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Abstract

The matrix exponential spatial specification (MESS) is an alternative to the spatial
autoregressive-type (SAR-type) specifications with several attractive properties. The spatial
dependence in the MESS-type models is formulated through a matrix exponential term, and the
estimation of these models may require the computation of the matrix exponential terms many
times in an estimation procedure. In the literature, it is well documented that the computation
of the matrix exponential terms can pose challenges in terms of reliability, stability, accuracy,
and efficiency. We propose a matrix-vector products approach based on the truncation of Taylor
series expansion of the matrix exponential terms for the fast estimation of MESS-type models.
We show how to efficiently implement this approach for a first-order MESS model, and provide
extensive simulation evidence for its computational advantage over the default method utilized
by a popular statistical software.
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1 Introduction

Spatial econometric models account for potential (weak) cross-sectional dependence among ob-

servations located on some relevant space. The Cliff-Ord-type spatial models (i.e., the spatial

autoregressive (SAR)-type) impose an autoregressive specification for the variable of interest using

a weights matrix which quantifies the strength of a measure of nearness between spatial units.

(Anselin, 1988; Cliff and Ord, 1969, 1973; Whittle, 1954). The spatial autoregressive specification

ensures that the spatial dependence among spatial units decays at a geometric rate. The likelihood

based estimation of these models requires calculation of matrix determinant terms (the Jacobian

terms) in each pass of the numerical optimization scheme, and for large matrices that are not

sparse this can create computational challenges. See for example LeSage and Pace (2009, Chapter

4) for a variety of approximation methods suggested in the literature to alleviate this computational

problem.

An alternative to SAR-type models is the matrix exponential spatial specification (MESS) sug-

gested by LeSage and Pace (2007). In the MESS-type models, the spatial dependence is formulated

with a matrix exponential term of type, eαA =
∑∞

i=0(αA)i/i!, where α is a scalar spatial param-

eter, A is the n × n spatial weights matrix and n is the number of spatial units. Therefore, the

MESS-type models impose an exponential rate of decay for the cross-sectional dependence and

have several features that make them more convenient for estimation (Chiu et al., 1996; Leonard

and Hsu, 1992). The likelihood based estimation is greatly simplified because the likelihood func-

tion does not involve any matrix determinant terms. Since matrix exponential terms are always

invertible, there is no need to impose restrictions on the parameter space of the spatial parameters,

i.e., the MESS-type models always have reduced forms. Moreover, when the model involves het-

eroskedasticity of an unknown form in the error terms, the maximum likelihood estimator (MLE)

remains consistent provided that the weights matrices are commutative (Debarsy et al., 2015).1

Despite the aforementioned advantages of the MESS-type models, the likelihood and generalized

method of moments (GMM) based estimations of these models require the computation of matrix

exponential terms by the optimization solvers in each iteration, which can be computationally

costly. The literature has suggested several alternative ways to compute eαA such as Taylor series

approximation, Padé approximation, ordinary differential equation methods, polynomial methods,

matrix decomposition methods, splitting methods and Krylov space methods. Moler and Van Loan

(1978, 2003) assess the effectiveness of nineteen methods according to the following attributes: (i)

generality, (ii) reliability, (iii) stability, (iv) accuracy, (v) efficiency, (vi) storage requirements, (vii)

ease of use, and (viii) simplicity. Although Moler and Van Loan (1978, 2003) state that“none (of the

methods in their paper) are completely satisfactory”, they claim that a scaling and squaring method

with either the rational Padé or Taylor approximants can be the most effective one to compute the

matrix exponential terms.2 Popular software such as Python, R, MATLAB and Mathematica

1See Debarsy et al. (2015) for the formal results on on the maximum likelihood (ML) and generalized method of
moments (GMM) estimation of the MESS models.

2On the scaling and squaring method with either the rational Padé or Taylor approximants, see also Higham (2005)
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have modules, packages and functions to compute matrix exponential of a given matrix. For

example, MATLAB (function expm), Mathematica (function MatrixExp) and Python (function

scipy.linalg.expm) use a scaling and squaring method combined with a Padé approximation for

the computation of matrix exponential terms (Al-Mohy and Higham, 2010; Higham, 2005).

As pointed out by Moler and Van Loan (1978, 2003), all methods suggested in the literature

for computing the matrix exponential terms are “dubious” in the sense that a sole method may not

be entirely reliable for all applications.3 In other words, a method that is effective for a particular

application may not be reliable for another application. In the context of MESS-type models, the

scaling and squaring method combined with the Padé approximation as implemented in MATLAB

through its expm function can be highly costly in terms of computation time. For example, a typical

Monte Carlo simulation designed for a MESS model that has spatial dependence in the dependent

variable and the disturbance term (for short MESS(1,1)) with 1000 resampling and a couple of

different parameter combinations can take days or even weeks (see Section 4 on the details of the

simulation setting). The expm function is also costly for estimating empirical applications with

large sample sizes. For example, we show that the expm function for estimating the MESS (1,1)

model for an empirical illustration involving 3107 observations takes 1072 seconds by the the quasi

maximum likelihood (QML) estimator, 4805 seconds by the GMM estimator and 47742 seconds by

the Bayesian estimator (see Section 5 for the details).

In this paper, we propose a matrix-vector products method based on the truncation of Taylor

series expansion of the matrix exponential terms for the fast estimation of MESS-type models.

Our analysis on the estimation of MESS-type models indicates that the estimation requires the

computation of a matrix exponential term as a vector, rather than the matrix exponential term in

isolation. For example, the estimation of the MESS (1,1) model requires the computation of terms

such as eαAeτBv and eτBX, where v is an n× 1 vector, X is an n× k matrix, and α and τ are the

spatial parameters. The matrix-vector products method provides approximations to eαAeτBv and

eτBX in terms of matrix-vector products rather than providing approximations for eαA and eτB.

In this paper, we show how this approach can be implemented for the QML, GMM and Bayesian

estimation of the MESS(1,1) model. Using our suggested approach in the context of the MESS

(1,1) model, we provide extensive simulation evidence on the computational time gains for three

estimation methods (the QML, GMM and Bayesian methods).

In the literature, it is well known that the matrix-vector products approach can reduce the

computational burden substantially. For example, Moler and Van Loan (2003) write “One of the

most significant changes in numerical linear algebra in the past 25 years is the rise of iterative

methods for sparse matrix problems, in which only matrix vector products are needed.” In par-

ticular, LeSage and Pace (2009) extensively use sparse matrix-vector operations for the likelihood

and Bader et al. (2019). Sidje (1998) provides an extensive package named ExpoKIT (both Fortran and MATLAB
versions are available) to compute matrix exponential terms with the Krylov subspace method using the Arnoldi
process approximation.

3The computation of matrix exponential terms may be necessary for many applications from different fields. For
example, MATLAB uses its expm function in its Control Toolbox, System Identification Toolbox, Neural Net Toolbox,
Mu-Analysis and Synthesis Toolbox, Model Predictive Control toolbox, and Simulink.
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and Bayesian estimation of spatial models to reduce the computational burden. The Krylov space

methods (the twentieth method in Moler and Van Loan (2003)) suggested for the computation of

matrix exponential terms also depends on the matrix-vector products approach. See, for exam-

ple, Saad (1992), Gallopoulos and Saad (1992), Hochbruck and Lubich (1997), Sidje (1998), and

related references. When A is sparse, in the first step of this approach, eαAv is approximated by

an element of Krylov subspace Km = span{v, (αA)v, . . . , (αA)mv}, where m, the dimension of the

Krylov subspace, is small compare to n. The operations in the first step of this method involve

only matrix-vector products (see Sidje (1998) for the implementation of this method).

The remainder of this paper is organized as follows. Section 2 presents the model under con-

sideration and lays out briefly the details on the QML, GMM, and Bayesian MCMC estimation.

This section also shows how the impact measures and their dispersion measures can be estimated.

Section 3 provides the details on the computation of the matrix exponential terms using the matrix-

vector products approach. We then show how the matrix-vector products approach can be applied

to the QML, GMM and Bayesian estimation methods. Section 4 presents the setting for our Monte

Carlo study and the simulation results. Section 5 illustrates the computational time advantage of

the matrix-vector products method using a large dataset from the spatial econometric literature.

We conclude in Section 6. Some simulation results are relegated to an appendix.

2 Model and Estimation Approaches

2.1 Model Specification

We consider the following first order matrix exponential spatial model (for short MESS(1, 1))

eα0W y = Xβ0 + u, eτ0Mu = ε, (2.1)

where Y = (y1, . . . , yn)
′

is the n×1 vector of observations on the dependent variable, X is the n×k
matrix of non-stochastic exogenous variables with the associated parameter vector β0, W and M

are the n× n spatial weights matrices of known constants with zero diagonal elements. The scalar

parameters α0 and τ0 are called the spatial parameters. We call U = (u1, . . . , un)
′

as the n × 1

vector of regression disturbance terms and ε = (ε1, . . . , εn)
′

as the n× 1 vector of disturbances (or

innovations).

The matrix exponential terms eαW and eτM in (2.1) are defined as eαW =
∑∞

i=0(αW )i/i! and

eτM =
∑∞

i=0(τM)i/i!, and are always invertable with the inverses e−αW and e−τM (Chiu et al.,

1996). Thus, the reduced form of the model always exists and is given by y = e−αWXβ0 +

e−αW e−τM ε. On the other hand, in a SAR-type model, we need to restrict the parameter space of

spatial parameters so that it has a reduced form. On the parameter space of spatial parameters in

the SAR-type models, among others, see Elhorst (2014), Kelejian and Prucha (2010), Lee (2004),

and LeSage and Pace (2009). In the SAR-type counterpart of the MESS(1,1) model, the matrix

exponential terms eα0W y and eτ0Mu in (2.1) are respectively replaced by (In − λ0W )y and (In −
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ρ0M)u, where In is the n× n identity matrix, and λ0 and ρ0 are scalar spatial parameters. Under

the assumption that ‖λ0W‖ < 1 for some matrix norm ‖ · ‖, we have (In−λ0W )−1 =
∑∞

i=0(λ0W )i

(Horn and Johnson, 2012). Thus, the SAR model imposes a geometric decay pattern of spatial

dependence among spatial units, while the MESS(1, 1) model exhibits an exponential decay.4

2.2 Maximum Likelihood Approach

Under the assumption that εi’s are i.i.d normal with mean zero and variance σ20, the log-likelihood

function of the model can be expressed as

lnL(θ) = −n
2

ln(2πσ2)− 1

2σ2
(eαW y −Xβ)

′
eτM

′
eτM (eαW y −Xβ), (2.2)

where θ = (α, τ, β
′
, σ2)

′
. Note that (2.2) does not include the Jacobian terms, because ln |eαW | =

ln
(
eαtr(W )

)
= 0 and ln |eτM | = ln

(
eτtr(M)

)
= 0, where | · | denotes the determinant operator, and

tr(·) is the trace operator. Let ψ = (α, τ)
′
. Then, for a given value of ψ, the first-order conditions

of (2.2) with respect to β and σ2 yield

β̂(ψ) = (X
′
eτM

′
eτMX)−1X

′
eτM

′
eτMeαW y, (2.3)

σ̂2(ψ) =
1

n
(eαW y −Xβ̂)

′
eτM

′
eτM (eαW y −Xβ̂) =

1

n
y
′
eαW

′
eτM

′
H(τ)eτMeαW y, (2.4)

where H(τ) = In − eτMX(X
′
eτM

′
eτMX)−1X

′
eτM

′
. Then, ignoring constant terms, the concen-

trated likelihood function can be written as

lnLc(θ) = −n
2

ln(σ̂2(ψ)) = −n
2

ln

(
1

n
y
′
eαW

′
eτM

′
H(τ)eτMeαW y

)
. (2.5)

Thus, we can define the QMLE of ψ0 as

ψ̂ = argminψ

(
y
′
eαW

′
eτM

′
H(τ)eτMeαW y

)
. (2.6)

Let γ = (α, τ, β
′
)
′

and γ0 = (α0, τ0, β
′
0)
′

be the true parameter vector. Then, QMLE γ̂ has the

following asymptotic normal distribution (Debarsy et al., 2015),5

√
n (γ̂ − γ0)

d→ N
(

0, lim
n→∞

C−1ΩC−1
)
. (2.7)

4On the properties of MESS and SAR type models, see Debarsy et al. (2015), Kelejian and Prucha (2010), Lee
(2004), and LeSage and Pace (2007, 2009).

5Note that under heteroskedasticity of an unknown form, the QMLE is still consistent and has an asymptotically
normal distribution when W and M commute, i.e., WM = MW (Debarsy et al., 2015).
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Here, Ω = 2σ20C + Ω1 with

C =
1

n

σ
2
0 tr (WsWs) + 2

(
Weτ0MXβ0

)′ (Weτ0MXβ0
)

∗ ∗
σ20 tr (WsM s) σ20 tr (M sM s) ∗

−2
(
eτ0MX

)′Weτ0MXβ0 0 2
(
eτ0MX

)′ (
eτ0MX

)
 ,

(2.8)

Ω1 =
1

n


(
µ4 − 3σ40

)
vec′D (Ws) vecD (Ws) + 4µ3

(
Weτ0MXβ0

)′
vecD (Ws) ∗ ∗

0 0 ∗
−2µ3

(
eτ0MX

)′
vecD (Ws) 0 0

 , (2.9)

where W = eτ0MWe−τ0M , µ3 = Eε3i , µ4 = Eε4i , vecD(A) denotes a vector containing the diagonal

elements of any square matrix A, and Bs = B +B
′

for any n× n matrix B.

