Theorems 3.1-3.3

Proof of Theorem 3.1. Given Assumption 7, we need to prove sup;¢z HS*C — 5*(¢ H
Note S*¢(¢) has four elements by (2.18). So

5*(¢ ) §*(¢) =

( /

AU(¢) STIAY. ) — LS E[AR() STIAYL ],
e,]W(C)

e]\/[

E[AT(() ST'W e WiAY],
T IM

7€)

!

)E
(C) 1W1e°‘1W1AY + — 1
9>

Y Woe®2W2AY. | — E[AT(C) 27" Woe®2W2AY ],

( 6%14(0
Au(Q) (B @ Bg)AU(C) + g B[A(Q) (B~ @ Es)Au(Q)].

szM()

Now each function can be written as, while neglecting

%]@[Aa(g)} + g FIAUO] — EfIAUC)), where fAU(Q)] and f[AT(Q)] are

functions of Au(¢) and Aw@(¢) respectively. To show that these functions are o,(1), we need to

%, positive or negative

prove the following;:
(i) infeez EE,M(C) > ¢ > 0 for some positive number c,
(ii) SUP¢cez |8?,M(C) - 5E,M(C)| = Op(l)a
(ili) supcez mrpogy|AU(C) ST AY-) — E[AT(C) ST AYL]| = 0y(1),

(iv) supcez ﬁma(g) STIW1eWiIAY — E[Au(¢) ST W1eW1AY ]| = 0,(1),



(V) supeez ﬁ‘A@(C),E_Iwze”W?AY_l — E[AT(() ST Woe®2W2AY_ ]| = 0,(1),
(Vi) Supcez mrr— ‘Au (B~' ® E3)AU(¢) — E[Au(Q) (B~! @ E3)Au(()]| = op(1).
Proof of (i): Utilizing (3.5), 62’M(() can be expressed as:

) 1 1

_ o — 'o—1 A = _ — % N—
1 * * / * *
= Rl ViayT - Ay plemWiayT - agavt)
+ (e WIAY — AJAY_ 1) M(e“*WiAY — A3AY_ )]
=1 BlufeWiayT - AsAY Y (e WViayT - AzAYT))]
n(T —1)
- (Tll)E[(emWiEAY — ASEAY_ ;) M(e**WiAY — ASAY. )]
(T —
1 ol Wi * Ty a1 Wi *
+ mE[(e WIAYT — ASAYT ) M (e WiEAYT — AJEAYT))]
1 *
= o=y Var(eVIAY — AJAY)]
; a1 W3 Ak ! a1 Wi A%
T T (e**WiEAY — ASEAY_;) M(e®*WiEAY — ASEAY. )
n p—

where we used E(AY) = E(AY_Tl) = 0 in the last equality.

For the first term, note

1

1
S — .
n(T —1) n(T—1)"
1 /
= mtr[(Bil & €Q3W3 €a3W3) Var(ealwl AY — AQAY_l)]
1 /
> (B e Var(e WA AY — ASAY-)

tr[Var(eWIAY — AJAY )] = (25! Var(e®WIAY — AyAY )]

where Ypin(B~!) > 0 given the structure of B, vmin(ea?’Wéea?’Wﬂ > 0 by Assumption 4 and
tr[Var(e**W1AY — Ay AY_ ;)] > 0 by the assumption of the theorem. So ﬁtr[V&r(ealWl AY —
AZAY_1)] > 0.

For the second term, since M is positive semi-definite, we have n(Tl 1)(e"”W;EAY —
ASEAY_ 1) M(e*WiEAY — ASEAY_ ) > 0 uniformly in ¢ € Z. So (i) holds.
Proof of (ii): We first express Au*(¢) as Au*(¢) = ¥~ 2Au(§) = ealWiAY ASAY | —
P(eWiAY — A3AY.;) = M(e®WiAY — AJAY..). So 37 3(C) = =gy AU (Q) AT (() =

1)-

ﬁ(ealwi AY — A3AY 1) M(e®*WiAY — A3AY. ). Utilizing the function in the third equal-




ity in the expression in the proof of (i) for Ei 1 (€), we have the following:

~2 2 1

Term(C) —Tem(C) = "

ﬂ(ealwiAY — ASAY_ ) M(e**WViAY — A3AY_))

1 o * * / o * *
- Bl ViAY T - ASAYT ) PleWiAYT - azav)
+ (e WIAY — AJAY ) M(eWiAY — A3AY. )]
1 2
1
E(N3)| — ———E(V.
()] =~y BN,

where Ny = AY Wi Me@WiAY, Ny = AY'e@Wi MASAY. 1, Ny = AY A MASAY.

and Ny = (e*WiAYT — A;Ale)/P(eO‘lWiAYT - AEAYL). We need to prove ﬁ[Nr -

E(N,)] <= 0 uniformly in ¢ € Z for r = 1,2,3 and ﬁE(NZl) — 0 uniformly in ¢ € Z.

To prove ﬁ[NT — E(N,)] —2 5 0 uniformly in ¢ € Z for » = 1,2 and 3, we need to prove
the pointwise convergence of ﬁ[l\fr — E(N,)] in each ¢ € Z and the stochastic equicontinuity
1
Of mNT
Proof of pointwise convergence: By Lemma 3.1, we can express N,’s for r = 1,2 and 3 as a function

of Ay, § and Ae as follows:

Ny = Ay |G e WVi'Me*WViGAy, + § e Wi e Wig + A€ K @ Wi N1 Wi K Ac

+ 2Ay/1G/ea1WilMea1W16 + 25 Wi M1e® Wi K Ac + 2Ay/1G’/e°‘1Wi/Me°‘1W; KAe

No = Ay G e WVi MALG_ 1Ay, + Ay G e Wi MALS 1 + Ay,G'e®WVi MASK_ | Ac

46 e Wi MALG_ Ay, + 6 e WVi MALS_, + 8 e Wi MASK_ Ac

FACK Wi MASG_ Ay, + ACK Vi MALS_, + A K e®Wi MASK_  Ac

N3 = Ay,G ASMALG_ Ay, +6 A MALS_y + Ac KA MALK ;A

4 2AY G AL MASS_ + 20y, G ASMASK_Ac + 28 ASMALK_ Ac
Denote Ny = 22:1 Nig, No = 22:1 N34 and N3 = 22:1 N3 4, where each ¢ denotes the corre-
sponding term in Ny, Np and N3. We can prove that each element satisfies N, , — E(N, ) = 0p(1)

for all 7 and ¢. First note that Nyo — E(N12) = 0, Nos — E(Na5) = 0 and N3o — E(N32) =0

because they are nonstochastic. For the rest of the terms, we group them into five categories:
(A) AinlAyl : N1i1, N2 and N3 1;
(B) A€ CoAe: Ny3, Nog and N3 3;
(C) Ayjcs: Nig, Noo, Noy and Njy;

(D) Ay C4Ac: Nig, No3, No7 and Nss;



(E) AG,C5 : N175,N276,N278 and N376,

where C, Cy and Cy are n(T' — 1) x n(T' — 1) nonstochastic matrices and c3 and ¢5 are n(T'—1) x 1

nonstochastic vectors comprised of G, G_1, K, K_1, 8, §_1, e*Wi A% and M. Note G, G_1, K,

\%\%

K_y, 6 and §_ are functions of the true parameters, e** "1 is a function of oy and a3, Aj is a

function of 7, as and ag and M is a function ag.

For (A), we can write ﬁAyaClAyl = %AylleAyl, where C7 = 753 .3, Ciq.

By Lemma and Lemma it is uniformly bounded in row or column sums. Hence

ﬁ[Ay&C’lAyl — E(Ay,C1Ay,)] = %[AylleAyl — E(Ay,CfAy,)] is pointwise convergent

by Assumption 6(iii).

For (B), we can write ﬁAengAe =55 %engﬁte. By Lemma [A.3|(v), %[6/0275156 —

E(€ Cy g€)] is pointwise convergent for each s and t.

For (C), the pointwise convergence of ﬁ[Ayic;g — E(Ay)c3)] follows from Assumption 6(ii).

For (D), we can write Ay’lC4Ae = > Ay1C] JAes and the pointwise convergence follows from
Lemma [A.3|(vii) and Assumption 6(iv).

For (E), we can write A€ c5 = YsAescs 5. Note E(Aeges s) = 0. By Chebyshev’s inequality,
Aegcs ¢ is pointwise convergent for each s.
Proof of stochastic equicontinuity: Denote each N,, for r = 1,2 and 3 by N,,(({). Then for

any two parameter vectors (1 € Z and (2 € Z, we have by mean value theorem: Ny qo(C1) —
INr,q(©)

Ny q(C2) = TC’(Q — (2), where ( is between (; and (» elementwise. We can prove each of
SUPcez 771(7}_1) 3N5,Cq/(C) is Op(1) for the five categories above. For example for Ny 1(¢) we have:
1 8N171(§) 2 o A | _1
SUPcez n(T—1) 0oy — SUPcez mAylG eMWI W B 2 M 2eMWIGAY,

/ 2 / /
N e AyiG Gy,
n JE—

= Op(l)

where we used Ymax(M) = 1 and Assumption 6(i). So sup.cz ﬁa]\gé},(@‘ = Op(1) and
1

m]\f 1,1(€) is stochastic equicontinuous. The proofs for stochastic equicontinuity of each of the re-

maining N, () follow similarly. By Corollary 2.2 in Newey (1991)), ﬁ [Ny o (O)—E(N4(¢))] =
0 uniformly in ¢ € Z for all 7 and ¢. Hence ———[N,(¢) — E(N,.(¢))] 25 0 uniformly in ¢ € Z

n(T-1)
for r =1,2 and 3.




To prove ﬁE[NLL(C)] — 0 uniformly in ¢ € Z, first note that

1 1 ’ W ’ ’ 1 1 .
_ R — T a1 Wi _ yt A% -5 — 2 (a1 Wivyt Ayt
n(T—l)E[N“(O] n(T—1)E[(Y eWi _ vyl A5 ) TaPy (e Wiyt — ASYT))

= (Tll)tr[z—lAX(AX’E—lAX)—1AX’2—1 Var(e®*WIAY — AyAY._ )]
n f—
’ymaX(E_Q) -1 'v—1 / a1 Wi
= ﬂrymin(AX by AX)tI‘[AX Var(e AY—AQAY_l)AX]
n —
max(57%) p |AX'STIAX 1 ot 0t Wa A
T T) e | @ =1y | s AX Var(e® VI AY - ApAY)AX].

By Assumption 4, there exists two positive constants c,, and ¢,y such that 0 < ¢,, <

infoyez; Ymin(X71) < SUP e 24 Ymax(27!) < Eas < 00. So there exists two other constants

_ . - / / 1
cax and ¢ay such that 0 < cay < infa,ezs Ymin(2 I)Vmin[%] < ’mm[%] <

's1-1 _ ! _ . . .
ymax[%] < SUD g, ez, Ymax (X 1)fymax[%] < éax < oo, which can be used in the in-

equality above and leads to

! L 1 ! w
— < - a1 Wi Ay
T Ty ENAQ] < B eax gy AN Var(e® TIAY — A AV )AX]
1 -2 — ’
< — -
— n(T _ 1) C(XgQAXCAY TL(T _ 1)tr(AX AX)
1
=0()

by assumption of the theorem and bounds on Rayleigh quotient. Hence 3?7 m(Q) — Ei w(Q) =o0p(1)
uniformly in ¢ € Z and (ii) holds.
Proof of (iii)-(vi): Using the similar transformations in the proof of (ii), by letting W, =

S"2W, 32 for r = 1 and 2, we can express the functions in (iii)-(vi) as follows:



Ali(e) STTAY.; — E[AT(a) 2IAY 4]

— AY' e Wi MZ3AY., — E(AY e Wi M 3AY. )

~AY' AL MSTIAY.; + E(AY A5 MXTIAY. )

_E(AYT e Wi PEIAY. ) + E(AYT A} PEIAY. )

Ati(a) 27" W1eWIAY — E[AT(a) 27 'WieW1AY]

— AY' e Wi W e Wi AY — E(AY Wi MW, e WiAY)

CAY AL MW e WiAY 4 E(AY AL MW et WiAY)

_B(AYT e Wi pPW e WiAY) + E(AYT, AL PW e WiAY)

Ali(a) 27 'Woe®2W2AY | — E[AT(a) B ' Wae*2W2AY_4]

— AY Wi N W,e®2WEAY | — E(AY e Wi M Wae®2WIAY. )

~AY AL MWe®?WEAY. | + E(AY | A MW,e®2WiAY. )

_E(AYT Wi PWaeWiAY ) + E(AYT A3 PWoe2WiAY )
1

Ati(a) (B~ @ E3)At(a) — 7 ()

=AY eWi M(B™' @ E3)Me®*WiAY — E[AY Wi M(B™! @ F3)Me®*WiAY]

E[At(e) (B! ® E3)Au(a)]

LAY AL M(B™' ® E)MASAY. | — E[AY A} M(B~' @ E3) MALAY ]

_oAY Wi M(B! @ By) MASAY.; — 2E[AY Wi M(B~! @ E5) MALAY.]
—2B[(e™WiAYT — ASAYT ) P(B7! @ E3)P(e®*WiAYt — ASAYT))]
—2E[(e*WViAYT — AJAYT ) P(B7! @ E3)M(e®*WiAYT — AJAY )]

Using Lemma 3.1, we can express these terms as functions of Ay,,§ and Ae. Similar proofs follow

from those for (ii) and thus are omitted.

Proof of Theorem 3.2. By the mean value theorem, we have \/n(T — D0y — 6p) =

—[ﬁH*(@)]_lﬁS*(eo), where H*(0) = 858*9@ and 6 is between 6y and 6 element-

wise. To obtain the asymptotic distribution of /n(T — 1)(5M —6p), we will thus first prove that

* (1) * * * d
ﬁﬂ 6) = ﬁﬂ (60) + 0p(1) = ﬁE[H (60)] + op(1) and then n(lel)S (6p) ——

N0, limy o0 2(60)].

10



The generic form H*(0) = 8?9}9) is comprised of the following elements:

. 1 e
* */ 1 'e—
* * 1 [

1167(0) = 75(9) ::__2;51&)( by 1[&}(,1,

* * 1 l—
Hj,, (0) = HY 5(0) = EAX YW, et WiAY,
€

! 1 ’
Hp,,(0) = Hgp(0) = ——AX YT Woe2W2AY |,

€

! 1 !
Hp,,(0) = Hy,5(0) = ;AX (B! @ E3)Au(e),

€

ML L gy s Au(e),

Hyzp2(0) = =5 7~ 5
€ €

1 re
Hiz, (0) = H},2(0) = —— AY 7 Au(9),

2
TOE
€

1 !/ / !
Hja,,(0) = Hy ,2(0) = — AY W Wi B~ Au(g),
1 / / !
Hja,,(0) = H,p0(0) = —— AY1e22W2 Won ™ T Au(9),
€ € 0'

€

1

=3 Au(¢) (B™' @ E3)Au(g),

Hiso,(0) = Hy 2 (0)

ago?2

1 /
7, (0) = _ﬁAY—lz_lAYq +tr(D_1,B e Wr),
€

1 / / ’
HY, (0) = S AY eWT W S TTAY | + tr(D_1,0,B e W1 - D_B~'Wem W1,

TO1 2
06

T

1 / ,
H* (9) = —;Ay_leCXszsz—lAy_l + JEI,(D_LOQB—le—o[lwl)7

€

He, (6) = - Au(6) (B! @ By)AY.,,

TQ3
1 / / /
H;\r(0) = 5 AY €W W B TIAY ) — tr(DB™IW)),
1 / / / ,
H} o (0) = == [AY e W Wi S'WeWIAY + Au(g) £ Wie WiAY]
UE

—tr(Dy, BT'W1),

1 ’ / /
H: . (0) = ﬁAY,leaz‘% Wor Wi e WiAY — tr(D,, B~ W),

@12
* 1 ! -1 a1 Wy
Hp 0, (0) = —EAU(QS) (B~ ® E3)Wie AY,
€
H! (9)——iAY’ W' WIS IAY. | 4 tr(D_1,B~'W
QT - 0_2 —1 2 —1 I'( —1,7 21))

€

(e 1651

1 ’ / /
H: . (0) = ﬁAY_le‘”W? WLl 'WeWIAY 4 t1(D_1 4, B 'Wo + D_1B"'Wy; ),

€

11



1 ’ / /
—[AY e*2W2 W,E T Woe®W2AY_ | + Au(¢) B3 Wie®2W2AY ]

H 0, (0) = —

202
+tr(D-1,0,B™ ' Way + D_1B™ Wy q,),

1 ,
H (0)= gAu(@ (B~! @ F3)Woe®2W2AY. |,

203
€

Hipy (0) = —5 5 Mu(9) (B~ © Esg)Au(),

€

’ /
where D, = &U, D_.,= 6];;1, Waiw = % for w =7,a1, a0 and F33 = 9E3 _ gasWs (W3 +

T Oas
W;)2exsWs,

We will first prove ﬁ[H *(0) — H*(09)] = 0p(1). Note there are stochastic and nonstochastic
elements in H*(#). The stochastic elements are comprised of all the terms other than the trace terms
and the nonstochastic elements are the trace terms. By the model assumptions and Lemma [AT] all
elements in H*(fp) are uniformly bounded in both row and column sums and thus ﬁH *(6p) =
Op(1). Note gM —25 6y by Theorem 3.1. So § —2— 6 as well because 8 is between Oy and Oo. It

follows that

06_04 and 5.6 SN 0’50 which is implied by @ L4 6y. So they can be replaced by er , er and 06_06

(T 1)H*(Q) = 0,(1). For 5,2, .* and 5. in H*(), note 5,2 - 0602, gt L

respectively during the proof, i.e., we need to show ﬁ[ﬂ*(ﬁ, 02,7, @) — H*(Bo, 02, 70, 20)] =
0p(1). Note that Au(¢) = e*WIAY — AyAY_; —AX B and Au = e®10WIAY — Ay AY_1 — AX o,

which leads to the expression
Au(¢) = Au+ (Wt — e®OWIAY — (A — Agyg)AY_1 — AX (B — Bo). (C.1)

By Lemma we have

Hearwr _ 0l'r’OVVr H (ar OL'rO In(T_l)>ea'r0Wr
o
¥ A T T WI‘
< H araro) In(T—nHooHea Ml
- (C.2)
for r =1,2,3 by Lemma Similarly
271 — 261 + B*l ® (ea3Wéea3W3 o agoW 0430W3)' (03)
By lemma we have
‘ eaSWéeOtSWB _ eOé3OW3/eOé3OW3 . ’ ea30Wé [€(a370430)W3/6(a370430)W3 _ In(Til)]eag()Wg N
= He He(ag_am)wée(ag_am)% - In(T—l)Hoo lev=™ |
— o,(1). (C.4)

Note that in general e*? # e4e®? for two matrices A and B. Tt is only true when A and B commute, i.e.,
AB = BA (Chiu et al., [1996)). Here W commutes with itself so the equation holds.

12



We can first write (T 0 [H*(B,0%,7,a)—H*(Bo, 02, To, ap)] as functions that contain e®rWr _

e oWr and 71 — $;'. For example, for H, (0), we have

1 — *
T 1) oz (808, 7.8) = Hoy, (o, 0%, 70, 0)
1 / o / « / , . ' o , , ~ -
= M[AY (e 1Wi1 e 10W1 )le 1Au<¢) +AY e 10 W1 Wl(E 1 20 1)Au(¢)

+ AY e®10W1 W sl (Au(g) — Au)).

Then by substituting and into H*(A), we know that the stochastic elements in
ﬁ[ *(B,0%, 7, &) — H*(Bo, 0%, 70, )] are linear, bilinear or quadratic in AY, AY_; or Auw.
By Lemma 2, we can express these elements in terms of Ay, and Ae. Using (C.2) and (| and
the fact that & —— 6, we can prove all the stochastic elements are 0p(1) using the smnlar proof
to Theorem 3.1.

For the nonstochastic elements, we will prove that all the trace terms are op(1). There are
two types of trace terms, the first being tr(D,B~'W3), tr(D_1 B 'Wyy), tr(D,B~te 2 Wr)
and tr(D_; ,B~te~* Wr) and the second being tr(D_1 B 'Wy; ) for w = 7,a1,9 and r = 1,2.
For the first type, for example, tr(D,, B~'W1), assume (c1, ¢i) is between (@, @) and (a1g, azg)

elementwise. By the mean value theorem:

1
nT =1
1

= T =) [(@1 — a10)[tr(Dayaq (@1, 62)BTYW1)] 4 (G — ago) [tr(Dayay (1, dQ)B—lwl)]]

])Oé1 (@1, ag)B*Wl) — tr(Dal (04107 ago)Bflwl)]

where Dy, q, (A1, d2) and Dy, a,(d1,d2) are the derivatives of D,, with respect to a; and as

respectively evaluated at (&1, d2). WLOG we assume T' = 3, then

D B AQWf@ialWl Onxn
et 2[A2W16_O‘1W1 Ange_O“Wl -+ (A26—061W1 — In)A2W12€—041W1] AQWIQB_Oqu
D _ —W2A2W1€_O‘1W1 Onscn
araee —2[W2A2€7Q1W1 A2W1670‘1W1 + (A2€fa1W1 — In)WgAnge’alwl] —WgAngefalwl '

By Lemma Da o, and Dy, o, are uniformly bounded in a matrix norm in the neighborhood
of (a1, ), leading to ﬁ[tr(Da1 (@1, 2)BYW1) — tr(Dyg, (10, a20)B™*W1)] = 0,(1). The
rest of the first type are proved similarly. For the second type, for example tr(D_1B™ Wy ,,), we

similarly apply the mean value theorem and get the following:

1
n(T —1)
1 _
=T pl®
+ (@ — 90 [tr(D 1,0y (@1, G2) BT "Wy o, (a1, d2)) + tr(D (1, d2)B™ "Wt aga, (G1, a2))]]

[tr(D_1 (@1, a2) B~ "Wy o, (@1, @2)) — tr(D_1(a10, a20) B *Way 4, (10, a20))]

— a10)[tr(D 1.0, (@1, d2) B "Wy o, (G, d2)) + tr(D (a1, d2)B " Way aya, (61, d2))]
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where D_1 o, (&1, &2) and D_q o, (d1, ) are the derivatives of D_; with respect to o and as
respectively and Waj q,0, (¢, d2) and Way q,a, (@1, &2) are derivatives of Wap o, with respect to

a1 and ag respectively, all evaluated at (&7, d2). Again WLOG assuming T=3, we have

D _ In Oan D _ ITL Onxn
B N e A I W YL Pt R A

W _ —W226a2W2 Wle—Oqu Onxn d
21,0001 — Oan _W226a2W2W16—a1W1 an
W W23€a2W26_a1W1 Onxn
21,0000 — Oan Wé’)eagWg e—a1W1 .

Here D_1 o,, D_1,05, W21,0, and Wy q,q, are uniformly bounded in a matrix norm by Lemma@
So T 1)[ (D (@1, a2)B7YWay o, (@1, a2)) — tr(D—1 (10, a20) B 1 Way o, (10, 20))] = 0p(1). Tt
follows that (T ) [H*(0) — H*(0)] = 0p(1).

Next let’s prove m[H *(6p) — E(H*(00))] = o0p(1). The term is comprised of differences of
linear, bilinear or quadratic forms in AY, AY_; or Au and their expected values at the true values.
For terms involving AY and AY_;, using Lemma 3.1, they can be expressed as formulas of sums
of terms linear in Ay;, quadratic in Ay, bilinear in Ay, and Ae and quadratic in Ae. Using
Lemma Lemma and Assumption 6, these terms are o,(1). For terms involving Aw, note
Ay = e ®0Ws Ae = e=®30Ws ¢ where C is an n(T — 1) x nT matrix:

-1 1 0o ... 0
0 -1 1 " :
c=1 . : (C.5)
: c. . S, c. 0
o ... 0 —-11
So we have, for example, H,  (6o) — E[H;QQ (60)] = [e O’ e@30Ws' (B~ ® Esp)e®0Ws (e
E(€ C'e*30Ws (B~! @ F3)e*0W2(e)]. By Lemma A.3(v), ST [H* ,(00) — E(H, (60))] =

0p(1). Similar proofs can be done for all other terms involving Au. So n(T_l) [H*(00)—E(H*(6p))]

op(1).

Finally let’s prove S*(6o) LN N[0, limy, 00 2%(6p)]. From (3.8) we know S*(y) con-

T—1)
sists of three types of con(aponentsz R'Ae, A€ F Ay, and A€ OAe where subscripts r for R,, F,
and O, are suppressed for simplicity. Partitioning them using matrix C' in above gives us the
following: R Ae = Zthl Rj{/et, A€ FAy, = Zle egFt*Ayl, A€ OAe = 23:1 Zle egOfet, where
R = R,Cy, Ff = C,F, and Of = C,0,C; are n x k, n x n and n x n partitioned matrices of R'C,
C'T and C'OC respectively. By substituting Ay, = (e oW Ay — I Vyo+c1 +e aoWieasoWs e into
€, Ff Ay, where ¢ is a non-stochastic term, we get S.r_, e, FfAy1 = St €, Fiyo + Y1y €, Fifer +
Z?:l e, F5e1. So for an (k + 5) x 1 vector of constants a, a’ S*(fy) = 23:1 Z?:l €, Arses +
S e Bier+ 1 €, f (yo) +d’d for nonstochastic matrices Ay, By, vector d and f(yo) as a function
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of yo. By Assumption 1, yg is independent of ¢ for t = 1,...,T. Also €y, ...,er are independent of

each other by Assumption 5. Hence a S (fp) is asymptotically normal by Lemma|A.4, Since

1
n(T—1)
every fixed linear combination of elements of S*(6y) converges in distribution, by Cramer-Wold

device, ﬁS*(@o) 2, N[0, limy, 00 2%(60)]-

s o i} ,
Proof of Theorem 3.3. To prove Q) = ﬁ S aia; 2 Q*(6p) = (Tl_l) Yo E(aia;), we
need to prove the following:

n

: 1 ~l P 1 ,
() 27— iy Gitly —— w1 D e Gith;;

(i) gy i @it = sy i Blaiay).