2.3 GMM Approach

When the error terms are homoskedastic, a set of moment functions that consists of linear and

quadratic moment functions can be arranged such that the resulting GMME is as efficient as the

QMLE under the normal case, and asymptotically more efficient than the QMLE under the non-

normal case. In the case of heteroskedasticity of an unknown form, an optimal GMME (OGMME)

can be defined such that it is also more efficient than the QMLE (Debarsy et al., 2015).

To define the best set of moment functions when the error terms are simply i.i.d, we introduce

the following notations. Let Diag(a) be the n×n matrix whose diagonal entries are the elements of

the n×1 vector a, and Diag(A) be the n×n diagonal matrix whose diagonal entries are those of the

n×nmatrix A. Let B(t) = B−Intr(B)/n for any n×nmatrix B, andX∗n be the submatrix ofX with

the intercept term removed. Define P ∗1 = W, P ∗2 = Diag(W), P ∗3 = Diag
(
eτ0MWXβ0

)(t)
, P ∗4 = M ,

P ∗l+4 = Diag
(
eτ0MX∗l

)(t)
for l = 1, . . . , k∗ and F ∗ = (F ∗1 , F

∗
2 , F

∗
3 , F

∗
4 ) with F ∗1 = eτ0MX∗, F ∗2 =

eτ0MWXβ0, F
∗
3 = ln, and F ∗4 = vecD (W). Then, under the assumption that the error terms are

i.i.d, the best set of moment functions suggested in Debarsy et al. (2015) takes the following form:

g∗(γ) =
1

n

(
ε
′
(γ)P ∗1 ε(γ), . . . , ε

′
(γ)P ∗k∗+4ε(γ), ε

′
(γ)F ∗

)′
, (2.10)

where ε(γ) = eτM
(
eαW y −Xβ

)
. Then, the best GMME (BGMME) is defined as

γ̂B = argminγ g
∗′(γ)V ∗−1g∗(γ), (2.11)

where V ∗ = nE
(
g∗ (γ0) g

∗′ (γ0)
)

. It can be shown that

V ∗ =
1

n

(
σ4
0
2 ω
′ω + 1

4

(
µ4 − 3σ40

)
ω′dωd

1
2µ3ω

′
dF
∗

1
2µ3F

∗′ωd σ20F
∗′F ∗

)
, (2.12)

6



where ωd =
(
vecD (P ∗s1 ) , . . . vecD

(
P ∗sk∗+4

))
, ω =

(
vec (P ∗s1 ) , . . . , vec(P ∗sk∗+4)

)
and vec(A) denotes

the vectorization of matrix A. Under some regularity conditions, it follows that (Debarsy et al.,

2015)

√
n (γ̂B − γ0)

d→ N
(

0, lim
n→∞

(G∗
′
V ∗−1G∗)−1

)
, (2.13)

where

G∗ = E
(
∂g∗(γ0)

∂γ′

)
=

1

n

(
σ2
0
2 ω
′ vec (Ws)

σ2
0
2 ω
′ vec (M s) 0

F ∗′Weτ0MXβ0 0 −F ∗′eτ0MX

)
. (2.14)

Note that the BGMME defined (2.11) is not feasible, since V ∗, P ∗1 , . . . , P
∗
k∗+4 and F ∗ are functions

of the unknown parameters. In practice, an initial consistent estimator of γ0 can be used to replace

the unknown parameters in these terms.6 A feasible estimator formulated in this way can be shown

to have the same asymptotic distribution as that of γ̂B (Debarsy et al., 2015).

When the disturbance terms have heteroskedasticity of an uknown form, the matrices Pi’s used

in the quadratic moment functions need to have zero diagonal elements. In the heteroskedastic

case, an OGMME can be defined by using the following vector of moment functions,

ĝd(γ) =
1

n

(
ε′(γ)

(
Ŵ−Diag(Ŵ)

)
ε(γ), ε′(γ)Mε(γ), ε′(γ)

(
Ŵeτ̂MXβ̂, eτ̂MX

))′
, (2.15)

where Ŵ = eτ̂MWe−τ̂M .

2.4 Bayesian Approach

To complete the model specification, we need to specify the prior distributions for α, τ, β and σ2.

We assume the following prior distributions: α ∼ N(µα, Vα), τ ∼ N(µτ , Vτ ), β ∼ N(µβ, Vβ), and

σ2 ∼ IG(a0, b0), where IG denotes the inverse-gamma distribution. The likelihood is given by

y|α, τ, β, σ2 ∼ N(e−αWXβ, σ2e−αW e−τMe−τM
′
e−αW

′
). (2.16)

The standard Bayesian analysis for a linear regression model can be used to obtain the conditional

posterior distributions of β and σ2. On the other hand, combining the likelihood function with the

prior densities of spatial parameters indicates that the conditional posterior distributions of α and

τ are non-standard. In the following algorithm, we suggest a Gibbs sampler that shows how to

generate random draws from the joint posterior distribution p(β, σ2, α, τ |y).7

Algorithm 1.

6Among other consistent estimators, the following initial GMME can be used: γ̂ = argminγ g
′
(γ)g(γ), where

g(γ) = (Wε(γ),Mε(γ),WX,X)
′
ε(γ) and ε(γ) = eτM

(
eαW y −Xβ

)
.

7We use p(·) to denote the relevant density function, and we omit X in the conditional sets for the simplicity of
exposition.
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1. Sampling step for β:

β|y, α, τ, σ2 ∼ N(β̂,Kβ), (2.17)

where Kβ = (V −1β +X ′eτM
′
eτMX/σ2)−1 and β̂ = Kβ(X ′eτM

′
eτMeαW y/σ2 + V −1β µβ).

2. Sampling step for σ2:

σ2|y, α, τ, β ∼ IG(σ̂2,Kσ2), (2.18)

where σ̂2 = a0 + n
2 and Kσ2 = b0 + 1

2(eαW y −Xβ)′eτM
′
eτM (eαW y −Xβ).

3. Sampling step for α:

p(α|y, β, τ, σ2) ∝ exp

(
−1

2

(
σ−2(eαW y −Xβ)

′
eτM

′
eτM (eαW y −Xβ) + V −1α (α2 − 2µαα)

))
,

(2.19)

which is a non-standard distribution. We can use a random-walk Metropolis-Hastings algorithm

to sample from this distribution (LeSage and Pace, 2009). A candidate value αnew is generated

according to

αnew = αold + cα ×N(0, 1), (2.20)

where cα is the tuning parameter.8 The candidate value αnew is accepted with probability

P(αnew, αold) = min

(
1,
p(αnew|y, β, σ2, τ)

p(αold|y, β, σ2, τ)

)
. (2.21)

4. Sampling step for τ :

p(τ |y, β, α, σ2) ∝ exp

(
−1

2

(
σ−2(eαW y −Xβ)

′
eτM

′
eτM (eαW y −Xβ) + V −1τ (τ2 − 2µττ)

))
. (2.22)

We use the random-walk Metropolis-Hastings algorithm described in Step 3 to generate random

draws from p(τ |y, β, α, σ2).

Remark 1. LeSage and Pace (2007) develop an efficient Bayesian estimation method for the

MESS(1,0) model by assuming a normal-gamma prior for β and σ2, and a normal distribution

prior for α. By using some properties of the multivariate normal distribution and the inverse

gamma distribution, LeSage and Pace (2007) analytically derive the marginal posterior distribution

of α. Since the marginal distribution of α is not in a known form, they suggest to use a univariate

numerical integration method for the computation of posterior moments. Also, since the marginal

posterior distributions of β and σ2 depend on α, they suggest to compute the posterior moments of

8The tuning parameter is determined during the estimation such that the acceptance rate falls between 40% and
60%.

8



these parameters by numerical integration over α. Our approach presented in Algorithm 1 differs

in two important ways. First, we use the random-walk Metropolis-Hastings algorithm suggested by

LeSage and Pace (2009) to generate posterior draws for α. Second, we suggest independent prior

distributions for β and σ2, and use the Gibbs sampler in Algorithm 1 to generate posterior draws

for β and σ2.

2.5 Impact Measures

The dispersion of parameter estimators can be estimated in different ways (Arbia et al., 2020;

Debarsy et al., 2015; Elhorst, 2014; LeSage and Pace, 2009; Taşpınar et al., 2018). In the case

of the QMLE and GMME defined in Sections 2.2 and 2.3, the closed-forms of variance-covariance

matrices are available. Thus, we can use the plug-in method for these estimators. That is, the

unknown parameters in these variance-covariance matrices can be replaced by the corresponding

estimates obtained from consistent estimators. In the case of Bayesian approach, we can use the

empirical standard deviations of the random draws generated through Algorithm 1 as the estimate

for the standard errors of parameters.

According to the model in (2.1), the derivative of y with respect to the kth explanatory variable

xk gives the marginal effect e−α0Wβ0k, where β0k is the kth element of the true coefficient vector

β0. To ease the interpretation and presentation of this marginal effect, LeSage and Pace (2009)

define three scalar measures for the marginal effect: the average direct impact, the average indirect

impact, and the average total impact. The average direct impact is the average of the main diagonal

elements of e−α0Wβ0k, the average indirect impact is the average of the off-diagonal elements of

e−α0Wβ0k, and the total impact is the average of all elements of e−α0Wβ0k. For statistical inference,

one needs to determine the dispersions of these scalar impact measures. In the Bayesian approach,

a sequence of random draws obtained through Algorithm 1 can be used to generate a sequence of

random draws for each impact measure. Then, the mean and the standard deviation calculated

from each sequence of impact measures can be used for inference.

In the QML and GMM cases, the classical delta method can be used to determine the dispersions

of the impact measures. The estimator of the average direct effect is given by 1
ntr(e−α̂Wn β̂k). Then,

by the mean value theorem, we obtain

1√
n

(
tr(e−α̂W β̂k)− tr(e−α0Wβ0k)

)
= A1 ×

√
n(α̂− α0, β̂k − β0k)

′
+ op(1)

d−→ N(0, lim
n→∞

A1BA
′
1), (2.23)

where A1 =
(
− 1
ntr(e−α0WWβ0k),

1
ntr(e−α0W )

)
, B is the asymptotic covariance of

√
n(α̂− α0, β̂k −

β0k). So the asymptotic variance of direct effects can be estimated by 1
nÂ1B̂Â

′

1, where Â1 =(
− 1
ntr(e−α̂WWβ̂k),

1
ntr(e−α̂W )

)
, and B̂ is the estimated asymptotic covariance of

√
n(α̂−α0, β̂k−

β0k). Applying the mean value theorem to the estimator of total effect 1
n β̂kl

′
ne
−α̂W ln, where ln is

9



the n× 1 vector of ones, we obtain

1√
n

(
β̂kl

′
ne
−α̂W ln − β0kl

′
ne
−α0W ln

)
= A2 ×

√
n(α̂− α0, β̂k − β0k)

′
+ op(1)

d−→ N(0, lim
n→∞

A2BA
′
2), (2.24)

where A2 =
(
− 1
nβkl

′
ne
−α0WWln,

1
n l
′
ne
−α0W ln

)
. Thus, Var( 1

n β̂kl
′
ne
−α̂W ln) can be estimated by

1
nÂ2B̂Â

′

2, where Â2 =
(
− 1
n β̂kl

′
ne
−α̂WWln,

1
n l
′
ne
−α̂W ln

)
. Finally, applying the mean value theorem

to the estimator of average indirect effects 1
n

(
β̂kl

′
ne
−α̂W ln − tr(e−α̂W β̂k)

)
, we obtain

1√
n

((
β̂kl

′
ne
−α̂W ln − tr(e−α̂W β̂k)

)
−
(
β0kl

′
ne
−α̂0W ln − tr(e−α̂0Wβ0k)

))
=

(A2 −A1)×
√
n(α̂− α0, β̂k − β0k)

′
+ op(1)

d−→ N(0, lim
n→∞

(A2 −A1)B(A2 −A1)
′
). (2.25)

Then, an estimate of Var
(

1
n

(
β̂kl

′
ne
−α̂W ln − tr(e−α̂W β̂k)

))
is given by 1

n(Â2 − Â1)B̂(Â2 − Â1)
′
.

3 The matrix-vector products method

Our analysis in Section 2 indicates that the estimation of MESS(1, 1) specifically requires the

evaluation of eτMeαW y and eτMX. In the case of the QMLE, the objective function in (2.6)

is comprised of eτMeαW y and the term H(τ), which is a function of eτMX. For the BGMME in

(2.11), the vector of best moment functions g∗(γ) contains the disturbances ε(γ), which is a function

of eτMeαW y and eτMX. Our Algorithm 1 indicates that the Bayesian estimator also requires the

evaluation of eτMeαW y and eτMX in each pass through the Gibbs sampler. In this section, we

show how the matrix-vector products approach can be used to compute eτMeαW y and eτMX based

on the truncation of Taylor series expansion of matrix exponential terms.

We start with eτMeαW y. By definition, we have eτMeαW y =
∑∞

i=0
τ iM i

i!

∑∞
j=0

αjW j

j! y. Truncat-

ing the Taylor series at the (q + 1)th order yields eτMeαW y ≈
∑q

i=0
τ iM i

i!

∑q
j=0

αjW j

j! y. Note that

we can express
∑q

i=0
τ iM i

i!

∑q
j=0

αjW j

j! as

q∑
i=0

τ iM i

i!

q∑
j=0

αjW j

j!
=

q∑
i=1

i−1∑
j=0

(
τ iαjM iW j

i!j!
+
τ jαiM jW i

i!j!