Proof of (i): For § between 6 and 6, elementwise, we can utilize the mean value theorem to each
of the elements in ﬁ 2;‘:1@&;” —alia;m-) for I,m =1, 2,3 and prove each of them is 0, (1). For
example, for the first element when!=m =1, allialui is an kx k matrix where k is the number of re-
gressors in AX and T 1) (anzam — alham) = —n(%_l)&m Z?:l ZtTZQ E;t(eaf“w?’AXj)it(BjM —
Bi0) — mrmani(Xims FrRuler) ey — 0%) — mrmailyis Ri(e®WsAY 1)u] (Far —
70) + n(Tq)allz[Zt:z R, (e WsW,eWs AY) ] (G1ar - @10) -
sy A R;t(easwswzeazw2AYfl)z‘t},(a2M — o) + g Til(HBT @
W3eWs)AX), Ay + Rht(WgAe)nH (Qisnr — a30), where the terms with bars on top denote the
values implied by @ which is between 0, and 6y. By model assumptions and Lemma all the
multipliers before the differences of parameters 6y, — 6 are Op(1). Since Orr — O = op(1) by
Theorem 3.1, ﬁ(anﬁiu — ay15ayy;) = 0,p(1). The proofs for other terms follow similarly.
Proof of (ii): We need to prove (Tl 0 S lasa,,,; — Eaga,,,;)] 250 for I,m =1,2,3. We will
prove it for l = m = 1,1 = m = 2 and | = m = 3 and the cross multiplied cases are done in a
similar way. Before proceeding with the proof we define the following notations.

(1) For n(T — 1) x 1 vector Ae, we denote Ae; as the n x 1 vector that selects all elements
corresponding to period ¢ and denote Ae¢;. as the (7" — 1) x 1 vector that selects all elements
corresponding to individual .

(2) For n(T'— 1) x n(T' — 1) matrix O, we denote O.; .5 as the n x n matrix that selects all elements
corresponding to period (¢, s), denote O;. ;. as the (T'—1) x (T'— 1) matrix that selects all elements
corresponding to individual (7, j) and denote Oy ;. as the (T'— 1) x 1 vector that is the ¢tth column
of O;. ;..

Then we can express ai;, a; and ag; as a1; = Zthz R;teit = R; A¢;., as; = ZfZQ(AeitAnit +
AeyAes, — o%dy) = Ae;_Am + Ae/ A€ — agol:[_ldi. and ag; = Aeg; A& + FQJT{(AEQiAy% +02) +
Z;‘F:?’ Aeir Ay, = Aeg A& + F;Zf(AegiAy% + ‘7520) + Ae;_Ayfi_, where — in Ayj;_ denotes the
selection of all element from ¢ = 3 to T. These expressions will be convenient to use in the proof
below.

For ai, gy Limilaiay; — Elauay)] = ooy S Ri(Aa.Aq. — 0gB)R; =
ﬁzyzl Zni. Note zp; is a MDS since {z,;} are independent and E(z,;) = 0. Given As-

sumption 6, we know from Lemma that the elements of R;. are uniformly bounded in row and
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column sums. Then E|zm»|1+< is bounded above by some constant for ¢ > 0 which implies z,; is

uniformly integrable. Also for the multlplylng coefficient, limsup,, ., > 1" n(Tl = ﬁ < oo and

limy, o0 D510 1[m]2
for MD array (Davidson, [1994]), (T 0 S Zn 250.
For ay;, first note E(Aei,Am.) = 0 for ¢ = 1,...,n because each multiplying group of ele-

= limy, o0 (T T2 = = 0. By Theorem 19.7 on Weak Law of Large Numbers

ments in Ae¢;. and An;. are from different individuals. Then we have ﬁ S a3, — E(a3,)] =

= (86, )7 ~ BAG A )?) + ((86.A6)° ~ BAGAG)) + (A An)(86,5¢) -
202l di. (A€ An) — 2(0%lm_ di (A€, Aer — E(Ac; Aet)))]. We can prove that each of the five
terms is 0,(1). For example, for the first term, subtracting and adding a same term and noticing
E(Ae;.Ac;) = 0B, it equals ﬁ S An, (AeiAe;, — 02 B)An;. + 71(%231) S [An, BAn;. —
E(An;.BAm.)]. Let N, = An;,(Aei.Ae;, — 0% B)An;.. Since An;. is II,;_; measurable,
E(Ny,ilIl,;—1) = 0. To be a MD array, it is also necessary that E(N, ;) < oo (e.g. Davidson
(1994) p232), which is obviously satisfied. Thus {N, ;,II,;—1} is a MD array. Also E[NELC] is
bounded above by some positive constant for some ¢ > 0. So {N,,;} is uniformly integrable. The
multiplier ﬁ is shown in proof of a1; to satisfy the other two conditions of Theorem 19.7 in
Davidson (1994). So Tl 1y 2iet Vi = 0p(1).

For the second term, we can express Anl BAm = tT:_ll Z P AmtBtsAmt, where An;; is the
ith element of the n x 1 vector A, = S21_, (0% + OL,)Ae,. Here O is an n(T — 1) x n(T — 1)
matrix and Og is its stth n x n block matrix. So An; = ZZ:Q Z;;ll(Ojs,it + Ot js)A€js =
Z;;ll ZSTZZ(ijﬁ—Oit,jS)Aejs Zl ! OmAej., where O;jt = Oj. it + Oyt j.. Then for An;s = Anyy,
we have (An)? — E[(An)?] = Y02 1 om@ej-Ae;. — 0%B)O0ji + 2121 Yhey 03 A€;. A O,

which implies

n

—Z (Anir)® = E((Anir)?)]
=1

n [i-1 i—1j—1
1 , , , ,
- n(T —1) Z Z Oije(Aej.Aej. — 02 B)Oiji + 2 Z A€;.0;t 0, Acy.
" i=1 | j=1 j=1 k=1
n-1[ n n
1
= =D ; i;I[Om(AEJ Aej. = 0%B)0yj1] ST =D Z Aé; Z;l ; 0t Oy A

Now the terms in the summation in the first element are independent, and
S 1 391 0ijtOsyAcy. is I, j_j-measurable. By Theorem 19.7 in Davidson (1994),
ﬁzyzl[(AmtV — E((Any)?)] = op(1). Similar proofs can be done for Amn;s # Ang.
Thus ﬁZ?:l[An;.BAm. — E(An; BAn.)] = op(1). Tt follows that the first term in
ﬁ S [a3; — E(a3;)] is 0p(1). The proofs for the second and the fifth term are similar to that
of the first element of the first term, the proofs for the third and fourth terms are similar to that

of the second element of the first term and thus they are omitted.
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For ag;, we have:

n

n(Tll) S Lo — B(a)]

=1
e iz:;(Ae%iAs? A + g[afomg? B8]
n n(Tl_l) §< L2 [AexiAys; — E(AesiAys)?
4 n(Tll) Zzn;[(Ae;Ayi‘if ~E(Ae,_ Ay} )?]
b s g[FJJM%A&Ay% - B(F AGAG AT
+ n(;_l)g[ 0(Fy AeaiAG)]
+ n(T2—1) Zzn;[(AeQiA&Ae;AyL-) — E(Aey A& A Ay )]

S Z{F;; e Ays; — BlAexdyi,)]}

2 ! * / *
+ m Z{F;T[ [Af?iAyfiAfifAyuf - E(AGQiAyTiAeifAylif)}}
i=1
2 n

= ++ ’ *
T ) 2 r(Bei Ayt~ BlAe i)

where we subtracted and added (T 7 S 02 AE? and used the fact that F2+ .7 is nonstochastic.

Note A&ZZ is ®,, ;—1-measurable, which implies that the first term is the average of a MD ar-
ray. By Theorem 19.7 in Davidson (1994), the first term is 0,(1). The sixth term is thus also
convergent. Note A& = (F, ™ + F++Z)Ay1 = (BT 4 FyfthecsoWs oW Ay, 5o the second
term equals ﬁ S o2 (Aylealowl 303 s(F T B (BT Byt eesoWs oo Wi Ay, —
E(Ay;eamwl/ oW (B T4 B (Fyr T By T esoWa eaioWi Ay )], Since e10W s W (Fy e+
EF Y (BT 4 Fft)easoWsea1o0Wi s uniformly bounded in row and column sums by Lemma
[A73] the convergence of the second term follows from Assumption 6. For the third, fifth and
eighth term, we can substitute Ay$ = e0Wsea0WiAy, 1 e®30WsAX )35 + Aep in them and
prove they are convergent. For the fourth and tenth term, we can prove they are convergent
using Assumption 6 since Ae;— are from t = 3 to T" and Ayj,_ is constructed based on Ay

which implies they are independent. For the seventh and ninth term, note Ayj, = F,"Ay; =
Ft+Ay0 + Ft+e*a10W1 AX 160+ Ft+e*a10WIe*“30W3 Ae1. The convergence follows.
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D Estimation of Submodels

The M-estimation proposed in the main paper can be modified to incorporate different submodels
by getting rid of matrix exponential in dependent variable, lagged dependent variable and/or dis-
turbance. In this part of the appendix we describe the estimation of submodels used in the Monte
Carlo simulation.

MESDPS(1,0,0). By setting as = 0 and ag = 0 we get MESDPS(1,0,0). Let Ag = 1,1 ® Ag
with Ay = 19 + 1. The first differenced model is given by

e®oWIAY — AGAY_ | + AX B + Ae, (D.1)

and the conditional quasi loglikelihood is thus given by

1
202

n(T —1)

6(1,0,0)(9) = —Tlog(af) - A€(¢)/B71A€(¢)7 (D.2)

where 0 = (8,02, 7,010), ¢ = (6, 7,01), B=B® I, and Ae(¢) = e WIAY — AAY | — AXS.

Given ¢ = (7,), the estimators of 3 and o2 are given by

B(¢) = (AX'BTAX) 'AX' B (emWIAY — AAY. ), (D.3)

52(0) =~

mAg(g)’B—lAg(g), (D.4)

where Aé(¢) = eW1AY — AAY | — AX (). Substituting them back into (D.2)), ignoring

constants, the concentrated log-likelihood function is derived as:

I61.00)(C) = —1og[A&(¢) BT AE(Q)], (D.5)

Maximizing (D.5)) gives us CQMLE ¢ and then CQMLEs 3 = B(f) and 72 = 52(C).
The conditional quasi score (CQS) function corresponding to (2.11) in the paper is given by

B: HAX'BTIA(9),
o2: "D L L Ae(¢) BT Ae(9),
S(1,0,0)(0) = . <, ‘
T:  —5Ae(¢p) BTTAY_y,
ar: —5Ae(¢) B Wi e WiAY.
Note here the expectations in Lemma 2.1 reduce to E(AYA€) = —o2e ®10WiD; and

E(AY,1A€/) = 70-206—0410W1D7170, where Do =

€

Age—>10W1 _ 91, I, 0
(Age~10W1 12 Age~*10W1 _ o7,
: : . In
(Age—@10W1)T=3(fge=@10W1 _ )2 .. (Ageme10W1 _1)2 Age—10W1 _ 27,
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Iy 0 0

Ape~@10W1 21, In
and D—l,O = (Age~@10W1 _ 42
: . . . 0
(Age™@10W1)T=4(Age~210W1 — 1,02 . (Age™®10W1 —[.)2  Age™®10W1 21, I,

The adjusted quasi score (AQS) corresponding to (2.15) in the paper is thus given by

B O_%QAX/B_lAe(gZ)),
oy |7 U B )
” T pA9)ETIAYL + (Do BT lem W),
o _Uier(gb)’B—lWle“lWlAY —tr(DB~'Wy),

Given ¢ = (7,)’, the constrained M-estimators of 8 and o2 are first solved as

Bu(O) = (AXBAX)'AX' B 1(e*WIAY — AAY.,), (D.6)
1 /
~2 ~ 1 A~
_ D.
O-E,M(C) ’I’L(T — 1) AG(C) B AE(C)a ( 7)
where A€(¢) = e*W1IAY — AAY | — AXBM(C). Then BM(() and GE,M(C) are substituted back
into the third and fourth elements of the AQS function to get the concentrated AQS function:

T = 1 z AE(C),B_IAY—]. + tr(D_lB—le—alwl)’

S 0 0)(() _ Te(©)
(10 01—l S AR BTIWie WIAY — (DB W)
Ue,M

The unconstrained M-estimators 7j; and a7 can be solved by letting S’Z‘fo 0) (¢) = 0 and conse-
quently the unconstrained M-estimators 3,, = 8,;(C,,) and 32 M= EZ v (Can)-
MESDPS(0,1,0). By setting ay = 0 and ag = 0, MESDPS(0,1,0) appears. Let Ag = Ip_1®A4

with Ag = 101, + e*20W2_ The first differenced model is given by
AY = AgAY_ 1 + AX By + Ae,

and the conditional quasi loglikelihood is subsequently given by

n(T —1)
2

1
202

C(0,1,0)(0) = — log(c?) — =5 Ac(¢) B~ Ac(¢), (D.8)

where 0 = (B/,O'S,T, ), ¢ =(8,7,00), B=B®I, and Ae(¢) = AY — AAY_; — AXf. Given
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¢ = (1,az)’, the estimators of 3 and o2 are given by

B(¢) = (AX'BT'AX)'AX'BTH(AY — AAYL), (D.9)
70 = gy A BTARQ), (D.10)

where Aé(¢) = AY — AAY_; — AXB(C). Substituting them back into (D.8)), ignoring constants,

the concentrated log-likelihood function is:

60.1.0)(C) = —1og[A&(¢) BT A(Q)], (D.11)

Maximizing (D.11)) gives us CQMLE ¢ and then CQMLEs 3 = 3({) and 62 = 2(().
The conditional quasi score (CQS) function corresponding to (2.11) in the paper is given by

(8. LAX'B'Ac(9),

02 M0 4 L AC(9) B Ac(9),
5(0,1,0)(9) = 1 <, ‘
T:  —5Ae(¢p) BTTAY_y,

az:  5HAe(¢) BT Woe®2W2AY .