)
+

q∑
i=0

τ iαiM iW i

(i!)2
. (3.1)

Let Diag(a1, a2, . . . , an) be the n×n diagonal matrix with diagonal elements {a1, a2, . . . , an}. Then,

using (3.1), we can express eτMeαW y in the following way,

eτMeαW y ≈
q∑
i=1

i−1∑
j=0

τ iαjM iW j

i!j!
y +

q∑
i=1

i−1∑
j=0

τ jαiM jW i

i!j!
y +

q∑
i=0

τ iαiM iW i

(i!)2
y

= Y1D1ν1(α, τ) + Y2D2ν2(α, τ) + Y3D3ν3(α, τ), (3.2)
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where Y1 and Y2 are n× q(q+1)
2 matrices, Y3 is an n× (q+ 1) matrix, D1 and D2 are q(q+1)

2 × q(q+1)
2

matrices, D3 is an (q+ 1)× (q+ 1) matrix, ν1(α, τ) and ν2(α, τ) are q(q+1)
2 × 1 vectors, and ν3(α, τ)

is an (q + 1)× 1 vector. The terms in (3.2) are

Y1 =
[
My,M2y,M2Wy,M3y,M3Wy,M3W 2y, . . . ,M qy,M qWy, . . . ,M qW q−1y

]
, (3.3)

Y2 =
[
Wy,W 2y,MW 2y,W 3y,MW 3y,M2W 3y, . . . ,W qy,MW qy, . . . ,M q−1W qy

]
, (3.4)

Y3 =
[
y,MWy,M2W 2y, . . . ,M qW qy

]
, (3.5)

D1 = D2 = Diag

(
1

0!1!
,

1

0!2!
,

1

1!2!
, . . . ,

1

0!q!
, . . . ,

1

(q − 1)!q!

)
, (3.6)

D3 = Diag

(
1

(0!)2
,

1

(1!)2
,

1

(2!)2
, . . . ,

1

(q!)2

)
, (3.7)

ν1(α, τ) =
[
τ, τ2, τ2α, τ3, τ3α, τ3α2, . . . , τ q, τ qα, . . . , τ qαq−1

]′
, (3.8)

ν2(α, τ) =
[
α, α2, α2τ, α3, α3τ, α3τ2, . . . , αq, αqτ, . . . , αqτ q−1

]′
, (3.9)

ν3(α, τ) =
[
1, τα, τ2α2, τ3α3, . . . , τ qαq

]′
. (3.10)

Next, we show how the matrix-vector products approach can be used to get an approximation of

eτMX. Let X = [X1, X2, . . . , Xk], where Xi is the ith column. Then, we can write eτMX as

eτMX =
[
eτMX1, e

τMX2, . . . , e
τMXk

]
≈ XD4µ(τ), (3.11)

where X is an n× k(q + 1) matrix, D4 is an k(q + 1)× k(q + 1) matrix and µ(τ) is an k(q + 1)× k
matrix. It can be shown that

X =
[
X1,MX1,M

2X1, . . . ,M
qX1, X2,MX2,M

2X2, . . . ,M
qX2, . . . , Xk,MXk,M

2Xk, . . . , M
qXk

]
,

(3.12)

D4 = Ik ⊗Diag

(
1

0!
,

1

1!
,

1

2!
, . . . ,

1

q!

)
, (3.13)

µ(τ) = Ik ⊗
[
1, τ, τ2, . . . , τ q

]′
. (3.14)

Next, we discuss how the matrix-vector products approach can be applied to the estimators given

in Section 2. Recall that the QMLE is defined by ψ̂ = argminψ

(
y
′
eαW

′
eτM

′
H(τ)eτMeαW y

)
, where

the objective function requires the evaluation of eτMeαW y and eτMX in each iteration. Using the
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matrix-vector products approach, we can avoid the evaluation of these terms in each iteration of

the optimization routine. We can define X, Yi, and Dj for i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}, and then

supply these terms as the inputs of the objective function in the optimization solver. In this way,

we can avoid the computation of these terms in each iteration.

In the case of GMM approach, the vector of moment functions in (2.10) contains the disturbance

terms ε(γ) = eτMeαW y − eτMXβ, which can also be expressed in the matrix-vector products

approach by using (3.2) and (3.11). When implementing (2.11), similar to the case of QMLE, we

can define X, Yi, and Dj for i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}, and then supply these terms as inputs

for the objective function to the optimization solver.

Finally, in the case of Bayesian approach, we need to work with expressions in Algorithm 1.

Before implementing the Gibbs sampler described in Algorithm 1, we can compute the required

terms for the matrix exponential terms and then pass these terms to the sampler. That is, we can

define X, Yi, and Dj for i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}, and then supply these terms to the Gibbs

sampler. Thus, we can avoid computation of these terms in each pass of the Gibbs sampler.

Remark 2. The matrix-vector products approach is general enough and can be easily adjusted

for some other MESS models. For example, the expressions for two special cases, MESS(1, 0)

and MESS(0, 1), can be simply obtained by setting M and W to the zero matrix, respectively.

Similarly, the Durbin versions of MESS(1, 1), MESS(1, 0) and MESS(0, 1) can also be estimated by

defining independent variables appropriately. The matrix-vector products approach also applies to

the MESS models with the panel data by arranging the terms involving the matrix exponential terms

appropriately. For higher order MESS models, or MESS(p, q), similar equations to (3.1)-(3.14) can

be derived. For example, for the MESS(2, 2), we have

eτ1M1+τ2M2eα1W1+α2W2y ≈
q∑
i=0

1

i!
(τ1M1 + τ2M2)

i
q∑
j=0

1

j!
(α1W1 + α2W2)

j y

=

q∑
i=1

i−1∑
j=0

 1

i!j!

i∑
k1=0

j∑
k2=0

(
i

k1

)(
j

k2

)
τ i−k11 τk12 αj−k21 αk22 M

i−k1
1 Mk1

2 W j−k2
1 W k2

2

+
1

i!j!

j∑
k1=0

i∑
k2=0

(
j

k1

)(
i

k2

)
τ j−k11 τk12 αi−k21 αk22 M

j−k1
1 Mk1

2 W i−k2
1 W k2

2


+

q∑
i=0

i∑
k1=0

i∑
k2=0

(
i

k1

)(
i

k2

)
τ i−k11 τk12 αi−k21 αk22 M

i−k1
1 Mk1

2 W i−k2
1 W k2

2

= Y1D1ω1(α, τ) + Y2D2ω2(α, τ) + Y3D3ω3(α, τ), (3.15)

where Yl, Dl and ωl for l ∈ {1, 2, 3} can be defined accordingly. In the case of eτ1M1+τ2M2X, we

12



have

eτ1M1+τ2M2X ≈

[
q∑
i=0

1

i!
(τ1M1 + τ2M2)

iX1, . . . ,

q∑
i=0

1

i!
(τ1M1 + τ2M2)

iXk

]

=

 q∑
i=0

1

i!

i∑
j=0

(
i

j

)
(τ1M1)

i−j(τ2M2)
jX1, . . . ,

q∑
i=0

1

i!

i∑
j=0

(
i

j

)
(τ1M1)

i−j(τ2M2)
jXk


= XD4κ(τ), (3.16)

where

X =
[
X1,M1X1,M2X1,M

2
1X1,M1M2X1,M

2
2X1, . . . ,M

q
1X1,M

q−1
1 M2X1, . . .M1M

q−1
2 X1,M

q
2X1,

. . . ,

Xk,M1Xk,M2Xk,M
2
1Xk,M1M2Xk,M

2
2Xk, . . . ,M

q
1Xk,M

q−1
1 M2Xk, . . . ,M1M

q−1
2 Xk,M

q
2Xk

]
,

D4 = Ik ⊗Diag

((
0
0

)
0!
,

(
1
0

)
1!
,

(
1
1

)
1!
, . . . ,

(
q
0

)
q!
,

(
q
1

)
q!
, . . . ,

(
q
q

)
q!

)
,

κ(τ) = Ik ⊗
[
1, τ1, τ2, τ

2
1 , τ1τ2, τ

2
2 , . . . , τ

q
1 , . . . , τ

q−1
1 τ2, . . . , τ1τ

q−1
2 , τ q2

]′
.

Remark 3. The matrix-vector products approach based on a large q value can provide a better

accuracy, but it can increase the computation time. We may determine a satisfactory q value from

the inverse error analysis for a scaling and squaring method with Taylor series approximation (the

third method in Moler and Van Loan (1978, 2003)). Let Tq(αW ) =
∑q

j=0
αjW j

j! . Since eαW =(
e2
−mαW

)2m
, we may consider the approximation (Tq(2

−mαW ))
2m

. By Corollary 1 in Moler and

Van Loan (1978, 2003), if ‖2−mαW‖∞ ≤ 0.5, then (Tq(2
−mαW ))

2m
= eαW+E, where

‖E‖∞
‖αW‖∞

≤
(

1

2

)q−3 1

q + 1
≈


1.5× 10−5 if q = 15

3.6× 10−7 if q = 20

2.4× 10−10 if q = 30

.

This inverse error analysis indicates that a value of q = 15 can be satisfactory.

Remark 4. In terms of reliability, stability and accuracy, researchers should bear in mind the

choice of q in the Taylor series expansion of the matrix exponential terms. Remark 3 indicates

that q = 15 can be satisfactory for the estimation of MESS-type models in economics, which is

also confirmed by the results from our simulations and the empirical illustration for the MESS(1,1)

model. In terms of efficiency and storage requirements, the representation in the form of equation

13



(3.2) requires calculating and storing terms in the form of equations (3.3)–(3.10). Here the largest

of these terms are (3.3) and (3.4), which are of size nq(q+1)/2. Note also that in (3.3)–(3.5) terms

are computed sequentially such that in each pass a matrix-vector product is calculated. Therefore,

(3.3) and (3.4) are computed in O(n2q(q + 1)/2) operations for dense W and M . In terms of

simplicity, note again that the representation in the form of equation (3.2) needs to be derived and

the terms in this representation need to be defined before the estimation. This can be tedious for

higher order MESS-type models, but we think that the computational advantage of the matrix-vector

products method outweighs this cost.

4 Monte Carlo Simulations

In this section, we will investigate the implications of using the matrix-vector products method

with the truncated Taylor series approximation versus the scaling and squaring algorithm with the

Padé approximation (the expm function in MATLAB R2020b). To this end, we will explore the

properties of the two competing methods in terms of computation time as well as their effects on

the finite sample properties of the estimators described in Section 2.

We consider the following data generating process,

eαW y = β1X1 + β2X2 + u, eτWu = ε, (4.1)

where the elements of X1 and X2 are independently drawn from U(0,
√

12) and N(0, 1), respectively.

For the spatial weights matrix W = (wij), we consider two cases, the rook contiguity and queen

contiguity. To this end, n spatial units are randomly allocated into
√
n×
√
n square lattice graph.

In the rook contiguity case, wij = 1 if the j’th observation is adjacent (left/right/above or below)

to the i’th observation on the graph. In the queen contiguity case, wij = 1 if the j’th observation

is adjacent to, or shares a border with the i’th observation. The weights matrices are then row

normalized. We set (β1, β2)
′

= (2, 1)
′
, and let α and τ take values from {−2,−0.2, 0.2, 2}. The

disturbance terms are generated according to εi ∼ i.i.d.N(0, 1). We consider two sample sizes,

n = 169 and n = 361. For the QMLE and GMME, we set the number of repetitions to 1000. In

the case of Bayesian estimator, we choose the following the priors: α ∼ N(0, 10), τ ∼ N(0, 10),

β ∼ N(02×1, I2), and σ2 ∼ IG(6/2, 4/2). We set the number of repetitions to 100, the number of

draws to 1500 and burn-ins to 500. We use the matrix-vector products approach with q = 15 in all

cases.

We use the matrix-vector products method (denoted as mvp) and the scaling and squaring

algorithm with the Padé approximation (denoted as expm) to obtain the parameter estimates,

and the corresponding bias, root mean squared error (RMSE) and the coverage rate. We also

compute the impact measures, which include the average direct effect, the average total effect and

the average indirect effect, and their respective bias, RMSE and empirical coverage. We report the

total computation time in seconds over 1000 resamples.9 In the case of the QMLE, the computation

9We use a MacBook Pro 2016 with 2.4GHz intel core i7 processor and 8 GB 1867 MHz LPDDR3 memory to run
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time for ψ̂ = (α̂, τ̂)
′
includes the time to compute the estimates using the concentrated log-likelihood

function in (2.5). The computation time for β̂ includes the time for ψ̂ and for β̂, which is computed

using (2.3). The time for impact measures are consequently the sum of the computation time

for ψ̂, β̂ and respective measures. In the case of BGMME, an initial GMM estimation is carried

out to construct V ∗, F ∗ and P ∗’s. We use the following set of moments for the initial stage,

(Wε(γ),Mε(γ),WX,X)
′
ε(γ). Thus, the computation time for the BGMME includes both stages

for the estimation. The time for the impact measures are then computed by adding on corresponding

computation time for impact measures. In the case of Bayesian estimation, the computation time

includes the time for collecting 2000 draws including the burn-ins. Finally, the computation time

for the impact measures are computed similarly to those in the cases of the QMLE and GMME.