In this case the expectation in Lemma 2.1 reduces to E(AY,lAel) = —02,D_1, where
I, 0 e 0
Ao — 21, I, :
D_io= (Ag — I,)? : |, and
: . . : 0
(A))T~*(Ao — 1)? ... (Ag—1I,)? Ay—2I, I,
Ao — 21, I, e e 0
p,— | oI A2l
: : . . I,
AT (Ao — 1) e oo (Ao —1)?% Ap 21

The adjusted quasi score (AQS) corresponding to (2.15) in the paper is then given by

B LAX'BAe(9),
Stonn® =17 —M + a A(9) BT Ac(9),
0.1,0) T ﬁAe(éb)/E*lAY—l +tr(D_;B™),

az: UL?AE(¢),E_1W2GOL2W2AY71 + tr(D_;B71Wye®2Wz),

\
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To derive the M-estimator, the constrained M-estimators of 3 and o2 are first solved as

Br(¢) = (AX'BT'AX)TAX'BTHAY — AAY.), (D.12)

52 1,(0) = MA?«“)’BIA@@, (D.13)

where A€(() = AY — AAY_; — AXBM(C). Then EM(C) and 82M(C) are substituted back into the
third and fourth elements of the AQS function:

T A STAY. + tr(D_ B,
Si0.1,0)(C) = Tl ,
o ar: ol NE(Q) ST Wae2WRAYL) + tr(D_y BT WaesW2),
Ue,M

which is the concentrated AQS function. The unconstrained M-estimators ZM can be solved by
letting 575, 0)(4" ) = 0. The unconstrained M-estimators are then derived as B3 v =25 M(/C\M) and
52,M = 8E,M(CM)-

MESDPS(1,1,0). By setting a3 = 0, MESDPS(1,1,0) appears. Again let Ay = I7—1 ® Ap
with Ag = 101, + e*20W2_ The first differenced model is given by

e®1OWIAY — AGAY_ | + AX By + Ae,

and the conditional quasi loglikelihood is thus given by

1
202

n(T —1)

5 Ae(¢) B T Ae(6), (D.14)

5(1,1,0)(9) =- 108;(0'62) -

where 0 = (8,02, 7,a1,), ¢ = (6,7, a1,00), B=B® I, and Ae(¢) = e WIAY — AAY ;| —

AXp. Given ¢ = (1, ayq, 042)/, the estimators of 3 and o2 are given by
B(¢) = (AX'BT'AX)'AX B (e**WIAY — AAY. ), (D.15)

52(0) =

mAg(()/B*IAag), (D.16)

where AE(() = e®*WIAY — AAY_; — AXJ3(¢). Substituting them back into (D.14)), ignoring

constants, the concentrated log-likelihood function is given by:

{11,0)(C) =— log[A&(¢) B AE(Q)). (D.17)

Maximizing (D.17) gives us CQMLE ¢, with the implied CQMLEs § = 3({) and 62 = &2(().
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Correspondingly, the conditional quasi score (CQS) function (2.11) in the paper becomes

B: LAX'BTlA(9),

o2 =" 4 L Ac(9) BT Ae(9),
S1,00) =47 UigAe(tb)/B‘lAY_l,

ar: —5Ae(¢) BTIW e WiAY,

a9 : %Ae(gﬂ)),B_leeanﬁAY,l.

Here the expectations in Lemma 2.1 are simplified to E(AYA€) = —oe~*WiD; and
E(AY,lAe/) = —0%e tW1D_,,, where Dy and D_; have the same expression as those in
Lemma 2.1.

The adjusted quasi score (AQS) in (2.15) in the main paper is then reduced to

B: HAX'BTA(9),
o2 M0 4 L A(9) B A(9),
S(*LLO) @)=<r1: Ui?Ae(gb)/E_lAY,l +tr(D_B le 1 W1),
ar: —5Ae(¢) B IWiemWiAY — t1(DB~!W)),
(a2 5A(¢) BT Wye®2W2AY ) 4 tr(D_1 B Wy)),

where Wy, = Woe®2W2e—21Wi T derive the Me-estimator, the constrained M-estimators of (3
and o2 are first solved as
Bu(O) = (AX'BAX)'AX' B 1(e*WIAY — AAY,), (D.18)

52 ,(0) = @A@@)’B—IA@@, (D.19)

where A€(¢) = e*W1IAY — AAY | — AXBM(C). Then BM(C) and GE,M(C) are substituted back
into the rest of the AQS function to get the concentrated AQS function:

T %(OAE(C)/B*AYA +tr(D_1B~le—1W1),
e, M
S =S a1 —t=Ag()B W eW1AY — tr(DB1W)),
(1,1,0) ”e,M(C)

a9 mAg(C)B_IWQGOQVVsz_l + tI‘(D_lB_IWm).

The unconstrained M-estimators ¢ ; can be solved by letting S0 (¢) = 0 and then Bur = Bur (ZM)

and &7y = ¢ 0 (Cr)-
MESDPS(1,0,1). By setting ay = 0, we have MESDPS(1,0,1). Here let Ay = I;_1 ® Ay with
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Ag = 19 + 1. The first differenced model is given by
e®OWIAY — AJAY_ 1 + AX By + Au, e*3°W3 Ay = Ae,

and the conditional quasi loglikelihood is thus given by

1
202

n(T —1)

laon(0) = ———5—log(0?) — 55 Au(@) S(az) " Au(9), (D-20)

where 6 = (BI,U?,T, a,a3), ¢ = (B,7,0), B(as) = B® e_“3W3e_a3Wé, and Au(¢) =
e tWiAY — AAY ;| — AXS. Given ¢ = (7,a1, ag)/, the estimators of 8 and o2 are given by

B(¢) = (AX'2(a3) 'AX)TTAX S(as) (e WIAY — AAY ), (D.21)

70 = gy AR Dlas) " AC), (D.22)

where AE(() = e®*WIAY — AAY_; — AXJ3(¢). Substituting them back into (D.20)), ignoring

constants, the concentrated log-likelihood function is given by:

I6101)(C) = —1og[AT(¢) (as) T Au(C)], (D.23)

Maximizing (D.23) gives us CQMLE ¢ and then the implied CQMLEs 3 = 5(¢) and 52 = 52(¢).
Correspondingly, the conditional quasi score (CQS) function (2.11) in the paper becomes

(

B HAXS(as)"  Au(g),
o2: MU 4 L Au(9) S(as) T Au(e),

€ 202
/ —
Saon(0) =497 HAu(p)SIAY,
. 1 ' -1 w
ar: ——5Au(¢) X(az) T Wiet W1AY,
. 1 'rm—1
Qg : —@AU(@ (B™" @ E3)Au(9).
. . ! — —
Now the expectations in Lemma 2.1 become E(AYAe) = —oe @0oWiD e~ @0Ws zpd
p €0
/
E(AY_1A€) = —02e=@10WiD_; je~*0Ws here Dy =
Age~@10W1 27, I 0
(Ape—10W1 )2 Age~@10W1 _ o1,
: : . I,
(Age=@10W1)T=3(Age—a10W1 _ [, )2 o (Agem@10Wi _ )2 Age=e10Wi o,
I, 0 0
Age—®10W™1 21, I,
and D_17() = (Aoe—ale —1,)?
: : . . 0
(Age—@10W1YT=4(Age=e0W1 _ [)2 | (Age~@10W1 _ [,)2  Age=o10Wi _2[, [,
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The adjusted quasi score (AQS) in (2.15) in the main paper is then reduced to

B: HAX'S(as) ' Au(g),

o2 — T 4 L Au(6) S(as) "t Au(g),

Shon@) =q7:  HAu(¢)STAY. + (DB,

a1 —5Au(¢) S(as) ' Wie®tW1AY — tr(DB~'W)),
ag fﬁAu(qb)l(B_l ® E3)Au(e).

To derive the M-estimator, the constrained M-estimators of 3 and o2 are first solved as

Bu(0) = (AX'S(a3) TAX) TAX S(as) (e WIAY — AAY,), (D.24)

~2 o 1 ~, / —1 A~

720(0) = oy AR Dloa) T AC). (D.25)
where A€(¢) = e®*W1AY — AAY_; — AXB,,(¢). Then B,,(¢) and ES,M(C) are substituted back
into the rest of the AQS function to get the concentrated AQS function:

s AUQ) ST AY + tr(D_ BT em W),
O, M

Stton(©) = ~agAUQ) BT Wie WIAY — tr(DBTIW)),

L AU(¢) (B~ ® E3)Au(().

262 ()

The unconstrained M-estimators ZM can be solved by letting S({ ;) (¢) = 0 and then B M= B M (ZM)

and 57 3 = 52 3 (Car)-
MESDPS(0,1,1). By setting oy = 0, we have MESDPS(0,1,1). Let Ay = I7—1 ® Ay with
Ag = 10l + €202 The first differenced model is given by

AY = AgAY_; + AX By + Au, e“3°W3 Ay = Ag,

and the conditional quasi loglikelihood is thus given by

1
202

n(T —1)

5 Au(4) S(az) " Au(e), (D.26)

La01)(0) = — log(0?) —

where 6 = (8,02, 7,a0,03), ¢ = (8,7, 0)", L(a3) = B® e*a3W3e*a3Wi§, and Au(¢) = AY —
AAY_; — AXB. Given ¢ = (7,az,a3)’, the estimators of 3 and ¢? are given by

B(¢) = (AX'2(a3) 'AX)TAX S(as) " H(AY — AAY. ), (D.27)
70 = gy ) (o) A0, (D.28)

where Aw(¢) = AY — AAY_; — AXJ3(¢). Substituting them back into (D.26), ignoring constants,
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the concentrated log-likelihood function is given by:

f011)(C) = —log[Ai(C) S(as) T Ad(C)]. (D.29)

Maximizing (D.29) gives us CQMLE ¢ and then the implied CQMLEs 8 = 5(¢) and 2 = 52(¢).
Correspondingly, the conditional quasi score (CQS) function (2.11) in the paper becomes

B: HAX'Z(az) " Au(g),

o2 = mME 4 L Au(g) S(as) T Au(g),
S,1,1)0) =47 G%Au(qb)’E_lAY_l,

o ém(@’zflwgeazwmy_l,

az: —gmAu(9) (B~ @ E3)Au(9).

Now the expectations in Lemma 2.1 become E(AY A¢') = —02Doe~230W3s and E(AY_;A¢)

= —04D_19e”*0Ws where

I, 0 0
Ay — 21, I,
D_o= (Ao — I))? - - - C
: : . : 0
(A) T4 (Ao —1,)* ... (Ag—1,)? Ap—2I, I,
Ay — 21, I, 0
Ay — I,)? Ao — 21,
Dy = ( 0 ) 0
: : . . I,
AL3(Ag - 1,)? o (Ag— 1) Ag 21,

The adjusted quasi score (AQS) in (2.15) in the main paper is then reduced to

Bi FAX S(ag) " Au(9),

o =050 4oL Au(e) S(as) T Au(9),

Stoan0) =q7: U%Au(qﬁ)'z—lAy_l 4 tr(D_ B~ e~ W),

a2: HAu(9) DT WreeW2AY. | + tr(D_ B WaezW2),
az: —gmAu(¢) (B @ Es)Au(g).
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To derive the M-estimator, the constrained M-estimators of 3 and o2 are first solved as

B (O) = (AX'S(a3) "AX) TAX S(a3) HAY — AAY.,), (D.30)

52 ,(0) = n(zf_l)m@)’z(ag)mmo, (D.31)

where Au(¢) = AY — AAY_; — AXBM(Q. Then EM(C) and 3§7M(C) are substituted back into the
rest of the AQS function to get the concentrated AQS function:

T %@AE(C)/E*AYA +tr(D_1B71),
Ue,M
S?(il,l) (C) =4 Q2 mAa(C)'E—IWZeazszy_l + tr(D_lB_IWQeazwz),
az:  —=—=—AU(C) (B~ @ E3)AU(C).
QUE,M(C)

The unconstrained M-estimators p,;, sy and asps can be solved by letting Sz‘ocl 1)(C ) = 0 and

consequently the unconstrained M-estimators 3,; = 3,,(Cs;) and 32 M= 33 w(Car)-

E Some more Monte Carlo results
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Table E.1: Empirical mean of CQMLE and M-estimator, MESDPS(1,1,0)

dis par CQMLE M-est CQMLE M-est CQMLE Me-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9848 0.9990 0.9862 1.0003 0.9992 1.0000 0.9993 1.0001
1 0.9363 0.9511 0.9679 0.9825 0.9898 0.9907 0.9910 0.9918
1.5 1.4853 1.5002 1.4858 1.5006 1.4999 1.5000 1.4999 1.5000
1.1 1.0986 1.1005 1.0982 1.1000 1.1001 1.1000 1.1001 1.1000
—-0.5 —0.4987 —0.5005 —0.4993 —0.5006 —0.5000 —0.5000 —0.5000 —0.5000

2 1 0.9832 0.9980 0.9862 1.0004 1.0001 1.0009 0.9997 1.0004
1 0.9502 0.9654 0.9640 0.9783 0.9843 0.9852 0.9907 0.9915
1.5 1.4854 1.5007 1.4856 1.5003 1.4999 1.5000 1.4999 1.5000
1.1 1.0993 1.1014 1.0987 1.1003 1.1001 1.1000 1.1001 1.1000
—0.5 —-0.4986 —0.4998 —0.4984 —0.4998 —0.5000 —0.5000 —0.5000 —0.5000

3 1 0.9871 1.0015 0.9859 0.9998 0.9971 0.9978 1.0006 1.0013
1 0.9452 0.9608 0.9617 0.9762 0.9848 0.9857 0.9890 0.9898
1.5 1.4856 1.5008 1.4861 1.5008 1.4999 1.5000 1.4999 1.5000
1.1 1.0987 1.1006 1.0983 1.1000 1.1001 1.1000 1.1001 1.1000
—-0.5 —-04993 —0.5014 —0.4987 —0.5003 —0.5000 —0.5000 —0.5000 —0.5000

1 0.9593 1.0004 0.9583 0.9996 0.9933 0.9992 0.9945 1.0003
1 0.9184 0.9623 0.9400 0.9822 0.9813 0.9879 0.9895 0.9957
0 —0.0544  0.0022 —0.0549 0.0011 —0.0104 —0.0003 —0.0096 0.0000
1.1 1.0513 1.1063 1.0486 1.1032 1.1135 1.1017 1.1120 1.1007
—-0.5 —-0.4860 —0.5004 —0.4861 —0.4996 —0.5036 —0.5007 —0.5030 —0.5002
2 1 0.9601 1.0014 0.9596 1.0007 0.9932 0.9991 0.9946 1.0005
1 0.9221 0.9662 0.9446 0.9870 0.9801 0.9865 0.9857 0.9918
0 —0.0542  0.0025 —0.0546  0.0013 —0.0098  0.0002 —0.0097  —0.0002
1.1 1.0479 1.1041 1.0484 1.1030 1.1121 1.1002 1.1120 1.1009
—-0.5 —0.4909 —0.5039 —0.4860 —0.4994 —-0.5031 —0.5003 —0.5029 —0.5001
3 1 0.9610 1.0025 0.9575 0.9984 0.9950 1.0010 0.9932 0.9991
1 0.9165 0.9608 0.9409 0.9838 0.9772 0.9837 0.9828 0.9890
0 —0.0531 0.0035 —0.0542 0.0018 —0.0094  0.0005 —0.0095 0.0001
1.1 1.0470 1.1029 1.0481 1.1029 1.1115 1.0998 1.1119 1.1007
-0.5 —-04883 —0.5013 -0.4870 —0.5005 —0.5031 —0.5003 —0.5029 —0.5000

1 1 0.9865 0.9977 0.9878 0.9991 0.9981 0.9995 0.9990 1.0005
1 0.9544 0.9661 0.9784 0.9900 0.9860 0.9875 0.9913 0.9928
—-1.5 —1.6307 —1.5001 —1.5295 —1.4988 —1.5098 —1.4998 —1.5095 —1.4994
1.1 1.1007 1.1031 1.1013 1.1027 1.0953 1.0986 1.0982 1.1017
—-0.5 —-0.4636 —0.5023 —0.4662 —0.5038 —0.4863 —0.4982 —0.4879 —0.5002
2 1 0.9892 1.0003 0.9902 1.0013 0.9980 0.9995 0.9978 0.9993
1 0.9568 0.9685 0.9728 0.9840 0.9830 0.9845 0.9923 0.9939
—1.5 —1.5285 —1.4978 —-1.5302 —1.5001 —-1.5096 —1.4995 —-1.5102 —1.5001
1.1 1.1012 1.1027 1.0985 1.1002 1.0958 1.0992 1.0958 1.0991
-0.5 -0.4664 —0.5038 —0.4613 —0.4981 —-0.4870 —0.4989 —0.4869 —0.4990
3 1 0.9854 0.9964 0.9896 1.0006 0.9990 1.0006 0.9995 1.0010
1 0.9597 0.9718 0.9694 0.9808 0.9878 0.9894 0.9900 0.9915
—-1.5 —-1.5313 -1.5007 -—1.5301 —1.5000 —1.5089 —1.4987 —1.5093 —1.4993
1.1 1.1006 1.1028 1.0993 1.1010 1.0991 1.1025 1.0962 1.0996
—-0.5 —0.4651 —0.5036 —0.4668 —0.5041 —-0.4863 —0.4983 —0.4892 —0.5013

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters 0 =
(8,02, 7,00, 03) . Wi and Wy are generated by rook and queen contiguity respectively.
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Table E.2: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(1,1,0)

dis par  sd se se se sd se se se sd se se se sd se se se
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7
1 1 .052  .051 .057 .052 .036 .036 .038 .036 .029 .029 .032 .029 .020 .020 .021 .020
1 143 140 155 140 .098 .102 .106 .101 .081 .088 .089 .085 .058 .060 .060 .059

1.5 .015 .014 .016 .014 .010 .010 .011 .010 .000 .000 .000 .000 .000 .000 .000 .000
1.1 .014 .014 .015 .014 .010 .010 .010 .010 .000 .000 .000 .000 .000 .000 .000 .000
-0.5 .028 .027 .030 .027 .020 .019 .020 .019 .000 .000 .000 .000 .000 .000 .000 .000
2 1 054 .051 .057 .052 .037 .036 .038 .036 .030 .029 .032 .029 .021 .020 .021 .020
1 146 142 158 142 103 .102 .105 .101 .084 .088 .088 .084 .057 .060 .060 .059
1.5 .015 .014 .016 .015 .010 .010 .010 .010 .000 .000 .000 .000 .000 .000 .000 .000
1.1 .015 .015 .016 .014 .009 .010 .010 .010 .000 .000 .000 .000 .000 .000 .000 .000
-0.5 .028 .027 .030 .027 .019 .019 .020 .019 .000 .000 .000 .000 .000 .000 .000 .000
3 1 052 .01 .059 .052 .037 .036 .039 .036 .029 .029 .032 .029 .020 .020 .021 .020
1 205 187 126 .141 .140 138 .081 .100 .123 .127 .063 .084 .085 .089 .041 .058
1.5 .016 .015 .015 .014 .011 .011 .010 .010 .000 .000 .000 .000 .000 .000 .000 .000
1.1 .014 .015 .016 .014 .010 .010 .011 .010 .000 .000 .000 .000 .000 .000 .000 .000
-0.5 .029 .028 .031 .027 .019 .019 .020 .019 .000 .000 .000 .000 .000 .000 .000 .000

.056 .054 .060 .055 .039 .038 .040 .038 .030 .029 .032 .030 .022 .021 .021 .021
151 150 .161 .146 .102 .107 .109 .103 .083 .105 .089 .090 .059 .070 .060 .062
0 036 .030 .034 .031 .024 .021 .022 .021 .009 .013 .010 .011 .007 .008 .006 .007
1.1 087 .086 .083 .080 .059 .060 .056 .056 .018 .025 .019 .020 .013 .015 .012 .013
—-0.5 .066 .064 .063 .060 .043 .045 .042 .042 .007 .007 .006 .006 .004 .005 .004 .004

2 1 .057 .054 .060 .055 .040 .038 .040 .038 .030 .029 .032 .030 .021 .021 .021 .021
1 150 149 163 .146 .106 .107 .109 .104 .083 .104 .089 .090 .058 .069 .060 .062
0 037 .030 .034 .031 .025 .021 .022 .021 .009 .013 .010 .011 .006 .008 .006 .007

1.1 .089 .086 .083 .080 .060 .061 .056 .056 .018 .025 .019 .020 .012 .015 .012 .013
—-0.5 .061 .063 .063 .060 .044 .045 .043 .042 .007 .007 .006 .006 .004 .005 .004 .004

3 1 .058 .054 .062 .055 .040 .038 .041 .038 .031 .029 .032 .029 .021 .021 .022 .021
1 193 194 133 146 145 143 .086 .104 .116 .144 .064 .090 .085 .099 .042 .062
0 038 .033 .033 .031 .027 .023 .021 .021 .010 .013 .010 .011 .006 .008 .006 .007

1.1 .085 .087 .088 .080 .057 .060 .058 .056 .019 .026 .019 .020 .012 .016 .012 .013
—-0.5 .065 .064 .065 .060 .044 .045 .043 .042 .006 .007 .006 .006 .004 .005 .004 .004

1 1 .054 .051 .057 .052 .038 .036 .038 .036 .030 .029 .032 .029 .021 .020 .021 .021
1 141 135 .158 .140 .100 .099 .106 .100 .084 .080 .089 .082 .056 .057 .060 .057
—-1.5 .037 .034 .040 .035 .026 .024 .027 .025 .019 .018 .021 .019 .013 .013 .014 .013
1.1 073 071 .079 .072 .050 .051 .053 .051 .043 .043 .047 .043 .030 .031 .032 .031
—-0.5 .079 .077 .084 .077 .056 .055 .057 .055 .041 .040 .044 .041 .028 .029 .030 .029

2 1 052 .0561 .057 .052 .037 .036 .038 .036 .029 .029 .032 .029 .020 .020 .021 .021
1 141 136 .157 .140 .103 .098 .105 .100 .080 .080 .089 .081 .057 .057 .060 .058
—-1.5 .036 .034 .040 .035 .025 .024 .027 .025 .019 .018 .021 .019 .014 .013 .014 .013
1.1 073 071 .079 .072 .052 .050 .053 .051 .043 .043 .047 .043 .031 .030 .032 .031
—-0.5 .077 .075 .083 .076 .056 .055 .056 .054 .042 .041 .044 .041 .029 .029 .030 .029

3 1 .054 .051 .060 .052 .037 .036 .039 .036 .029 .029 .033 .029 .021 .020 .021 .020
1 206 183 127 141 145 134 .081 .099 .128 117 .064 .082 .085 .085 .041 .057
—-1.5 .036 .034 .042 .035 .025 .024 .027 .025 .019 .018 .021 .019 .013 .013 .014 .013
1.1 074 071 .082 .072 .051 .050 .054 .051 .045 .043 .048 .043 .031 .030 .032 .031
—-0.5 .080 .076 .086 .076 .054 .054 .058 .054 .040 .040 .045 .041 .029 .029 .030 .029

Note: Same configuration as Table Here sd is empirical standard deviation, se is OPMD
estimator, se is standard error based on Q*~! and se based on U*~1(f,/).