We focus on the simulation results provided in Tables 1–5.10 Tables 1–3 report the simulation

results for the QMLE case. The mvp method reduces the computation time by approximately

98% to 99% compared to the expm method for different sample sizes, while providing the same

estimates for the parameters and the impact measures. In all cases, we obtain the same values for

bias, RMSE and coverage rates under both methods. When n = 169, the computation time for

the mvp approach is about 2% of the computation time for the expm method. For example, when

α = −2 and τ = −2, the bias, RMSE and coverage of α̂ using both methods are 0.003, 0.037 and

0.923, respectively. However, the computation time is 606.5 seconds for the expm method, and 11.8

seconds for the mvp method. This means that on average, each computation takes 0.6065 seconds

using the expm method, and 0.0118 seconds using the mvp method. For n = 361, the bias, RMSE

and coverage of α̂ are again the same for both methods, but the computation time is 4168.4 seconds

for the expm method, and 30.7 seconds for the mvp method, leading to an average running time

of 4.1684 and 0.0307 seconds, respectively. These results show the matrix-vector products method

reduces the computational burden significantly, while maintaining the finite sample properties of

the estimators. Table 2 presents the results for β̂ = (β̂1, β̂2)
′
. The findings are similar to those

from Table 1. While providing a similar performance in term of the finite sample properties of the

QMLE, the mvp method reduces the computation time by about 98% to 99% compared to the

scaling and squaring algorithm. Table 3 presents the results for the average direct effect estimates

for X1 and X2. There is no difference between the two competing methods in terms of bias, RMSE

and coverage, but we again observe that the mvp method is computationally more efficient than

the expm method.

Table 4 presents the results for α̂ and τ̂ in the GMM estimation case. The findings are very

similar to the findings in the QML estimation case. The mvp method reduces the computation

time by about 95% for n = 169 and 97% for n = 361 compared to the expm method. For example,

when n = 169, the computation time for γ̂ is 1407.9 seconds using the expm method, and 60.6

seconds using the mvp method. It means that on average, one resample takes 1.4079 seconds to

run for the expm method, and 0.0606 seconds to run for the mvp method. When n = 361, they are

our simulations.
10Some additional results are given in Tables A.1–A.10 of Appendix A. The simulation results in these additional

tables also attest that our suggested mvp method is computationally more efficient than the expm method.

15



respectively 8663.3 seconds and 219.6 seconds, leading to an average time of 8.6633 seconds and

0.2196 seconds to run each resample.

Table 5 presents the results for α̂ and τ̂ in the Bayesian estimation case. The mvp method again

provides the same computational performance over the expm method, while maintaining the same

finite sample properties. It takes only about 1% when n = 169 and less than 1% when n = 361 of

the total computation time for the expm method. For example, for α = −2, τ = −2 and n = 169,

it takes 2779.4 seconds for the expm method, and 20.4 seconds for the mvp method to compute

α̂. Thus, on average it takes respectively 27.794 seconds and 0.204 seconds to collect draws for

one resample. When n = 361, the computation time for α̂ using the expm method increases by

approximately sevenfold to 19741.3 seconds. But, the computation time for the mvp method only

increases by about 20% to 25.9 seconds. Thus, it takes an average of 197.413 seconds to collect

draws for each resample using the expm method, and 0.259 seconds using the mvp method.

16



Table 1: The QMLE results for α̂ and τ̂

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for α̂

τ=−2 Bias .003 .003 .000 .002 .003 .003 .000 .002 −.001 .000 .000 .000 −.001 .000 .000 .000
RMSE .037 .034 .032 .035 .037 .034 .032 .035 .025 .023 .023 .024 .025 .023 .023 .024
Coverage .923 .934 .939 .945 .923 .934 .939 .945 .950 .954 .957 .938 .950 .954 .957 .938
Time 606.5 607.9 591.1 619.5 11.8 11.9 11.6 11.6 4168.4 4264.6 4146.2 4228.9 30.7 38.2 37.2 30.8

τ=−0.2 Bias .000 .004 .001 .004 .000 .004 .001 .004 .000 .001 .000 .000 .000 .001 .000 .000
RMSE .058 .053 .055 .060 .058 .053 .055 .060 .041 .039 .037 .038 .041 .039 .037 .038
Coverage .927 .945 .943 .936 .927 .945 .943 .936 .937 .945 .944 .956 .937 .945 .944 .956
Time 637.1 553.0 572.2 661.2 14.0 12.6 12.9 14.3 4149.6 3547.5 3670.0 4225.0 37.2 38.3 39.8 37.8

τ=0.2 Bias .002 .002 .002 .002 .002 .002 .002 .002 .001 −.001 .001 −.001 .001 −.001 .001 −.001
RMSE .055 .052 .053 .063 .055 .052 .053 .063 .040 .040 .041 .038 .040 .040 .041 .038
Coverage .931 .934 .947 .931 .931 .934 .947 .931 .946 .956 .925 .951 .946 .956 .925 .951
Time 591.1 534.6 549.6 624.3 12.9 12.2 12.4 13.4 3838.9 3454.7 3498.7 4008.7 34.1 37.2 37.7 35.6

τ=2 Bias −.001 .000 .001 −.001 −.001 .000 .001 −.001 .000 −.001 .000 −.001 .000 −.001 .000 −.001
RMSE .024 .022 .027 .029 .024 .022 .027 .029 .017 .018 .021 .016 .017 .018 .021 .016
Coverage .905 .935 .936 .924 .905 .935 .936 .924 .934 .942 .942 .942 .934 .942 .942 .942
Time 632.0 651.5 612.5 643.7 11.8 12.6 11.7 12.0 4355.0 4512.8 4270.1 4512.5 31.3 40.3 38.3 32.3

Results for τ̂

τ=−2 Bias −.012 −.003 −.008 −.011 −.012 −.003 −.008 −.011 −.006 −.007 −.007 −.008 −.006 −.007 −.007 −.008
RMSE .146 .145 .147 .147 .146 .145 .147 .147 .104 .102 .102 .101 .104 .102 .102 .101
Coverage .948 .940 .941 .945 .948 .940 .941 .945 .940 .953 .945 .944 .940 .953 .945 .944
Time 606.5 607.9 591.1 619.5 11.8 11.9 11.6 11.6 4168.4 4264.6 4146.2 4228.9 30.7 38.2 37.2 30.8

τ=−0.2 Bias −.002 .014 .004 .015 −.002 .014 .004 .015 .003 .001 .005 .001 .003 .001 .005 .001
RMSE .152 .149 .144 .151 .152 .149 .144 .151 .102 .103 .102 .101 .102 .103 .102 .101
Coverage .944 .938 .947 .927 .944 .938 .947 .927 .938 .937 .948 .948 .938 .937 .948 .948
Time 637.1 553.0 572.2 661.2 14.0 12.6 12.9 14.3 4149.6 3547.5 3670.0 4225.0 37.2 38.3 39.8 37.8

τ=0.2 Bias .010 .015 .014 .011 .010 .015 .014 .011 .011 .007 .015 .004 .011 .007 .015 .004
RMSE .146 .149 .157 .154 .146 .149 .157 .154 .101 .104 .101 .105 .101 .104 .101 .105
Coverage .937 .948 .929 .938 .937 .948 .929 .938 .951 .939 .940 .948 .951 .939 .940 .948
Time 591.1 534.6 549.6 624.3 12.9 12.2 12.4 13.4 3838.9 3454.7 3498.7 4008.7 34.1 37.2 37.7 35.6

τ=2 Bias .066 .059 .057 .055 .066 .059 .057 .055 .028 .032 .024 .026 .028 .032 .024 .026
RMSE .167 .165 .170 .161 .167 .165 .170 .161 .107 .106 .106 .105 .107 .106 .106 .105
Coverage .904 .908 .900 .916 .904 .908 .900 .916 .934 .936 .936 .941 .934 .936 .936 .941
Time 632.0 651.5 612.5 643.7 11.8 12.6 11.7 12.0 4355.0 4512.8 4270.1 4512.5 31.3 40.3 38.3 32.3
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Table 2: The QMLE results for β̂1 and β̂2
n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for β̂1

τ=−2 Bias .004 .003 −.004 −.002 .004 .003 −.004 −.002 .001 .003 .001 .000 .001 .003 .001 .000
RMSE .059 .060 .056 .057 .059 .060 .056 .057 .039 .038 .036 .035 .039 .038 .036 .035
Coverage .942 .937 .949 .943 .942 .937 .949 .943 .952 .944 .946 .952 .952 .944 .946 .952
Time 610.3 611.2 594.5 623.2 12.0 12.1 11.7 11.8 4193.3 4287.2 4168.7 4253.5 31.1 38.7 37.7 31.2

τ=−0.2 Bias .002 .002 −.002 −.001 .002 .002 −.002 −.001 −.002 .000 −.004 .001 −.002 .000 −.004 .001
RMSE .079 .076 .074 .083 .079 .076 .074 .083 .051 .052 .054 .053 .051 .052 .054 .053
Coverage .937 .939 .955 .936 .937 .939 .955 .936 .947 .935 .931 .941 .947 .935 .931 .941
Time 640.5 556.1 575.4 664.7 14.1 12.7 13.0 14.5 4171.9 3567.4 3689.9 4247.2 37.6 38.7 40.2 38.2

τ=0.2 Bias −.001 −.001 −.002 −.003 −.001 −.001 −.002 −.003 .002 .000 .000 .000 .002 .000 .000 .000
RMSE .084 .075 .079 .080 .084 .075 .079 .080 .053 .053 .054 .055 .053 .053 .054 .055
Coverage .938 .934 .942 .946 .938 .934 .942 .946 .951 .948 .936 .946 .951 .948 .936 .946
Time 594.5 537.7 552.7 627.8 13.1 12.4 12.6 13.6 3861.0 3474.6 3518.6 4030.8 34.5 37.7 38.1 36.0

τ=2 Bias .002 .000 −.002 .000 .002 .000 −.002 .000 .001 −.002 −.002 .000 .001 −.002 −.002 .000
RMSE .036 .039 .036 .045 .036 .039 .036 .045 .028 .025 .029 .026 .028 .025 .029 .026
Coverage .921 .926 .940 .946 .921 .926 .940 .946 .943 .943 .944 .940 .943 .943 .944 .940
Time 635.6 654.9 615.9 647.4 12.0 12.8 11.9 12.1 4379.6 4535.5 4292.8 4537.3 31.7 40.8 38.7 32.7

Results for β̂2

τ=−2 Bias .001 .000 −.001 .002 .001 .000 −.001 .002 .001 −.001 −.002 .000 .001 −.001 −.002 .000
RMSE .056 .051 .048 .060 .056 .051 .048 .060 .039 .037 .037 .041 .039 .037 .037 .041
Coverage .946 .955 .934 .946 .946 .955 .934 .946 .948 .957 .945 .937 .948 .957 .945 .937
Time 610.3 611.2 594.5 623.2 12.0 12.1 11.7 11.8 4193.3 4287.2 4168.7 4253.5 31.1 38.7 37.7 31.2

τ=−0.2 Bias .000 .000 −.002 −.001 .000 .000 −.002 −.001 .002 −.002 −.004 .000 .002 −.002 −.004 .000
RMSE .080 .075 .076 .075 .080 .075 .076 .075 .054 .052 .051 .051 .054 .052 .051 .051
Coverage .928 .938 .955 .953 .928 .938 .955 .953 .942 .949 .941 .945 .942 .949 .941 .945
Time 640.5 556.1 575.4 664.7 14.1 12.7 13.0 14.5 4171.9 3567.4 3689.9 4247.2 37.6 38.7 40.2 38.2

τ=0.2 Bias .001 .002 −.005 −.003 .001 .002 −.005 −.003 .001 .002 .001 .002 .001 .002 .001 .002
RMSE .077 .086 .079 .090 .077 .086 .079 .090 .053 .053 .052 .052 .053 .053 .052 .052
Coverage .937 .929 .937 .944 .937 .929 .937 .944 .955 .941 .943 .946 .955 .941 .943 .946
Time 594.5 537.7 552.7 627.8 13.1 12.4 12.6 13.6 3861.0 3474.6 3518.6 4030.8 34.5 37.7 38.1 36.0

τ=2 Bias .000 .001 −.001 −.001 .000 .001 −.001 −.001 −.001 .002 .000 .000 −.001 .002 .000 .000
RMSE .034 .034 .042 .036 .034 .034 .042 .036 .022 .025 .024 .027 .022 .025 .024 .027
Coverage .933 .941 .941 .926 .933 .941 .941 .926 .946 .941 .941 .931 .946 .941 .941 .931
Time 635.6 654.9 615.9 647.4 12.0 12.8 11.9 12.1 4379.6 4535.5 4292.8 4537.3 31.7 40.8 38.7 32.7
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Table 3: The QMLE results of average direct effects for X1 and X2

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

τ=−2 Bias .003 .003 −.004 .000 .003 .003 −.004 .000 .003 .003 .001 −.001 .003 .003 .001 −.001
RMSE .106 .060 .056 .109 .106 .060 .056 .109 .076 .039 .037 .070 .076 .039 .037 .070
Coverage .947 .937 .952 .945 .947 .937 .952 .945 .946 .941 .944 .946 .946 .941 .944 .946
Time 612.0 612.6 595.9 625.0 13.8 13.5 13.2 13.6 4205.5 4297.0 4178.6 4265.6 43.4 48.5 47.5 43.3