28



Table E.3: Empirical mean of CQMLE and M-estimator, MESDPS(1,0,1)

dis par CQMLE M-est CQMLE M-est CQMLE Me-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9734 0.9996 0.9746 1.0005 0.9956 0.9994 0.9962 1.0000
1 0.9263 0.9510 0.9576 0.9825 0.9871 0.9905 0.9885 0.9918
0.5 0.4604 0.5002 0.4610 0.5006 0.4972 0.4999 0.4973 0.5000
0.5 0.4846 0.5014 0.4835 0.5003 0.5022 0.5002 0.5019 0.5000
-11 -1.0778 —-1.0916 -1.0861 —1.1000 —-1.1049 -1.1039 —1.0990 —1.0986
2 1 0.9734 1.0004 0.9746 1.0005 0.9968 1.0005 0.9965 1.0002
1 0.9386 0.9639 0.9536 0.9781 0.9820 0.9853 0.9881 0.9914
1.5 0.4617 0.5020 0.4613 0.5003 0.4972 0.5000 0.4973 0.5000
0.5 0.4862 0.5030 0.4837 0.5002 0.5024 0.5004 0.5022 0.5002
—-1.1 —-1.081 —-1.0984 —-1.0900 —-1.1042 -—-1.1044 —-1.1041 -1.1034 —1.1026
3 1 0.9747 1.0011 0.9748 1.0005 0.9955 0.9992 0.9969 1.0006
1 0.9341 0.9600 0.9503 0.9752 0.9823 0.9856 0.9866 0.9899
1.5 0.4617 0.5019 0.4614 0.5008 0.4973 0.5001 0.4973 0.5000
0.5 0.4855 0.5024 0.4830 0.4997 0.5021 0.5001 0.5021 0.5001
-1.1 -1.0899 -1.1027 -1.0867 —1.1012 —-1.1041 —1.1034 —1.0996 —1.0992

1 0.9700 1.0000 0.9686 0.9990 0.9903 0.9992 0.9908 0.9996
1 0.9276 0.9591 0.9487 0.9804 0.9793 0.9875 0.9870 0.9951
0 —0.0574 0.0013 —0.0589  0.0002 —0.0140  0.0002 —0.0141  0.0000
0.5 0.4618 0.5040 0.4576 0.5010 0.5013 0.5025 0.4995 0.5007
-1.1 -1.0711 -1.1008 —1.0667 —1.0957 —1.0997 -—-1.1013 —-1.0998 —1.1014
2 1 0.9692 0.9995 0.9703 1.0003 0.9901 0.9991 0.9911 0.9999
1 0.9314 0.9631 0.9538 0.9855 0.9784 0.9865 0.9832 0.9913
0 —0.0578 0.0012 —0.0589 —0.0001 —0.0139 0.0003 —0.0142 —0.0001
0.5 0.4619 0.5044 0.4568 0.4998 0.5001 0.5010 0.4995 0.5007
-1.1 -1.0743 -1.1046 —-1.0702 —1.1000 —-1.0989 —-1.1002 —-1.0997 —1.1011
3 1 0.9715 1.0017 0.9681 0.9980 0.9915 1.0003 0.9907 0.9994
1 0.9255 0.9572 0.9493 0.9811 0.9750 0.9832 0.9812 0.9892
0 —0.0569 0.0015 —0.0580  0.0007 —0.0136  0.0004 —0.0135 0.0005
0.5 0.4580 0.5000 0.4580 0.5010 0.4998 0.5009 0.4998 0.5012
—-1.1 -1.0660 —1.0945 —1.0688 —1.0987 —-1.1034 -—1.1047 -1.1014 —1.1029

1 1 0.9769 0.9971 0.9793 0.9997 0.9941 0.9992 0.9956 1.0005
1 0.9374 0.9634 0.9629 0.9898 0.9809 0.9868 0.9866 0.9926
—-0.5 —-0.5608 —0.5012 —0.5589 —0.4982 —0.5241 —0.5010 —0.5235 —0.5000
0.5 0.4398 0.5050 0.4382 0.5067 0.4915 0.5027 0.4866 0.4998
-1.1 -1.0764 —-1.1122 —-1.0687 —1.1082 —-1.0999 —-1.10v1 —-1.0901 —1.0987
2 1 0.9796 0.9996 0.9802 1.0003 0.9933 0.9984 0.9948 0.9997
1 0.9419 0.9682 0.9569 0.9832 0.9783 0.9842 0.9875 0.9935
—-0.5 —0.5580 —0.4983 —0.5611 —0.5012 —0.5243 —0.5011 —0.5245 —0.5010
0.5 0.4455 0.5117 0.4356 0.5035 0.4960 0.5077 0.4856 0.4986
-1.1 -1.0694 -1.1073 -1.0672 —-1.1070 —-1.0990 -1.1069 —1.0923 —1.1008
3 1 0.9760 0.9963 0.9788 0.9989 0.9956 1.0007 0.9956 1.0004
1 0.9436 0.9707 0.9527 0.9790 0.9836 0.9897 0.9853 0.9913
—-0.5 —0.5606 —0.5004 —0.5600 —0.5004 —0.5233 —0.5000 —0.5233 —0.5000
0.5 0.4389 0.5067 0.4389 0.5070 0.4900 0.5016 0.4900 0.5026
-1.1 -1.0599 —-1.0995 -1.0665 —1.1079 —1.0978 —1.1050 —1.0938 —1.1020

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters 0 =
(B,02,7,00,0a3). Wi and Wy are generated by rook and queen contiguity respectively.

29



Table E.4: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(1,0,1)

dis par  sd se se se sd se se se sd se se se sd se se se
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7
1 1 .041 .041 .045 .041 .029 .029 .030 .029 .022 .021 .024 .022 .015 .015 .016 .015
1 144 135 156 139 .099 .099 .107 .101 .081 .083 .089 .083 .058 .058 .060 .058

0.5 027 .025 .029 .026 .019 .018 .019 .018 .003 .003 .004 .003 .002 .002 .002 .002
0.5 .031 .030 .033 .030 .022 .022 .023 .022 .006 .006 .006 .006 .004 .004 .004 .004
—-1.1 145 .143 .155 .142 .100 .099 .103 .099 .081 .080 .086 .080 .058 .057 .058 .056
2 1 .044 .041 .045 .041 .029 .029 .030 .029 .022 .022 .024 .022 .015 .015 .016 .015
1 146 137 159 141 104 .099 .106 .100 .083 .082 .089 .082 .057 .058 .060 .058
1.5 028 .025 .029 .026 .018 .018 .019 .018 .003 .003 .004 .003 .002 .002 .002 .002
0.5 032 .031 .034 .031 .022 .022 .022 .022 .006 .006 .006 .006 .004 .004 .004 .004
—-1.1 151 .144 .154 .142 .098 .099 .103 .099 .082 .079 .086 .080 .058 .056 .058 .056
3 1 .043 .041 .046 .041 .030 .029 .031 .029 .022 .021 .024 .022 .015 .015 .016 .015
1 206 .181 .128 141 .140 .134 .082 .100 .123 .120 .063 .083 .085 .086 .042 .058
1.5 .030 .027 .029 .026 .020 .019 .018 .018 .004 .003 .004 .003 .002 .002 .002 .002
0.5 030 .029 .036 .031 .022 .021 .024 .022 .006 .006 .007 .006 .004 .005 .004 .004
-1.1 .150 .142 .163 .143 .101 .097 .107 .099 .081 .079 .088 .080 .056 .056 .060 .056

042 .041 .046 .042 .029 .029 .031 .029 .022 .022 .025 .022 .017 .016 .016 .016
148 138 .158 .141 .100 .099 .107 .101 .083 .082 .089 .083 .059 .058 .060 .058
0 038 .034 .037 .034 .026 .024 .025 .024 .010 .010 .011 .010 .007 .007 .007 .007
0.5 059 .057 .061 .056 .041 .040 .041 .040 .025 .025 .025 .024 .018 .018 .017 .017
-1.1 .154 .144 .156 .144 .101 .099 .105 .100 .081 .080 .086 .080 .056 .056 .059 .057

2 1 .042 .041 .046 .042 .030 .029 .030 .029 .022 .022 .024 .022 .016 .016 .016 .016
1 145 137 161 142 104 100 .108 .101 .082 .081 .090 .082 .058 .058 .060 .058
0 037 .033 .037 .034 .026 .024 .025 .024 .010 .010 .011 .010 .007 .007 .007 .007

0.5 059 .057 .061 .056 .041 .040 .041 .040 .024 .025 .025 .024 .017 .018 .017 .017
—-1.1 .145 .144 .156 .143 .098 .099 .105 .100 .081 .080 .086 .080 .059 .056 .059 .057

3 1 .044 .042 .047 042 .031 .029 .031 .029 .022 .022 .024 .022 .016 .016 .017 .016
1 190 179 130 141 143 134 .084 .101 116 .117 .065 .082 .085 .086 .042 .058
0 038 .035 .037 .034 .027 .025 .024 .024 .010 .010 .011 .010 .007 .007 .007 .007

0.5 .054 .053 .065 .056 .039 .038 .044 .040 .025 .025 .026 .024 .017 .018 .017 .017
—-1.1 .148 .142 .164 .143 .103 .098 .108 .100 .082 .079 .089 .080 .057 .056 .060 .057

1 1 .044 .042 .046 .042 .031 .029 .031 .029 .024 .024 .026 .024 .017 .017 .017 .017
1 144 137 159 141 102 .100 .108 .102 .084 .081 .089 .082 .056 .057 .060 .058
—-0.5 .041 .037 .041 .037 .029 .026 .028 .027 .019 .017 .019 .018 .013 .012 .013 .013
0.5 J21 116 123 115 .084 .082 .083 .081 .068 .069 .071 .068 .048 .049 .049 .048
-1.1 .159 .153 .166 .152 .110 .105 .110 .105 .087 .085 .094 .086 .059 .060 .063 .061

2 1 .044 .042 .046 .042 .029 .029 .031 .029 .025 .024 .026 .024 .016 .017 .017 .017
1 144 138 .159 142 105 .100 .107 .101 .080 .080 .089 .082 .057 .058 .060 .058
—-0.5 .040 .037 .042 .037 .028 .026 .028 .026 .018 .017 .020 .018 .013 .012 .013 .013
0.5 116 .116 123 114 .085 .082 .083 .081 .069 .068 .072 .068 .048 .049 .049 .048
-1.1 .158 .154 .166 .152 .109 .105 .110 .105 .085 .085 .093 .086 .061 .060 .063 .060

3 1 .044 .043 .048 .042 .029 .030 .031 .029 .024 .023 .026 .024 .017 .017 .017 .017
1 207 184 129 142 147 134 .083 .100 .129 .118 .064 .082 .085 .085 .042 .058
—-0.5 .042 .039 .041 .037 .030 .027 .027 .026 .019 .017 .020 .018 .013 .012 .013 .013
0.5 122 112 131 114 .083 .080 .086 .080 .067 .067 .074 .067 .048 .049 .049 .048
-1.1 152 .152 174 .152 .106 .103 .115 .105 .085 .084 .097 .086 .062 .059 .064 .060

Note: Same configuration as Table Here sd is empirical standard deviation, se is OPMD
estimator, se is standard error based on Q*~! and se based on U*~1(f,/).
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Table E.5: Empirical mean of CQMLE and M-estimator, MESDPS(0,1,1)

dis par CQMLE M-est CQMLE M-est CQMLE Me-est CQMLE M-est
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7
1 1 0.9771 0.9999 0.9781 1.0006 0.9979 0.9994 0.9985 1.0001
1 0.9304 0.9503 0.9624 0.9826 0.9889 0.9905 0.9903 0.9918
1.5 1.4704 1.5004 1.4708 1.5006 1.4997 1.5000 1.4997 1.5000
0.5 0.5167 0.4997 0.5165 0.4998 0.5002 0.5000 0.5002 0.5000
—1.1 —-1.0526 —1.05631 —1.0850 —1.0848 —1.0883 —1.0886 —1.0879 —1.0882
2 1 0.9757 0.9993 0.9772 0.9999 0.9992 1.0008 0.9991 1.0006
1 0.9429 0.9634 0.9571 0.9769 0.9837 0.9852 0.9899 0.9914
1.5 1.4711 1.5017 1.4703 1.4996 1.4997 1.5000 1.4997 1.5000
0.5 0.5160 0.4987 0.5168 0.5003 0.5002 0.5000 0.5002 0.5000
—-1.1 -1.0574 —1.0574 —1.0863 —1.0876 —1.0886 —1.0891 —1.0940 —1.0944
3 1 0.9784 1.0016 0.9771 0.9996 0.9971 0.9987  0.9997 1.0012
1 0.9389 0.9598 0.9551 0.9751 0.9845 0.9860 0.9885 0.9900
1.5 1.4708 1.5014 1.4709 1.5004 1.4997 1.5000 1.4997 1.5000
0.5 0.5165 0.4992 0.5166 0.5000 0.5002 0.5000 0.5002 0.5000
—1.1 —-1.0582 —1.0582 —1.0868 —1.0874 —1.0873 —1.0876 —1.0906 —1.0909
1 1 0.9515 1.0001 0.9499 0.9995 0.9840 0.9992 0.9846 0.9997
1 0.9152 0.9581 0.9367 0.9802 0.9732 0.9876 0.9807 0.9950
0 —0.0960 0.0011 —0.0972  0.0003 —0.0320 0.0006 —0.0324 —0.0001
0.5 0.5540 0.4989 0.5550 0.4998 0.5192 0.4996 0.5194 0.5001
—1.1 —1.0597 —1.0602 —1.0748 —1.0753 —1.0842 —1.0872 —1.0910 —1.0948
2 1 0.9504 0.9998 0.9508 0.9998 0.9844 0.9996 0.9853 1.0004
1 0.9188 0.9623 0.9411 0.9845 0.9715 0.9858 0.9773 0.9915
0 —0.0963  0.0017 —0.0979 —0.0011 —0.0322 0.0003 —0.0323  0.0000
0.5 0.5541 0.4984 0.5555 0.5007 0.5193 0.4998 0.5193 0.5000
—-1.1 -1.0674 —1.0671 —1.0834 —1.0837 —1.0822 —1.0862 —1.0912 —1.0949
3 1 0.9520 1.0010 0.9492 0.9980 0.9853 1.0006 0.9844 0.9994
1 0.9136 0.9571 0.9374 0.9812 0.9682 0.9825 0.9752 0.9896
0 —0.0968  0.0004 —0.0966  0.0004 —0.0321  0.0004 —0.0313  0.0011
0.5 0.5552 0.5003 0.5548 0.4999 0.5192 0.4997 0.5188 0.4993
-1.1 -1.0621 —-1.0611 —-1.0790 —1.0788 —1.0893 —1.0927 —1.0928 —1.0971
1 1 0.9915 0.9983 0.9930 0.9999 0.9985 0.9994 0.9996 1.0005
1 0.9585 0.9650 0.9821 0.9888 0.9862 0.9872 0.9916 0.9926
—-1.5 —1.5282 —1.5000 —1.5264 —1.4979 —1.5097 —1.5005 —1.5090 —1.4996
0.5 0.5108 0.5011 0.5095 0.4994 0.4993 0.4999 0.5000 0.5002
—-1.1 —-1.0753 —1.0769 —1.0883 —1.0891 —1.0945 —1.0947 —-1.0931 —1.0932
2 1 0.9936 1.0003 0.9945 1.0012 0.9988 0.9997 0.9985 0.9993
1 0.9599 0.9665 0.9775 0.9840 0.9830 0.9840 0.9928 0.9938
—1.5 —1.5253 —1.4967 —1.5284 —1.5004 —1.5098 —1.5006 —1.5095 —1.5002
0.5 0.5085 0.4983 0.5100 0.5002 0.4983 0.4987 0.4993 0.4996
—1.1 —1.0554 —1.0563 —1.0884 —1.0889 —1.0886 —1.0889 —1.0988 —1.0990
3 1 0.9894 0.9961 0.9934 1.0001 0.9996 1.0005 0.9999 1.0008
1 0.9624 0.9691 0.9731 0.9797 0.9884 0.9894 0.9904 0.9914
—1.5 —1.5299 —1.5014 —1.5275 —1.4994 —1.5090 —1.4998 —1.5087 —1.4994
0.5 0.5111 0.5009 0.5087 0.4987 0.5007 0.5011 0.4985 0.4988
—1.1 —1.0554 —1.0563 —1.0844 —1.0848 —1.0892 —1.0894 —1.0954 —1.0956

Note: Disturbance 1=normal,
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2=normal-mixture and 3=gamma.

Parameters 0 =
(8,02, 7,00, 03) . Wy and Wy are generated by rook and queen contiguity respectively.



Table E.6: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(0,1,1)

dis par  sd se se se sd se se se sd se se se sd se se se
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7
1 1 .047 .047 052 .047 .033 .033 .035 .033 .026 .025 .028 .026 .018 .018 .019 .018
1 143 135 155 139 .099 .099 .106 .100 .081 .081 .089 .082 .058 .057 .060 .057

1.5 022 .021 .024 .021 .016 .015 .016 .015 .000 .000 .001 .000 .000 .000 .000 .000
0.5 .016 .015 .017 .015 .011 .011 .011 .011 .000 .000 .000 .000 .000 .000 .000 .000
-1.1 .205 .197 214 .196 .138 .138 .144 .138 .113 .109 .118 .110 .078 .078 .081 .078
2 1 050 .047 .052 .048 .034 .033 .035 .033 .027 .025 .028 .026 .018 .018 .019 .018
1 144 137 159 141 103 .098 .106 .100 .083 .080 .089 .081 .057 .057 .060 .057
1.5 023 .021 .024 .022 .015 .015 .016 .015 .000 .000 .001 .000 .000 .000 .000 .000
0.5 .016 .015 .017 .015 .011 .010 .011 .011 .000 .000 .000 .000 .000 .000 .000 .000
-1.1 .208 .199 212 .196 .141 .137 .144 .137 .108 .108 .119 .110 .079 .077 .081 .078
3 1 .048 .047 .055 .048 .034 .033 .036 .033 .025 .025 .029 .026 .018 .018 .019 .018
1 205 181 127 140 139 134 .082 .100 .123 117 .063 .082 .085 .085 .041 .057
1.5 023 .022 .025 .022 .016 .015 .016 .015 .000 .000 .001 .000 .000 .000 .000 .000
0.5 .015 .014 .018 .015 .011 .010 .012 .011 .000 .000 .000 .000 .000 .000 .000 .000
-1.1 .204 .194 .223 .197 .138 .137 .147 .138 .109 .108 .121 .110 .077 .077 .083 .078

052 .050 .056 .051 .037 .036 .038 .036 .027 .026 .029 .027 .020 .019 .019 .019
148 141 160 .144 .102 .102 .109 .103 .083 .081 .090 .083 .059 .058 .061 .058
0 054 .049 .053 .049 .039 .035 .035 .034 .017 .016 .018 .016 .012 .011 .012 .011
0.5 035 .032 .035 .032 .025 .023 .023 .022 .010 .010 .011 .010 .007 .007 .007 .007
-1.1 212 .198 .214 .197 .140 .138 .143 .138 .112 .109 .119 .110 .077 .078 .081 .078

2 1 052 .050 .056 .051 .037 .036 .037 .036 .027 .026 .029 .027 .019 .018 .020 .019
1 148 140 163 .144 107 .102 .109 .103 .083 .081 .090 .083 .059 .058 .060 .058
0 055 .049 .054 .049 .037 .035 .036 .034 .017 .016 .018 .016 .012 .011 .012 .011

0.5 035 .032 .035 .032 .024 .023 .023 .022 .011 .010 .011 .010 .007 .007 .007 .007
-1.1 .204 .196 .214 .196 .141 .139 .143 .138 .111 .110 .118 .110 .077 .077 .081 .078

3 1 .052 .060 .058 .051 .037 .036 .038 .036 .027 .026 .029 .026 .019 .019 .020 .019
1 191 182 133 143 144 136 .086 .103 .116 .116 .066 .082 .085 .085 .043 .058
0 .054 .050 .055 .049 .037 .035 .036 .034 .017 .016 .018 .016 .011 .011 .012 .011

0.5 032 .031 .038 .032 .022 .022 .025 .022 .010 .009 .011 .010 .007 .007 .007 .007
-1.1 .201 .195 .224 .197 .145 .136 .148 .137 .114 .108 .122 .110 .080 .077 .082 .078

1 1 .047 .044 .050 .045 .033 .032 .034 .032 .027 .025 .028 .026 .018 .018 .019 .018
1 140 134 157 139 .099 .098 .106 .100 .084 .080 .088 .082 .056 .057 .060 .057
—-1.5 .037 .035 .040 .036 .027 .025 .027 .025 .018 .018 .020 .018 .013 .013 .013 .013
0.5 033 .032 .035 .032 .023 .023 .024 .023 .022 .021 .023 .022 .015 .015 .016 .015
-1.1 .198 .199 214 .197 .142 139 .143 .138 .111 .109 .119 .110 .076 .078 .081 .078

2 1 .046 .045 .050 .045 .032 .031 .033 .032 .026 .025 .028 .026 .017 .018 .019 .018
1 141 135 156 .139 .102 .098 .105 .099 .080 .080 .089 .081 .057 .057 .060 .057
—-1.5 .038 .035 .041 .036 .025 .024 .027 .025 .018 .018 .020 .018 .013 .013 .013 .013
0.5 033 .032 .035 .032 .023 .022 .024 .023 .022 .021 .023 .021 .015 .015 .016 .015
-1.1 .202 .197 213 .196 .140 .138 .144 .138 .111 .109 .119 .110 .078 .078 .081 .078

3 1 .048 .044 .052 .045 .032 .031 .034 .032 .025 .025 .029 .026 .018 .018 .019 .018
1 204 182 125 139 145 133 .080 .099 .128 .117 .064 .082 .085 .085 .041 .057
-1.5 .037 .035 .042 .036 .025 .025 .027 .025 .018 .018 .020 .018 .013 .013 .013 .013
0.5 034 .032 .036 .032 .023 .023 .024 .023 .022 .021 .024 .021 .015 .015 .016 .015
-1.1 204 .194 224 .196 .136 .136 .148 .137 .111 .107 .122 .110 .077 .077 .083 .078

Note: Same configuration as Table Here sd is empirical standard deviation, se is OPMD
estimator, se is standard error based on Q*~! and se based on U*~1(f,/).

32



Table E.7: Empirical mean of CQMLE and M-estimator, MESDPS(1,0,0)

dis par CQMLE M-est CQMLE M-est CQMLE Me-est CQMLE M-est

n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7

1 1 0.9659 0.9995 0.9676 1.0006 0.9963 1.0001 0.9963 1.0000
1 0.9279 0.9619 0.9549 0.9886 0.9901 0.9941 0.9897 0.9934
0.5 0.4566 0.5009 0.4571 0.5011 0.4966 0.4999 0.4970 0.4999
1.1 1.0785 1.1019 1.0776 1.1006 1.1047 1.1003 1.1039 1.1002
2 1 0.9649 0.9995 0.9677 1.0009 0.9971 1.0009 0.9968 1.0004
1 0.9419 0.9776 0.9505 0.9837 0.9845 0.9885 0.9896 0.9933
0.5 0.4574 0.5029 0.4574 0.5009 0.4966 0.5000 0.4970 0.4999
1.1 1.0795 1.1037 1.0778 1.1005 1.1046 1.1002 1.1040 1.1002
3 1 0.9684 1.0024 0.9674 1.0002 0.9943 0.9980 0.9978 1.0013
1 0.9372 0.9733 0.9480 0.9814 0.9852 0.9892 0.9880 0.9916
0.5 0.4579 0.5032 0.4578 0.5013 0.4967 0.5001 0.4971 0.5000
1.1 1.0789 1.1030 1.0775 1.1002 1.1044 1.1000 1.1037 1.1000
1 1 0.9539 1.0004 0.9528 0.9995 0.9924 0.9992 0.9938 1.0004
1 0.9231 0.9723 0.9389 0.9864 0.9837 0.9910 0.9904 0.9973
0 —0.0710  0.0026 —0.0717  0.0009 —0.0101  0.0000 —0.0099 0.0001
1.1 1.0390 1.1041 1.0371 1.1011 1.1100 1.1022 1.1098 1.1008
2 1 0.9541 1.0012 0.9539 1.0004 0.9922 0.9990 0.9939 1.0006
1 0.9250 0.9749 0.9436 0.9914 0.9828 0.9899 0.9867 0.9935
0 —-0.0711  0.0029 —0.0718 0.0008 —0.0099  0.0001 —0.0100  0.0000
1.1 1.0386 1.1041 1.0367 1.1007 1.1093 1.1013 1.1099 1.1010
3 1 0.9548 1.0019 0.9522 0.9985 0.9941 1.0008 0.9926 0.9992
1 0.9198 0.9693 0.9403 0.9885 0.9795 0.9865 0.9840 0.9909
0 —0.0708  0.0028 —0.0708 0.0018 —0.0094  0.0006 —0.0096  0.0004
1.1 1.0359 1.1011 1.0378 1.1019 1.1083 1.1003 1.1091 1.1005
1 1 0.9573 0.9982 0.9598 1.0003 0.9884 0.9996 0.9896 1.0005
1 0.9351 0.9782 0.9547 0.9973 0.9793 0.9905 0.9832 0.9941
—-0.5 —-0.5783 —-0.4976 —0.5772 —0.4964 —0.5341 —0.5003 —0.5336 —0.5001
1.1 0.9868 1.1042 0.9884 1.1061 1.0683 1.1011 1.0666 1.0994
2 1 0.9604 1.0014 0.9611 1.0012 0.9880 0.9995 0.9881 0.9990
1 0.9382 0.9820 0.9481 0.9898 0.9763 0.9875 0.9839 0.9949
—-0.5 —0.5775 —0.4958 —0.5797 —0.4997 —-0.5346 —0.5009 —0.5347 —0.5012
1.1 0.9892 1.1086 0.9848 1.1016 1.0709 1.1036 1.0660 1.0988
3 1 0.9565 0.9972 0.9605 1.0000 0.9896 1.0009 0.9901 1.0010

1 0.9389 0.9824 0.9427 0.9839 0.9819 0.9933 0.9821 0.9931
—-0.5 —-0.5785 —0.4983 —0.5787 —0.5000 —0.5332 —0.4996 —0.5333 —0.5000
1.1 0.9869 1.1037 0.9878 1.1024 1.0672 1.0998 1.0692 1.1016

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters § = (3, 02,7, oq)/.
W1 is generated by rook contiguity.
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Table E.8: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(1,0,0)

dis par  sd se se se sd se se se sd se se se sd se se se
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7
1 1 .055 .068 .059 .054 .037 .047 .040 .038 .030 .030 .032 .029 .020 .021 .021 .021