τ=−0.2 Bias .005 .003 −.001 .007 .005 .003 −.001 .007 −.001 .000 −.004 .003 −.001 .000 −.004 .003
RMSE .159 .077 .075 .153 .159 .077 .075 .153 .105 .052 .054 .101 .105 .052 .054 .101
Coverage .948 .941 .961 .937 .948 .941 .961 .937 .954 .939 .932 .940 .954 .939 .932 .940
Time 642.2 557.5 576.8 666.5 15.9 14.2 14.5 16.3 4184.3 3577.2 3699.8 4259.6 50.0 48.6 50.1 50.6

τ=0.2 Bias −.003 .000 −.001 .001 −.003 .000 −.001 .001 .003 .000 .000 .000 .003 .000 .000 .000
RMSE .163 .074 .080 .163 .163 .074 .080 .163 .106 .053 .055 .104 .106 .053 .055 .104
Coverage .940 .937 .942 .944 .940 .937 .942 .944 .949 .944 .941 .940 .949 .944 .941 .940
Time 596.2 539.1 554.1 629.5 14.8 13.8 14.1 15.4 3873.4 3484.5 3528.4 4043.1 46.8 47.5 48.0 48.3

τ=2 Bias .005 .000 −.001 .000 .005 .000 −.001 .000 .003 −.002 −.002 .000 .003 −.002 −.002 .000
RMSE .079 .039 .037 .084 .079 .039 .037 .084 .055 .025 .030 .058 .055 .025 .030 .058
Coverage .922 .922 .946 .947 .922 .922 .946 .947 .930 .945 .939 .941 .930 .945 .939 .941
Time 637.3 656.3 617.3 649.2 13.7 14.3 13.3 13.9 4391.6 4545.3 4302.7 4549.4 43.6 50.6 48.6 44.8

Results for X2

τ=−2 Bias .000 .000 −.001 .006 .000 .000 −.001 .006 .002 −.001 −.002 .000 .002 −.001 −.002 .000
RMSE .096 .051 .048 .107 .096 .051 .048 .107 .068 .037 .038 .072 .068 .037 .038 .072
Coverage .942 .955 .936 .953 .942 .955 .936 .953 .943 .956 .945 .935 .943 .956 .945 .935
Time 612.0 612.7 595.9 625.0 13.8 13.5 13.1 13.6 4205.5 4297.0 4178.6 4265.6 43.4 48.5 47.5 43.3

τ=−0.2 Bias .001 .000 −.002 .003 .001 .000 −.002 .003 .004 −.002 −.004 .000 .004 −.002 −.004 .000
RMSE .144 .076 .076 .126 .144 .076 .076 .126 .095 .053 .051 .088 .095 .053 .051 .088
Coverage .934 .938 .952 .950 .934 .938 .952 .950 .948 .948 .939 .933 .948 .948 .939 .933
Time 642.2 557.5 576.8 666.5 15.9 14.2 14.5 16.2 4184.3 3577.2 3699.8 4259.6 50.0 48.6 50.1 50.6

τ=0.2 Bias .000 .002 −.005 −.002 .000 .002 −.005 −.002 .001 .002 .001 .003 .001 .002 .001 .003
RMSE .132 .086 .080 .156 .132 .086 .080 .156 .092 .053 .052 .089 .092 .053 .052 .089
Coverage .938 .930 .939 .940 .938 .930 .939 .940 .956 .942 .943 .952 .956 .942 .943 .952
Time 596.2 539.1 554.1 629.5 14.8 13.8 14.1 15.4 3873.4 3484.5 3528.4 4043.1 46.9 47.5 48.0 48.3

τ=2 Bias .001 .001 −.001 −.003 .001 .001 −.001 −.003 −.001 .002 .000 −.001 −.001 .002 .000 −.001
RMSE .068 .034 .042 .061 .068 .034 .042 .061 .039 .025 .024 .045 .039 .025 .024 .045
Coverage .928 .937 .940 .939 .928 .937 .940 .939 .946 .941 .943 .936 .946 .941 .943 .936
Time 637.4 656.3 617.3 649.2 13.7 14.3 13.3 13.9 4391.6 4545.3 4302.7 4549.4 43.7 50.6 48.6 44.7
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Table 4: The GMME results for α̂ and τ̂
n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for α̂

τ=−2 Bias .002 .002 −.001 .001 .002 .002 −.001 .001 −.001 .000 .000 −.001 −.001 .000 .000 −.001
RMSE .039 .035 .034 .037 .039 .035 .034 .037 .026 .023 .024 .024 .026 .023 .024 .024
Coverage .919 .930 .916 .920 .919 .930 .916 .920 .939 .947 .946 .930 .939 .947 .946 .930
Time 1407.9 1298.5 1257.3 1270.5 60.6 57.0 56.2 54.9 8663.3 8788.2 8576.1 8797.2 219.6 220.6 219.6 219.7

τ=−0.2 Bias −.001 .002 .000 .002 −.001 .002 .000 .002 −.002 .001 −.001 −.001 −.002 .001 −.001 −.001
RMSE .058 .056 .057 .062 .058 .056 .057 .062 .042 .040 .038 .039 .042 .040 .038 .039
Coverage .924 .931 .925 .914 .924 .931 .925 .914 .934 .945 .936 .942 .934 .945 .936 .942
Time 1512.6 1413.2 1378.5 1504.4 60.8 59.7 58.8 60.5 9794.5 8872.9 8787.4 9936.7 207.6 203.1 202.2 208.4

τ=0.2 Bias .001 .001 .001 .000 .001 .001 .001 .000 .000 −.002 .000 −.002 .000 −.002 .000 −.002
RMSE .057 .055 .054 .065 .057 .055 .054 .065 .040 .041 .042 .038 .040 .041 .042 .038
Coverage .921 .920 .935 .911 .921 .920 .935 .911 .945 .943 .925 .942 .945 .943 .925 .942
Time 1409.1 1312.1 1300.7 1409.1 58.5 57.5 57.2 58.6 9341.3 8504.4 8409.4 9463.1 205.9 201.4 200.1 205.8

τ=2 Bias −.002 −.001 .000 −.002 −.002 −.001 .000 −.002 .000 −.001 −.001 −.001 .000 −.001 −.001 −.001
RMSE .025 .023 .029 .030 .025 .023 .029 .030 .017 .018 .021 .017 .017 .018 .021 .017
Coverage .902 .932 .923 .913 .902 .932 .923 .913 .933 .937 .940 .935 .933 .937 .940 .935
Time 1420.2 1335.1 1340.9 1343.2 58.4 58.2 58.4 56.4 9321.8 9157.7 8956.1 9167.3 223.0 224.4 222.9 221.0

Results for τ̂

τ=−2 Bias −.024 −.014 −.022 −.025 −.024 −.014 −.022 −.025 −.012 −.014 −.014 −.016 −.012 −.014 −.014 −.016
RMSE .151 .150 .152 .151 .151 .150 .152 .151 .105 .103 .105 .102 .105 .103 .105 .102
Coverage .941 .939 .930 .936 .941 .939 .930 .936 .937 .954 .934 .944 .937 .954 .934 .944
Time 1407.9 1298.5 1257.3 1270.5 60.6 57.0 56.2 54.9 8663.3 8788.2 8576.1 8797.2 219.6 220.6 219.6 219.7

τ=−0.2 Bias −.015 .001 −.011 .001 −.015 .001 −.011 .001 −.003 −.007 −.002 −.008 −.003 −.007 −.002 −.008
RMSE .154 .152 .148 .154 .154 .152 .148 .154 .104 .105 .102 .103 .104 .105 .102 .103
Coverage .936 .937 .936 .926 .936 .937 .936 .926 .935 .932 .938 .947 .935 .932 .938 .947
Time 1512.6 1413.2 1378.5 1504.4 60.8 59.7 58.8 60.5 9794.5 8872.9 8787.4 9936.7 207.6 203.1 202.2 208.4

τ=0.2 Bias −.006 −.003 −.005 −.006 −.006 −.003 −.005 −.006 .003 .000 .007 −.004 .003 .000 .007 −.004
RMSE .151 .151 .161 .158 .151 .151 .161 .158 .104 .105 .103 .106 .104 .105 .103 .106
Coverage .929 .942 .912 .921 .929 .942 .912 .921 .946 .926 .935 .938 .946 .926 .935 .938
Time 1409.1 1312.1 1300.7 1409.1 58.5 57.5 57.2 58.6 9341.3 8504.4 8409.4 9463.1 205.9 201.4 200.1 205.8

τ=2 Bias .039 .034 .030 .029 .039 .034 .030 .029 .016 .020 .011 .015 .016 .020 .011 .015
RMSE .164 .162 .167 .160 .164 .162 .167 .160 .107 .104 .105 .104 .107 .104 .105 .104
Coverage .907 .909 .898 .924 .907 .909 .898 .924 .935 .949 .940 .948 .935 .949 .940 .948
Time 1420.2 1335.1 1340.9 1343.2 58.4 58.2 58.4 56.4 9321.8 9157.7 8956.1 9167.3 223.0 224.4 222.9 221.0
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Table 5: The Bayesian results for α̂ and τ̂

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for α̂

τ=−2 Bias .006 −.004 .005 −.002 .006 −.004 .005 −.002 −.002 −.003 .001 .006 −.002 −.003 .001 .006
RMSE .036 .034 .038 .031 .036 .034 .038 .031 .028 .024 .022 .026 .028 .024 .022 .026
Coverage .960 .950 .940 .940 .960 .950 .940 .940 .950 .990 .980 .920 .950 .990 .980 .920
Time 2779.4 2519.4 2522.4 2768.3 20.4 20.5 20.4 19.8 19741.3 17773.8 17742.6 19743.5 25.9 25.8 26.1 25.4

τ=−0.2 Bias .001 .002 .002 −.004 .001 .002 .002 −.004 .012 .003 −.001 −.008 .012 .003 −.001 −.008
RMSE .059 .056 .050 .053 .059 .056 .050 .053 .039 .039 .035 .037 .039 .039 .035 .037
Coverage .950 .960 .950 .930 .950 .960 .950 .930 .900 .970 .960 .960 .900 .970 .960 .960
Time 2569.1 2319.2 2319.2 2584.2 20.2 20.3 20.3 19.7 17645.8 15784.0 15748.3 17733.8 25.9 25.7 26.1 25.4

τ=0.2 Bias .014 −.005 .003 −.008 .014 −.005 .003 −.008 .008 −.005 .001 −.002 .008 −.005 .001 −.002
RMSE .062 .051 .056 .065 .062 .051 .056 .065 .040 .041 .036 .042 .040 .041 .036 .042
Coverage .920 .970 .960 .940 .920 .970 .960 .940 .910 .950 .950 .970 .910 .950 .950 .970
Time 2567.2 2333.8 2318.0 2570.9 20.3 20.0 20.1 20.1 17658.5 15786.3 15735.4 17797.9 26.1 25.4 25.8 25.2

τ=2 Bias .000 .004 .002 −.002 .000 .004 .002 −.002 .000 .003 .000 −.002 .000 .003 .000 −.002
RMSE .025 .029 .035 .032 .025 .029 .035 .032 .023 .020 .020 .017 .023 .020 .020 .017
Coverage .960 .970 .960 .940 .960 .970 .960 .940 .930 .960 .940 .970 .930 .960 .940 .970
Time 2771.2 2511.7 2526.1 2778.6 20.2 20.1 19.8 19.6 19692.2 17740.2 17745.2 19558.5 26.0 25.6 25.5 25.3

Results for τ̂

τ=−2 Bias .055 .050 .038 .073 .055 .050 .038 .073 .010 .029 .030 .022 .010 .029 .030 .022
RMSE .168 .157 .142 .155 .168 .157 .142 .155 .106 .111 .107 .105 .106 .111 .107 .105
Coverage .930 .920 .960 .920 .930 .920 .960 .920 .930 .890 .920 .920 .930 .890 .920 .920
Time 2768.4 2512.7 2515.5 2761.3 37.5 37.7 37.5 36.6 19666.9 17777.3 17735.6 19677.4 49.0 48.9 49.1 48.0

τ=−0.2 Bias .004 .022 .018 .002 .004 .022 .018 .002 .005 .015 .002 .004 .005 .015 .002 .004
RMSE .158 .134 .143 .154 .158 .134 .143 .154 .099 .110 .095 .108 .099 .110 .095 .108
Coverage .940 .970 .950 .930 .940 .970 .950 .930 .950 .930 .950 .910 .950 .930 .950 .910
Time 2562.3 2314.1 2315.7 2576.4 37.2 37.5 37.4 36.6 17579.9 15779.5 15744.3 17671.9 48.9 48.6 49.0 48.0

τ=0.2 Bias −.015 .012 −.003 .019 −.015 .012 −.003 .019 −.006 .000 .000 .006 −.006 .000 .000 .006
RMSE .165 .133 .141 .145 .165 .133 .141 .145 .094 .106 .104 .114 .094 .106 .104 .114
Coverage .870 .960 .950 .970 .870 .960 .950 .970 .960 .940 .920 .920 .960 .940 .920 .920
Time 2560.7 2328.0 2313.5 2561.8 37.4 36.8 37.1 36.9 17602.7 15790.3 15729.3 17749.5 49.7 48.1 48.8 47.8

τ=2 Bias −.042 −.047 −.035 −.055 −.042 −.047 −.035 −.055 −.016 −.013 −.016 −.014 −.016 −.013 −.016 −.014
RMSE .141 .155 .163 .164 .141 .155 .163 .164 .101 .103 .106 .102 .101 .103 .106 .102
Coverage .980 .960 .940 .960 .980 .960 .940 .960 .940 .980 .940 .970 .940 .980 .940 .970
Time 2758.7 2504.3 2518.9 2769.1 37.5 36.9 36.7 36.3 19622.7 17732.9 17730.0 19463.7 49.0 48.4 48.2 47.8
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5 An Empirical Illustration

In this section, we illustrate the computational time advantage of the matrix-vector products

method using an empirical application. To this end, we use an example from Pace and Barry

(1997) on the US presidential election in 1980. The dataset contains variables on the election re-

sults and county characteristics for 3107 US counties. In our model, the outcome variable is the

(logged) proportion of voting age population that voted in the election (Y = Vote). The explana-

tory variables include the log percentage of population with a twelfth grade or higher education

(X1 = Educ), the log percentage of population with homeownership (X2 = Homeowners), and the

log per capita income (X3 = Income). We consider the following MESS(1,1) specification

eαWY = β0ln + β1X1 + β2X2 + β3X3 + u, eτWu = ε. (5.1)

The spatial weights matrix W is the contiguity based weights matrix constructed using the latitude

and longitude of the counties. We estimate this specification using the QML, GMM and Bayesian

methods. For the Bayesian method, the same priors as those in the MC simulations are used. We

use the expm and mvp methods to compute the estimation results and record the corresponding

computation times. In the case of mvp method, the truncation order q is set to 15.

The parameter estimation results are summarized in Table 6. While the mvp method provides

the same parameter estimates and standard errors (in parenthesis) as those obtained from the

expm method, the computation time is significantly smaller for the mvp method. In the QML

case, the computation time is 1072.4 seconds for the expm method, but only 6.0 seconds for the

mvp method. In the GMM case, the computation time takes 4805.8. seconds for the expm method,

and 21.1 seconds for the mvp method. For the Bayesian estimation, the number of draws is set

to 1500 and the first 500 draws are discarded as burn-ins. The results show that the difference in

terms of computation time is the biggest for the Bayesian estimation case, costing 47742.3 seconds

(13.26 hours) for the expm method, and 11.4 seconds for the mvp method. Overall, these results

show that the matrix-vector products method is not only useful in Monte Carlo simulations, where

resamples are drawn for hundreds or thousands of times, but also useful in empirical applications

with large sample sizes.
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Table 6: The parameter estimates of the presidential election voting example

QML GMM Bayesian

expm mvp expm mvp expm mvp

α −0.350∗∗∗ −0.350∗∗∗ −0.423∗∗∗ −0.423∗∗∗ −0.337∗∗∗ −0.337∗∗∗

(0.045) (0.045) (0.045) (0.045) (0.041) (0.041)
τ −0.443∗∗∗ −0.443∗∗∗ −0.374∗∗∗ −0.374∗∗∗ −0.458∗∗∗ −0.458∗∗∗

(0.055) (0.055) (0.055) (0.055) (0.050) (0.050)
Educ 0.316∗∗∗ 0.316∗∗∗ 0.300∗∗∗ 0.300∗∗∗ 0.317∗∗∗ 0.317∗∗∗

(0.021) (0.021) (0.020) (0.020) (0.020) (0.020)
Homeowners 0.572∗∗∗ 0.572∗∗∗ 0.571∗∗∗ 0.571∗∗∗ 0.572∗∗∗ 0.572∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)
Income −0.154∗∗∗ −0.154∗∗∗ −0.144∗∗∗ −0.144∗∗∗ −0.155∗∗∗ −0.155∗∗∗

(0.021) (0.021) (0.020) (0.020) (0.021) (0.021)
Cons. 0.738∗∗∗ 0.738∗∗∗ 0.732∗∗∗ 0.732∗∗∗ 0.734∗∗∗ 0.734∗∗∗

(0.052) (0.052) (0.051) (0.051) (0.054) (0.054)

Time 1072.4 6.0 4805.8 21.1 47742.3 11.4

Note: * p<0.1; ** p<0.05; *** p<0.01.

To investigate the impact measures, we also compute the average direct effects, average total

effects and average indirect effects discussed in Section 2.5, the measures of dispersion, and com-

putation times. The results are summarized in Table 7. The reported dispersion measures are

calculated by the delta method for the QML and GMM methods. In the case of Bayesian estima-

tors, the standard deviation of posterior draws is used. The results show that the corresponding

impact measures are very similar across the QML, GMM and Bayesian methods. For example,

the average direct effect estimate for Educ is 0.320 using the QML method, 0.305 using the GMM

method and 0.320 for the Bayesian method. However, in terms of computation time, the mvp

method takes much less time than the expm method. For example, the computation times for the

expm method are 1088.2, 4822.3 and 71584.0 seconds for the QML, GMM and Bayesian methods,

respectively. On the other hand, the computation times for the mvp method are 22.0, 37.6 and

24491.0 seconds for the mvp method for the QML, GMM and Bayesian methods, respectively.11

11Note that the impact measures consist of traces of n× n matrices. For example, the average direct effect equals
1
n

tr(e−α̂Wn β̂k) for k = 1, 2 and 3, so we need to compute the trace of an n×n matrix for each draw through Algorithm
1 in the Bayesian method. This is why the time to compute the impact measures is relatively longer in the case of
Bayesian method. However the time to sample the draws for the parameters is much shorter as shown in Table 6.
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Table 7: The impact measures of the presidential election voting example

QML GMM Bayesian

expm mvp expm mvp expm mvp

Average direct effects

Educ 0.320∗∗∗ 0.320∗∗∗ 0.305∗∗∗ 0.305∗∗∗ 0.320∗∗∗ 0.320∗∗∗

(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)
Homeowners 0.578∗∗∗ 0.578∗∗∗ 0.580∗∗∗ 0.580∗∗∗ 0.578∗∗∗ 0.578∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)
Income −0.156∗∗∗ −0.156∗∗∗ −0.147∗∗∗ −0.147∗∗∗ −0.156∗∗∗ −0.156∗∗∗

(0.021) (0.021) (0.020) (0.020) (0.021) (0.021)

Average total effects

Educ 0.449∗∗∗ 0.449∗∗∗ 0.458∗∗∗ 0.458∗∗∗ 0.444∗∗∗ 0.444∗∗∗

(0.027) (0.027) (0.027) (0.027) (0.029) (0.029)
Homeowners 0.812∗∗∗ 0.812∗∗∗ 0.872∗∗∗ 0.872∗∗∗ 0.802∗∗∗ 0.802∗∗∗

(0.043) (0.043) (0.044) (0.044) (0.039) (0.039)
Income −0.219∗∗∗ −0.219∗∗∗ −0.220∗∗∗ −0.220∗∗∗ −0.217∗∗∗ −0.217∗∗∗

(0.028) (0.028) (0.030) (0.030) (0.029) (0.029)

Average indirect effects

Educ 0.129∗∗∗ 0.129∗∗∗ 0.153∗∗∗ 0.153∗∗∗ 0.124∗∗∗ 0.124∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.018) (0.018)
Homeowners 0.234∗∗∗ 0.234∗∗∗ 0.292∗∗∗ 0.292∗∗∗ 0.224∗∗∗ 0.224∗∗∗

(0.036) (0.036) (0.038) (0.038) (0.032) (0.032)
Income −0.063∗∗∗ −0.063∗∗∗ −0.074∗∗∗ −0.074∗∗∗ −0.060∗∗∗ −0.060∗∗∗

(0.011) (0.011) (0.012) (0.012) (0.011) (0.011)

Time 1088.2 22.0 4822.3 37.6 71584.0 24491.0

Note: * p<0.1; ** p<0.05; *** p<0.01.
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6 Conclusion

The MESS-type models provide a class of alternatives to SAR-type models with attractive proper-

ties. However, the estimation of these models requires the computation of the matrix exponential

terms in each iteration of a numerical optimization scheme, which can be computationally costly. In

this paper, for the calculation of the matrix exponential terms, we propose a matrix-vector products

method based on the truncation of Taylor series expansion of matrix exponential terms. Because

the estimation of MESS-type models requires the computation of the matrix exponential terms as

vectors, rather than the matrix exponential terms in isolation, our approach provides an efficient

alternative to the default method available in several popular statistical software. The results from

our extensive simulation study and empirical illustration confirm the computational time gains for

three estimation methods for MESS-type models (i.e., the QML, GMM and Bayesian methods)

using the matrix-vector products method.
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Appendix

A Additional Simulation Results

In this appendix, we provide some additional simulation results on the performance of both methods.

Tables A.1 and A.2 include the simulation results for the indirect and total effects of X1 and X2

for the QMLE case. Tables A.3–A.6 provide additional results for the GMME. The remaining

tables, Tables A.7–A.10, include additional simulation results for the Bayesian estimator. Overall,

the simulation results in these tables attest that the mvp method is computationally more efficient

than the expm method.
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Table A.1: The QMLE results of average indirect effects for X1 and X2

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

τ=−2 Bias −.006 −.005 .002 −.001 −.006 −.005 .002 −.001 .018 .000 .000 .001 .018 .000 .000 .001
RMSE .547 .079 .056 .107 .547 .079 .056 .107 .406 .054 .042 .071 .406 .054 .042 .071
Coverage .931 .943 .935 .945 .931 .943 .935 .945 .942 .951 .955 .943 .942 .951 .955 .943
Time 613.8 614.1 597.3 626.7 15.5 15.0 14.6 15.3 4217.8 4306.7 4188.5 4277.7 55.7 58.2 57.3 55.3

τ=−0.2 Bias .029 −.005 .000 −.008 .029 −.005 .000 −.008 .007 −.002 .002 −.002 .007 −.002 .002 −.002
RMSE .875 .126 .098 .152 .875 .126 .098 .152 .615 .090 .065 .101 .615 .090 .065 .101
Coverage .932 .939 .941 .940 .932 .939 .941 .940 .949 .945 .945 .938 .949 .945 .945 .938
Time 643.9 559.0 578.3 668.2 17.6 15.6 16.0 18.0 4196.7 3587.0 3709.6 4271.9 62.5 58.4 59.9 62.9

τ=0.2 Bias −.012 −.002 −.002 −.002 −.012 −.002 −.002 −.002 .007 .004 .000 .000 .007 .004 .000 .000
RMSE .853 .120 .092 .166 .853 .120 .092 .166 .603 .092 .073 .104 .603 .092 .073 .104
Coverage .946 .942 .945 .939 .946 .942 .945 .939 .947 .953 .929 .938 .947 .953 .929 .938
Time 598.0 540.6 555.6 631.3 16.5 15.2 15.5 17.2 3885.7 3494.3 3538.3 4055.5 59.1 57.4 57.9 60.6

τ=2 Bias .031 .001 −.001 .001 .031 .001 −.001 .001 .012 .001 .001 .001 .012 .001 .001 .001
RMSE .420 .049 .048 .083 .420 .049 .048 .083 .287 .041 .037 .058 .287 .041 .037 .058
Coverage .918 .936 .943 .942 .918 .936 .943 .942 .925 .943 .944 .942 .925 .943 .944 .942
Time 639.1 657.8 618.8 650.9 15.4 15.7 14.8 15.6 4403.5 4555.0 4312.5 4561.4 55.6 60.3 58.4 56.8

Results for X2

τ=−2 Bias −.008 −.002 .001 −.006 −.008 −.002 .001 −.006 .012 .000 .000 .000 .012 .000 .000 .000
RMSE .393 .042 .029 .101 .393 .042 .029 .101 .284 .029 .021 .068 .284 .029 .021 .068
Coverage .937 .931 .943 .928 .937 .931 .943 .928 .942 .954 .968 .896 .942 .954 .968 .896
Time 613.8 614.1 597.3 626.7 15.5 15.0 14.6 15.3 4217.8 4306.7 4188.5 4277.7 55.6 58.2 57.3 55.4

τ=−0.2 Bias .009 −.003 .001 −.003 .009 −.003 .001 −.003 .020 −.001 .001 .000 .020 −.001 .001 .000
RMSE .615 .063 .048 .118 .615 .063 .048 .118 .415 .047 .033 .083 .415 .047 .033 .083
Coverage .922 .946 .954 .967 .922 .946 .954 .967 .959 .938 .949 .951 .959 .938 .949 .951
Time 643.9 559.0 578.3 668.2 17.6 15.6 16.0 18.0 4196.7 3587.0 3709.6 4271.9 62.4 58.3 59.9 62.9

τ=0.2 Bias −.003 .000 .000 .002 −.003 .000 .000 .002 .002 .002 .000 −.003 .002 .002 .000 −.003
RMSE .543 .063 .048 .147 .543 .063 .048 .147 .401 .047 .037 .084 .401 .047 .037 .084
Coverage .964 .933 .947 .917 .964 .933 .947 .917 .953 .958 .935 .952 .953 .958 .935 .952
Time 598.0 540.6 555.6 631.3 16.5 15.2 15.5 17.1 3885.7 3494.2 3538.4 4055.5 59.1 57.4 57.9 60.6

τ=2 Bias .012 .001 .000 .003 .012 .001 .000 .003 −.001 .001 .000 .001 −.001 .001 .000 .001
RMSE .301 .024 .021 .058 .301 .024 .021 .058 .171 .021 .018 .042 .171 .021 .018 .042
Coverage .907 .944 .966 .981 .907 .944 .966 .981 .967 .917 .947 .958 .967 .917 .947 .958
Time 639.1 657.7 618.8 650.9 15.4 15.7 14.8 15.6 4403.5 4555.1 4312.5 4561.4 55.5 60.4 58.4 56.8
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Table A.2: The QMLE results of average total effects for X1 and X2