—_

147 153 157 141 101 112 .108 .102 .081 .112 .088 .091 .058 .072 .060 .062

0.5 028 .034 .027 .025 .019 .024 .018 .018 .004 .005 .004 .004 .002 .003 .002 .002
1.1 026 .027 .026 .024 .018 .019 .018 .017 .006 .008 .006 .006 .004 .004 .004 .004
2 1 056 .069 .059 .054 .039 .048 .039 .038 .030 .031 .031 .029 .021 .021 .021 .021
1 150 156 .160 .143 .105 .111 .107 .101 .084 .111 .088 .090 .057 .072 .060 .062
0.5 028 .034 .028 .025 .019 .024 .018 .018 .004 .005 .004 .004 .002 .003 .002 .002
1.1 026 .027 .026 .025 .018 .019 .018 .017 .006 .008 .006 .006 .004 .005 .004 .004
3 1 .054 .069 .060 .054 .039 .048 .040 .038 .029 .030 .032 .029 .021 .021 .021 .021
1 210 205 128 143 142 150 .083 .101 .123 .156 .063 .090 .086 .104 .041 .062
0.5 031 .036 .027 .025 .020 .026 .018 .018 .004 .006 .004 .004 .002 .003 .002 .002
1.1 024 .026 .029 .025 .017 .018 .019 .017 .006 .009 .006 .006 .004 .005 .004 .004
1 1 056 .075 .060 .055 .039 .053 .040 .039 .030 .031 .032 .030 .022 .022 .021 .021
1 153 164 160 .144 104 117 109 .102 .083 .093 .088 .085 .059 .065 .060 .060
0 .042 .051 .038 .035 .028 .036 .026 .025 .009 .010 .009 .009 .006 .007 .006 .006
1.1 .051 .055 .049 .046 .036 .039 .033 .032 .020 .023 .020 .020 .014 .015 .013 .014
2 1 058 .076 .060 .055 .040 .053 .040 .039 .030 .031 .032 .030 .021 .022 .021 .021
1 152 164 163 144 108 117 109 .102 .083 .092 .089 .085 .058 .065 .060 .059
0 .043 .052 .038 .035 .029 .036 .026 .025 .008 .010 .009 .009 .006 .007 .006 .006
1.1 053 .056 .049 .046 .035 .039 .033 .032 .019 .023 .020 .020 .013 .015 .013 .014
3 1 058 .077 .062 .055 .041 .053 .041 .039 .031 .031 .032 .029 .021 .022 .021 .021
1 195 212 131 143 147 157 .085 .102 .116 .131 .063 .085 .085 .095 .041 .059
0 .043 .056 .038 .035 .030 .039 .025 .025 .009 .011 .009 .009 .006 .008 .006 .006
1.1 .046 .054 .054 .045 .033 .038 .036 .032 .020 .024 .020 .020 .014 .016 .013 .014
1 1 058 .073 .060 .055 .042 .051 .040 .039 .031 .032 .032 .030 .021 .023 .022 .021
1 150 .162 162 .144 105 .118 .110 .103 .084 .085 .089 .083 .056 .060 .060 .058
—-0.5 .049 .059 .045 .042 .034 .042 .031 .029 .021 .021 .021 .019 .014 .015 .014 .013
1.1 101 107 .097 .090 .069 .076 .065 .063 .052 .051 .052 .049 .035 .036 .035 .035
2 1 .056 .073 .060 .055 .040 .051 .040 .038 .030 .032 .032 .030 .020 .023 .022 .021
1 150 163 162 145 .107 117 108 .102 .081 .084 .089 .082 .057 .060 .060 .058
—-0.5 .048 .059 .046 .042 .033 .042 .031 .029 .021 .021 .021 .019 .014 .015 .014 .013
1.1 099 107 .097 .090 .070 .076 .065 .063 .052 .051 .051 .049 .036 .036 .035 .035
3 1 058 .075 .062 .055 .040 .051 .041 .038 .030 .032 .033 .030 .021 .023 .022 .021

1 212216 131 145 .149 155 .084 .102 .129 .123 .064 .083 .085 .089 .042 .058
—-0.5 .051 .064 .045 .042 .035 .045 .029 .029 .021 .022 .021 .019 .014 .016 .014 .013
1.1 .100 107 .103 .090 .066 .075 .068 .063 .049 .050 .053 .049 .035 .036 .035 .035

Note: Same configuration as Table Here sd is empirical standard deviation, se is OPMD
estimator, Se is standard error based on Q*~! and se based on U*~1(f,/).
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Table E.9: Empirical mean of CQMLE and M-estimator, MESDPS(0,1,0)

dis par CQMLE M-est CQMLE M-est CQMLE Me-est CQMLE M-est
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7
1 1 0.9537 0.9987 0.9565 1.0007 0.9934 1.0000 0.9936 1.0001
1 0.9163 0.9607 0.9442 0.9883 0.9873 0.9942 0.9872 0.9937
0.5 0.4245 0.5000 0.4269 0.5011 0.4948 0.5000 0.4951 0.5001
-0.1 -0.0217 -0.1011 —-0.0236 —0.1016 —0.0944 —0.1000 —0.0946 —0.1000
2 1 0.9529 0.9988 0.9560 1.0004 0.9947 1.0012 0.9941 1.0004
1 0.9302 0.9756 0.9393 0.9828 0.9825 0.9892 0.9865 0.9930
0.5 0.4263 0.5022 0.4265 0.5002 0.4951 0.5002 0.4950 0.5000
—-0.1 —-0.0237 —-0.1038 —0.0231 —0.1005 —0.0947 —0.1003 —0.0946 —0.1000
3 1 0.9565 1.0023 0.9558 0.9996 0.9916 0.9981 0.9950 1.0014
1 0.9261 0.9731 0.9362 0.9801 0.9828 0.9896 0.9852 0.9917
0.5 0.4267 0.5037 0.4266 0.5005 0.4951 0.5002 0.4951 0.5001
—-0.1 —-0.0239 —0.1052 —0.0230 —0.1007 —0.0946 —0.1002 —0.0947 —0.1001
1 1 0.9469 0.9994 0.9465 0.9992 0.9837 0.9994 0.9848 1.0002
1 0.9174 0.9700 0.9333 0.9853 0.9754 0.9912 0.9813 0.9968
0 —0.1022  0.0010 —0.1026  0.0001 —0.0283  0.0008 —0.0286  0.0001
—0.1 0.0044 —0.1029 0.0057 —0.1008 —0.0699 —0.1011 —-0.0694 —0.1001
2 1 0.9481 1.0009 0.9473 0.9994 0.9835 0.9992 0.9851 1.0004
1 0.9213 0.9743 0.9376 0.9896 0.9740 0.9897 0.9779 0.9931
0 —0.1014  0.0023 —0.1033 —0.0010 —0.0286 0.0005 —0.0285 —0.0001
—0.1 0.0036 —0.1044 0.0064 —0.0995 —-0.0694 —0.1007 —0.0695 —0.1000
3 1 0.9490 1.0011 0.9460 0.9977 0.9853 1.0009 0.9842 0.9993
1 0.9148 0.9675 0.9346 0.9870 0.9709 0.9866 0.9761 0.9913
0 —0.1015  0.0009 —0.1013  0.0008 —0.0281 0.0008 —0.0272  0.0009
—0.1 0.0044 —0.1019 0.0044 —0.1016 —0.0699 —0.1009 -—0.0708 —0.1011
1 1 0.9523 0.9960 0.9555 0.9994 0.9898 0.9995 0.9908 1.0006
1 0.9298 0.9733 0.9511 0.9952 0.9808 0.9904 0.9846 0.9942
—-0.5 —0.6050 —0.5026 —0.6011 —0.4982 —0.5390 —0.5011 —0.5384 —0.5002
—0.1 0.0074 —0.0982  0.0040 —0.1023 —0.0594 —0.0991 —0.0595 —0.0996
2 1 0.9565 1.0002 0.9570 1.0007 0.9895 0.9994 0.9895 0.9992
1 0.9345 0.9780 0.9450 0.9880 0.9781 0.9877 0.9855 0.9951
—0.5 —0.6006 —0.4987 —0.6032 —0.5017 —0.5390 —0.5010 —0.5394 —0.5012
—0.1 0.0027 —0.1028 0.0056 —0.0990 —-0.0602 —0.1000 —0.0589 —0.0989
3 1 0.9523 0.9964 0.9570 1.0003 0.9907 1.0006 0.9914 1.0011
1 0.9359 0.9811 0.9411 0.9841 0.9828 0.9926 0.9836 0.9932
—-0.5 —0.6035 —0.5005 —0.6008 —0.5000 —0.5389 —0.5007 —0.5374 —0.4996
—0.1 0.0056 —0.1010  0.0030 —0.1012 —0.0589 —0.0989 —0.0611 —0.1008

Note: Disturbance 1=normal, 2=normal-mixture and 3=gamma. Parameters § = (3, 062, T, ()
Wy is generated by rook contiguity.
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Table E.10: Empirical sd and asymptotic standard errors of M-estimator, MESDPS(0,1,0)

dis par  sd se se se sd se se se sd se se se sd se se se
n=49, T=3 n=100, T=3 n=49, T=7 n=100, T=7
1 1 .056 .055 .060 .055 .039 .039 .040 .039 .030 .029 .032 .030 .021 .020 .021 .021
1 148 143 159  .144 103 103 .109 .103 .082 .082 .088 .083 .059 .057 .060 .058
0.5 .040 .040 .041 .036 .027 .028 .027 .025 .004 .004 .004 .004 .003 .003 .003 .003
—0.1 .045 .049 .042 .041 .030 .034 .027 .028 .004 .005 .004 .004 .003 .003 .003 .003
2 1 .0568 .056 .060 .055 .040 .039 .040 .038 .031 .029 .032 .030 .021 .021 .021 .021
1 149 145 162 .146 .106 .103 .108 .103 .083 .081 .088 .082 .058 .057 .060 .058
0.5 .040 .040 .041 .036 .027 .028 .027 .025 .004 .004 .004 .004 .003 .003 .003 .003
—0.1 .044 .049 .042 .041 .030 .034 .027 .028 .004 .005 .004 .004 .003 .003 .003 .003
3 1 .055 .055 .062 .055 .040 .038 .041 .038 .029 .029 .032 .029 .021 .020 .022 .021
1 209 188 131 .146 .142 137 .084 .103 .123 .118 .063 .082 .086 .085 .041 .058
0.5 042 .039 .042 .037 .028 .026 .027 .025 .004 .004 .004 .004 .003 .003 .003 .003
—0.1 .045 .047 .044 .041 .031 .031 .029 .028 .004 .004 .004 .004 .003 .003 .003 .003
1 1 .057 .057 .061 .056 .041 .040 .041 .039 .030 .030 .032 .030 .022 .021 .022 .021
1 153 148 161 .147 .103 .105 .109 .104 .084 .082 .089 .083 .059 .058 .060 .059
0 052 .052 .052 .046 .037 .036 .035 .032 .015 .014 .015 .013 .010 .010 .010 .009
—0.1 .059 .064 .052 .052 .041 .044 .035 .036 .017 .017 .015 .015 .011 .012 .010 .011
2 1 .057 .057 .061 .056 .041 .040 .041 .039 .031 .030 .032 .030 .022 .021 .022 .021
1 150 147 164 147 109 .105 110 .105 .083 .081 .090 .083 .059 .058 .060 .058
052 .052 .052 .046 .036 .035 .035 .032 .015 .014 .015 .014 .010 .010 .010 .009
—0.1 .058 .064 .053 .052 .040 .043 .035 .036 .017 .018 .015 .015 .011 .012 .010 .011
3 1 .059 .056 .063 .056 .040 .039 .042 .039 .031 .030 .033 .030 .021 .021 .022 .021
1 195 188 133 146 .146 138 .087 .104 .117 .117 .065 .083 .086 .085 .042 .058
.0563 .049 .053 .046 .038 .034 .035 .032 .014 .014 .015 .013 .010 .010 .010 .009
—0.1 .058 .059 .055 .051 .040 .040 .036 .036 .015 .017 .016 .015 .011 .012 .010 .011
1 1 .058 .055 .060 .055 .042 .039 .041 .039 .031 .029 .032 .030 .021 .021 .022 .021
1 149 143 161 146 .104 .104 .110 .104 .084 .081 .089 .083 .056 .057 .060 .058
—0.5 .055 .052 .057 .050 .040 .037 .038 .035 .024 .022 .026 .023 .016 .015 .017 .016
—0.1 .062 .065 .058 .056 .044 .046 .039 .040 .027 .027 .026 .026 .018 .020 .018 .018
2 1 .057 .055 .060 .055 .039 .039 .040 .038 .030 .029 .032 .030 .020 .021 .021 .021
1 147 144 162 146 107 103 .108 .103 .081 .081 .089 .082 .057 .058 .060 .058
—0.5 .053 .052 .057 .050 .037 .036 .038 .035 .023 .022 .026 .023 .017 .015 .017 .016
—0.1 .060 .065 .058 .056 .042 .045 .039 .039 .027 .028 .027 .026 .019 .020 .018 .018
3 1 .0568 .055 .062 .055 .041 .038 .041 .038 .030 .029 .033 .030 .021 .021 .022 .021
1 212 191 132 .147 149 137 .085 .103 .129 .118 .064 .083 .085 .086 .042 .058
—0.5 .057 .053 .058 .050 .040 .035 .038 .035 .025 .022 .026 .023 .017 .015 .018 .016
—0.1 .063 .064 .060 .056 .043 .043 .040 .039 .028 .027 .027 .026 .019 .019 .018 .018

Note: Same configuration as Table Here sd is empirical standard deviation, se is
OPMD estimator, se is standard error based on Q*~! and se based on ¥*~1(6,).
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