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

τ=−2 Bias −.003 −.002 −.002 −.001 −.003 −.002 −.002 −.001 .021 .004 .000 .000 .021 .004 .000 .000
RMSE .643 .103 .072 .013 .643 .103 .072 .013 .477 .073 .047 .008 .477 .073 .047 .008
Coverage .938 .948 .936 .940 .938 .948 .936 .940 .941 .954 .945 .944 .941 .954 .945 .944
Time 612.0 612.7 595.9 625.0 13.8 13.5 13.2 13.6 4205.5 4297.0 4178.6 4265.6 43.4 48.5 47.5 43.3

τ=−0.2 Bias .034 −.002 −.001 −.001 .034 −.002 −.001 −.001 .006 −.002 −.002 .000 .006 −.002 −.002 .000
RMSE 1.021 .166 .107 .021 1.021 .166 .107 .021 .712 .108 .075 .013 .712 .108 .075 .013
Coverage .937 .934 .940 .934 .937 .934 .940 .934 .953 .950 .931 .952 .953 .950 .931 .952
Time 642.2 557.5 576.8 666.5 15.9 14.2 14.5 16.2 4184.3 3577.2 3699.7 4259.5 50.0 48.5 50.0 50.6

τ=0.2 Bias −.015 −.002 −.003 .000 −.015 −.002 −.003 .000 .010 .004 .000 .001 .010 .004 .000 .001
RMSE 1.003 .142 .108 .020 1.003 .142 .108 .020 .700 .109 .079 .013 .700 .109 .079 .013
Coverage .945 .938 .936 .926 .945 .938 .936 .926 .944 .953 .926 .937 .944 .953 .926 .937
Time 596.2 539.1 554.2 629.6 14.8 13.8 14.1 15.4 3873.4 3484.4 3528.5 4043.1 46.8 47.5 48.0 48.3

τ=2 Bias .036 .001 −.002 .000 .036 .001 −.002 .000 .015 −.001 −.001 .000 .015 −.001 −.001 .000
RMSE .496 .061 .053 .010 .496 .061 .053 .010 .338 .046 .042 .004 .338 .046 .042 .004
Coverage .921 .942 .928 .931 .921 .942 .928 .931 .924 .945 .930 .940 .924 .945 .930 .940
Time 637.3 656.3 617.3 649.2 13.7 14.3 13.3 13.9 4391.6 4545.3 4302.6 4549.4 43.6 50.6 48.6 44.8

Results for X2

τ=−2 Bias −.009 −.003 .000 .000 −.009 −.003 .000 .000 .014 −.001 −.002 .000 .014 −.001 −.002 .000
RMSE .484 .076 .049 .009 .484 .076 .049 .009 .349 .055 .037 .006 .349 .055 .037 .006
Coverage .951 .947 .934 .938 .951 .947 .934 .938 .942 .948 .942 .942 .942 .948 .942 .942
Time 612.0 612.7 595.9 624.9 13.7 13.5 13.1 13.6 4205.5 4297.0 4178.6 4265.6 43.4 48.5 47.5 43.2

τ=−0.2 Bias .010 −.003 −.001 .000 .010 −.003 −.001 .000 .024 −.003 −.002 .000 .024 −.003 −.002 .000
RMSE .752 .110 .081 .014 .752 .110 .081 .014 .504 .079 .051 .009 .504 .079 .051 .009
Coverage .930 .936 .944 .922 .930 .936 .944 .922 .945 .946 .935 .948 .945 .946 .935 .948
Time 642.2 557.5 576.8 666.5 15.9 14.2 14.5 16.2 4184.3 3577.1 3699.7 4259.5 50.1 48.5 50.0 50.6

τ=0.2 Bias −.003 .002 −.005 .000 −.003 .002 −.005 .000 .003 .004 .001 .000 .003 .004 .001 .000
RMSE .667 .118 .077 .015 .667 .118 .077 .015 .487 .076 .056 .009 .487 .076 .056 .009
Coverage .941 .935 .937 .936 .941 .935 .937 .936 .959 .951 .937 .946 .959 .951 .937 .946
Time 596.2 539.1 554.1 629.6 14.8 13.8 14.0 15.4 3873.4 3484.4 3528.4 4043.1 46.8 47.5 48.0 48.3

τ=2 Bias .014 .002 −.001 .000 .014 .002 −.001 .000 −.002 .003 .001 .000 −.002 .003 .001 .000
RMSE .367 .043 .049 .007 .367 .043 .049 .007 .208 .037 .027 .004 .208 .037 .027 .004
Coverage .922 .936 .940 .930 .922 .936 .940 .930 .946 .948 .949 .939 .946 .948 .949 .939
Time 637.4 656.3 617.3 649.2 13.7 14.3 13.3 13.9 4391.6 4545.3 4302.6 4549.4 43.6 50.6 48.6 44.8
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Table A.3: The GMME results for β̂1 and β̂2
n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for β̂1

τ=−2 Bias .002 .003 −.005 −.003 .002 .003 −.005 −.003 .000 .003 .000 −.001 .000 .003 .000 −.001
RMSE .060 .061 .057 .059 .060 .061 .057 .059 .040 .039 .037 .035 .040 .039 .037 .035
Coverage .930 .931 .935 .919 .930 .931 .935 .919 .950 .937 .939 .945 .950 .937 .939 .945
Time 1407.9 1298.5 1257.3 1270.5 60.6 57.0 56.2 54.9 8663.3 8788.2 8576.1 8797.2 219.6 220.6 219.6 219.7

τ=−0.2 Bias −.001 −.001 −.004 −.004 −.001 −.001 −.004 −.004 −.003 −.002 −.006 .000 −.003 −.002 −.006 .000
RMSE .081 .078 .076 .086 .081 .078 .076 .086 .052 .053 .055 .053 .052 .053 .055 .053
Coverage .934 .931 .942 .916 .934 .931 .942 .916 .949 .936 .931 .938 .949 .936 .931 .938
Time 1512.6 1413.2 1378.5 1504.4 60.8 59.7 58.8 60.5 9794.5 8872.9 8787.4 9936.7 207.6 203.1 202.2 208.4

τ=0.2 Bias −.004 −.004 −.005 −.006 −.004 −.004 −.005 −.006 .000 −.002 −.002 −.001 .000 −.002 −.002 −.001
RMSE .086 .077 .082 .082 .086 .077 .082 .082 .054 .054 .054 .057 .054 .054 .054 .057
Coverage .925 .926 .924 .934 .925 .926 .924 .934 .950 .946 .934 .935 .950 .946 .934 .935
Time 1409.1 1312.1 1300.7 1409.1 58.5 57.5 57.2 58.6 9341.3 8504.4 8409.4 9463.1 205.9 201.4 200.1 205.8

τ=2 Bias .001 .000 −.002 −.001 .001 .000 −.002 −.001 .001 −.002 −.002 .000 .001 −.002 −.002 .000
RMSE .037 .042 .038 .047 .037 .042 .038 .047 .029 .026 .030 .027 .029 .026 .030 .027
Coverage .909 .910 .932 .930 .909 .910 .932 .930 .940 .930 .938 .935 .940 .930 .938 .935
Time 1420.2 1335.1 1340.9 1343.2 58.4 58.2 58.4 56.4 9321.8 9157.7 8956.1 9167.3 223.0 224.4 222.9 221.0

Results for β̂2

τ=−2 Bias .000 .000 −.001 .002 .000 .000 −.001 .002 .001 −.001 −.003 −.001 .001 −.001 −.003 −.001
RMSE .058 .052 .050 .062 .058 .052 .050 .062 .039 .038 .038 .042 .039 .038 .038 .042
Coverage .924 .947 .904 .926 .924 .947 .904 .926 .941 .950 .940 .930 .941 .950 .940 .930
Time 1407.9 1298.5 1257.3 1270.5 60.6 57.0 56.2 54.9 8663.3 8788.2 8576.1 8797.2 219.6 220.6 219.6 219.7

τ=−0.2 Bias −.002 −.002 −.003 −.001 −.002 −.002 −.003 −.001 .001 −.003 −.004 −.001 .001 −.003 −.004 −.001
RMSE .083 .078 .078 .078 .083 .078 .078 .078 .055 .054 .051 .052 .055 .054 .051 .052
Coverage .915 .921 .940 .932 .915 .921 .940 .932 .935 .943 .937 .932 .935 .943 .937 .932
Time 1512.6 1413.2 1378.5 1504.4 60.8 59.7 58.8 60.5 9794.5 8872.9 8787.4 9936.7 207.6 203.1 202.2 208.4

τ=0.2 Bias .000 .001 −.007 −.006 .000 .001 −.007 −.006 −.001 .001 .001 .001 −.001 .001 .001 .001
RMSE .079 .089 .083 .094 .079 .089 .083 .094 .053 .054 .053 .052 .053 .054 .053 .052
Coverage .929 .914 .920 .919 .929 .914 .920 .919 .948 .930 .940 .938 .948 .930 .940 .938
Time 1409.1 1312.1 1300.7 1409.1 58.5 57.5 57.2 58.6 9341.3 8504.4 8409.4 9463.1 205.9 201.4 200.1 205.8

τ=2 Bias .000 .000 −.001 −.002 .000 .000 −.001 −.002 −.001 .002 .000 .000 −.001 .002 .000 .000
RMSE .035 .036 .044 .038 .035 .036 .044 .038 .022 .026 .024 .028 .022 .026 .024 .028
Coverage .916 .925 .924 .915 .916 .925 .924 .915 .947 .938 .938 .926 .947 .938 .938 .926
Time 1420.2 1335.1 1340.9 1343.2 58.4 58.2 58.4 56.4 9321.8 9157.7 8956.1 9167.3 223.0 224.4 222.9 221.0
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Table A.4: The GMME results of average direct effects for X1 and X2

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

τ=−2 Bias .002 .003 −.005 −.004 .002 .003 −.005 −.004 .003 .003 .000 −.003 .003 .003 .000 −.003
RMSE .109 .061 .057 .113 .109 .061 .057 .113 .078 .039 .037 .071 .078 .039 .037 .071
Coverage .928 .935 .934 .918 .928 .935 .934 .918 .940 .934 .935 .944 .940 .934 .935 .944
Time 1409.8 1299.9 1258.7 1272.2 62.5 58.4 57.7 56.7 8675.5 8798.0 8585.9 8809.3 231.8 230.4 229.4 231.8

τ=−0.2 Bias .003 .000 −.003 −.001 .003 .000 −.003 −.001 −.002 −.001 −.005 .000 −.002 −.001 −.005 .000
RMSE .162 .079 .077 .157 .162 .079 .077 .157 .107 .053 .055 .103 .107 .053 .055 .103
Coverage .932 .928 .941 .934 .932 .928 .941 .934 .949 .935 .930 .928 .949 .935 .930 .928
Time 1514.4 1414.7 1380.0 1506.1 62.6 61.1 60.2 62.3 9807.0 8882.8 8797.4 9949.1 220.1 213.0 212.1 220.8

τ=0.2 Bias −.005 −.003 −.004 −.008 −.005 −.003 −.004 −.008 .001 −.002 −.001 −.003 .001 −.002 −.001 −.003
RMSE .168 .076 .083 .168 .168 .076 .083 .168 .108 .053 .055 .107 .108 .053 .055 .107
Coverage .933 .925 .926 .925 .933 .925 .926 .925 .946 .943 .933 .932 .946 .943 .933 .932
Time 1410.8 1313.5 1302.2 1410.8 60.2 58.9 58.7 60.3 9353.7 8514.4 8419.4 9475.4 218.2 211.3 210.1 218.1

τ=2 Bias .004 .000 −.001 −.004 .004 .000 −.001 −.004 .003 −.002 −.002 −.002 .003 −.002 −.002 −.002
RMSE .083 .041 .039 .087 .083 .041 .039 .087 .056 .026 .030 .059 .056 .026 .030 .059
Coverage .906 .910 .932 .931 .906 .910 .932 .931 .927 .933 .938 .932 .927 .933 .938 .932
Time 1421.9 1336.5 1342.3 1344.9 60.1 59.6 59.9 58.1 9333.7 9167.5 8966.0 9179.2 235.0 234.2 232.7 232.8

Results for X2

τ=−2 Bias −.001 .000 −.001 .005 −.001 .000 −.001 .005 .003 −.001 −.003 −.001 .003 −.001 −.003 −.001
RMSE .100 .053 .050 .111 .100 .053 .050 .111 .069 .038 .038 .073 .069 .038 .038 .073
Coverage .923 .946 .908 .930 .923 .946 .908 .930 .932 .947 .943 .930 .932 .947 .943 .930
Time 1409.9 1299.9 1258.7 1272.2 62.5 58.4 57.6 56.7 8675.5 8798.1 8586.0 8809.2 231.9 230.4 229.4 231.8

τ=−0.2 Bias −.001 −.002 −.003 .000 −.001 −.002 −.003 .000 .003 −.003 −.004 −.002 .003 −.003 −.004 −.002
RMSE .149 .079 .078 .130 .149 .079 .078 .130 .097 .054 .052 .090 .097 .054 .052 .090
Coverage .917 .922 .941 .934 .917 .922 .941 .934 .945 .943 .936 .927 .945 .943 .936 .927
Time 1514.4 1414.7 1380.0 1506.1 62.6 61.1 60.2 62.3 9807.0 8882.8 8797.4 9949.1 220.1 213.1 212.1 220.8

τ=0.2 Bias .000 .002 −.006 −.009 .000 .002 −.006 −.009 .000 .001 .001 .001 .000 .001 .001 .001
RMSE .136 .089 .083 .163 .136 .089 .083 .163 .094 .054 .053 .090 .094 .054 .053 .090
Coverage .931 .913 .923 .924 .931 .913 .923 .924 .952 .929 .940 .942 .952 .929 .940 .942
Time 1410.8 1313.5 1302.2 1410.8 60.2 58.9 58.7 60.3 9353.7 8514.3 8419.3 9475.4 218.2 211.4 210.1 218.1

τ=2 Bias .002 .000 −.001 −.004 .002 .000 −.001 −.004 −.001 .002 .000 −.001 −.001 .002 .000 −.001
RMSE .070 .035 .043 .064 .070 .035 .043 .064 .039 .026 .024 .046 .039 .026 .024 .046
Coverage .919 .924 .925 .916 .919 .924 .925 .916 .943 .939 .940 .926 .943 .939 .940 .926
Time 1421.9 1336.5 1342.3 1344.9 60.1 59.6 59.8 58.1 9333.7 9167.6 8966.0 9179.2 235.0 234.3 232.7 232.9
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Table A.5: The GMME results of average indirect effects for X1 and X2

n=169 n=361

expm mvp expm mvp

τ τ τ τ

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

tau=−2 Bias .000 −.002 .004 .003 .000 −.002 .004 .003 .026 .002 .001 .003 .026 .002 .001 .003
RMSE .567 .081 .059 .112 .567 .081 .059 .112 .416 .056 .043 .071 .416 .056 .043 .071
Coverage .929 .931 .918 .916 .929 .931 .918 .916 .940 .949 .947 .941 .940 .949 .947 .941
Time 1411.7 1301.4 1260.1 1273.9 64.6 59.8 59.1 58.4 8687.6 8807.8 8595.7 8821.3 244.0 240.1 239.2 243.8

tau=−0.2 Bias .031 −.002 .002 .001 .031 −.002 .002 .001 .015 −.001 .004 .001 .015 −.001 .004 .001
RMSE .884 .131 .102 .157 .884 .131 .102 .157 .628 .091 .066 .103 .628 .091 .066 .103
Coverage .926 .924 .933 .937 .926 .924 .933 .937 .940 .943 .939 .930 .940 .943 .939 .930
Time 1516.2 1416.1 1381.4 1507.8 64.3 62.6 61.7 64.0 9819.3 8892.7 8807.3 9961.4 232.5 222.9 222.0 233.0

tau=0.2 Bias −.009 −.002 .000 .008 −.009 −.002 .000 .008 .010 .006 .001 .004 .010 .006 .001 .004
RMSE .883 .125 .094 .171 .883 .125 .094 .171 .610 .094 .074 .107 .610 .094 .074 .107
Coverage .930 .926 .936 .924 .930 .926 .936 .924 .941 .946 .924 .936 .941 .946 .924 .936
Time 1412.5 1315.0 1303.6 1412.6 61.9 60.3 60.1 62.0 9365.9 8524.2 8429.3 9487.7 230.4 221.2 220.0 230.4

tau=2 Bias .030 .002 .001 .005 .030 .002 .001 .005 .015 .002 .002 .002 .015 .002 .002 .002
RMSE .438 .052 .052 .086 .438 .052 .052 .086 .292 .041 .038 .059 .292 .041 .038 .059
Coverage .907 .930 .930 .929 .907 .930 .930 .929 .919 .936 .939 .932 .919 .936 .939 .932
Time 1423.6 1337.9 1343.7 1346.6 61.7 61.1 61.3 59.8 9345.6 9177.3 8975.7 9191.0 246.9 244.0 242.4 244.7

Results for X2

tau=−2 Bias −.007 −.001 .002 −.005 −.007 −.001 .002 −.005 .017 .000 .001 .002 .017 .000 .001 .002
RMSE .411 .043 .031 .105 .411 .043 .031 .105 .290 .029 .022 .069 .290 .029 .022 .069
Coverage .911 .915 .923 .899 .911 .915 .923 .899 .932 .951 .961 .883 .932 .951 .961 .883
Time 1411.7 1301.4 1260.1 1273.9 64.6 59.8 59.1 58.4 8687.5 8807.8 8595.7 8821.3 243.9 240.1 239.2 243.9

tau=−0.2 Bias .010 −.002 .002 −.001 .010 −.002 .002 −.001 .022 −.001 .002 .003 .022 −.001 .002 .003
RMSE .632 .066 .050 .122 .632 .066 .050 .122 .425 .047 .034 .085 .425 .047 .034 .085
Coverage .907 .931 .939 .952 .907 .931 .939 .952 .945 .932 .936 .944 .945 .932 .936 .944
Time 1516.1 1416.1 1381.4 1507.8 64.4 62.6 61.7 64.0 9819.4 8892.7 8807.3 9961.4 232.5 222.9 222.0 233.0

tau=0.2 Bias .002 .000 .001 .008 .002 .000 .001 .008 .002 .003 .000 −.001 .002 .003 .000 −.001
RMSE .564 .066 .050 .154 .564 .066 .050 .154 .406 .048 .037 .085 .406 .048 .037 .085
Coverage .945 .915 .935 .887 .945 .915 .935 .887 .946 .953 .931 .945 .946 .953 .931 .945
Time 1412.6 1315.0 1303.6 1412.6 61.9 60.3 60.1 62.0 9365.9 8524.3 8429.3 9487.7 230.4 221.3 220.0 230.4

tau=2 Bias .017 .001 .001 .004 .017 .001 .001 .004 −.001 .002 .001 .001 −.001 .002 .001 .001
RMSE .310 .026 .023 .061 .310 .026 .023 .061 .174 .022 .019 .043 .174 .022 .019 .043
Coverage .899 .935 .961 .970 .899 .935 .961 .970 .961 .914 .941 .959 .961 .914 .941 .959
Time 1423.6 1337.9 1343.7 1346.6 61.7 61.1 61.3 59.8 9345.6 9177.3 8975.7 9191.0 247.0 244.0 242.4 244.6
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Table A.6: The GMME results of average total effects for X1 and X2

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

τ=−2 Bias .002 .000 −.001 .000 .002 .000 −.001 .000 .030 .005 .001 .000 .030 .005 .001 .000
RMSE .665 .105 .075 .013 .665 .105 .075 .013 .488 .075 .048 .008 .488 .075 .048 .008
Coverage .931 .934 .923 .921 .931 .934 .923 .921 .939 .944 .938 .941 .939 .944 .938 .941
Time 1409.9 1299.9 1258.7 1272.2 62.6 58.4 57.7 56.7 8675.5 8798.0 8585.9 8809.2 231.8 230.4 229.4 231.8

τ=−0.2 Bias .033 −.002 −.001 −.001 .033 −.002 −.001 −.001 .013 −.002 −.002 .001 .013 −.002 −.002 .001
RMSE 1.033 .171 .109 .022 1.033 .171 .109 .022 .726 .109 .076 .013 .726 .109 .076 .013
Coverage .928 .922 .932 .909 .928 .922 .932 .909 .941 .944 .926 .940 .941 .944 .926 .940
Time 1514.4 1414.7 1380.0 1506.1 62.6 61.1 60.2 62.3 9806.9 8882.8 8797.3 9949.1 220.1 213.0 212.1 220.7

τ=0.2 Bias −.015 −.005 −.004 .000 −.015 −.005 −.004 .000 .012 .004 .000 .001 .012 .004 .000 .001
RMSE 1.038 .147 .112 .021 1.038 .147 .112 .021 .710 .111 .080 .013 .710 .111 .080 .013
Coverage .930 .925 .926 .918 .930 .925 .926 .918 .942 .942 .924 .929 .942 .942 .924 .929
Time 1410.8 1313.5 1302.2 1410.8 60.2 58.9 58.7 60.3 9353.6 8514.3 8419.3 9475.4 218.1 211.3 210.0 218.1

τ=2 Bias .034 .003 −.001 .000 .034 .003 −.001 .000 .018 .000 .000 .000 .018 .000 .000 .000
RMSE .517 .065 .056 .011 .517 .065 .056 .011 .344 .047 .043 .005 .344 .047 .043 .005
Coverage .904 .933 .922 .920 .904 .933 .922 .920 .922 .944 .929 .939 .922 .944 .929 .939
Time 1421.9 1336.5 1342.3 1344.9 60.1 59.6 59.8 58.1 9333.7 9167.5 8966.0 9179.1 235.0 234.2 232.7 232.8

Results for X2

τ=−2 Bias −.009 −.002 .001 .000 −.009 −.002 .001 .000 .020 .000 −.002 .000 .020 .000 −.002 .000
RMSE .506 .078 .051 .009 .506 .078 .051 .009 .356 .057 .038 .006 .356 .057 .038 .006
Coverage .930 .941 .917 .918 .930 .941 .917 .918 .934 .941 .934 .931 .934 .941 .934 .931
Time 1409.8 1299.9 1258.7 1272.2 62.6 58.4 57.7 56.7 8675.4 8798.0 8585.9 8809.2 231.8 230.3 229.4 231.8

τ=−0.2 Bias .010 −.003 −.001 .000 .010 −.003 −.001 .000 .025 −.003 −.002 .000 .025 −.003 −.002 .000
RMSE .774 .115 .083 .015 .774 .115 .083 .015 .517 .081 .052 .009 .517 .081 .052 .009
Coverage .917 .926 .932 .917 .917 .926 .932 .917 .939 .933 .929 .941 .939 .933 .929 .941
Time 1514.4 1414.7 1380.0 1506.1 62.6 61.1 60.2 62.3 9807.0 8882.8 8797.3 9949.1 220.1 213.0 212.1 220.7

τ=0.2 Bias .001 .001 −.005 .000 .001 .001 −.005 .000 .001 .005 .001 .001 .001 .005 .001 .001
RMSE .691 .124 .079 .016 .691 .124 .079 .016 .494 .077 .056 .009 .494 .077 .056 .009
Coverage .920 .913 .917 .905 .920 .913 .917 .905 .954 .947 .930 .933 .954 .947 .930 .933
Time 1410.8 1313.5 1302.2 1410.8 60.2 58.9 58.7 60.3 9353.6 8514.4 8419.3 9475.4 218.1 211.3 210.1 218.2

τ=2 Bias .019 .001 .000 .000 .019 .001 .000 .000 −.002 .003 .001 .000 −.002 .003 .001 .000
RMSE .378 .045 .052 .007 .378 .045 .052 .007 .211 .038 .028 .005 .211 .038 .028 .005
Coverage .909 .928 .929 .910 .909 .928 .929 .910 .938 .942 .941 .929 .938 .942 .941 .929
Time 1421.9 1336.5 1342.3 1344.9 60.0 59.6 59.8 58.1 9333.7 9167.5 8965.9 9179.1 235.0 234.1 232.6 232.8
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Table A.7: The Bayesian results for β̂1 and β̂2
n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for β̂1

τ=−2 Bias −.002 .001 .001 −.016 −.002 .001 .001 −.016 −.007 −.002 −.004 .010 −.007 −.002 −.004 .010
RMSE .065 .058 .054 .057 .065 .058 .054 .057 .041 .034 .039 .034 .041 .034 .039 .034
Coverage .900 .960 .950 .970 .900 .960 .950 .970 .960 .970 .950 .960 .960 .970 .950 .960
Time 712.1 657.7 658.3 710.1 26.3 27.3 27.2 25.6 4983.1 4500.9 4502.5 4989.0 36.1 35.1 36.2 34.4

τ=−0.2 Bias −.007 .000 .002 .002 −.007 .000 .002 .002 −.004 .004 −.002 .002 −.004 .004 −.002 .002
RMSE .071 .082 .082 .078 .071 .082 .082 .078 .060 .051 .044 .056 .060 .051 .044 .056
Coverage .970 .940 .910 .920 .970 .940 .910 .920 .940 .950 .980 .940 .940 .950 .980 .940
Time 660.6 604.6 605.1 664.7 26.0 27.1 26.9 25.6 4459.9 4004.1 4004.5 4487.9 36.1 34.3 35.5 34.1

τ=0.2 Bias −.002 −.005 .011 .005 −.002 −.005 .011 .005 −.004 −.008 .008 −.007 −.004 −.008 .008 −.007
RMSE .071 .073 .076 .080 .071 .073 .076 .080 .056 .056 .057 .055 .056 .056 .057 .055
Coverage .990 .960 .940 .950 .990 .960 .940 .950 .940 .970 .950 .950 .940 .970 .950 .950
Time 659.9 608.4 604.9 661.6 26.2 26.3 26.9 26.6 4469.0 4010.0 4004.6 4509.8 36.9 33.2 34.8 34.1

τ=2 Bias .005 −.001 −.005 .005 .005 −.001 −.005 .005 .000 .001 −.001 .002 .000 .001 −.001 .002
RMSE .045 .039 .049 .033 .045 .039 .049 .033 .024 .032 .030 .030 .024 .032 .030 .030
Coverage .920 .950 .960 .930 .920 .950 .960 .930 .970 .940 .950 .940 .970 .940 .950 .940
Time 710.2 656.8 660.0 713.0 26.4 26.8 26.6 25.4 4972.3 4496.2 4508.4 4937.4 36.2 34.1 33.8 34.2

Results for β̂2

τ=−2 Bias −.009 .002 .011 −.014 −.009 .002 .011 −.014 .006 −.001 −.008 −.003 .006 −.001 −.008 −.003
RMSE .054 .058 .053 .064 .054 .058 .053 .064 .040 .038 .038 .039 .040 .038 .038 .039
Coverage .940 .930 .940 .910 .940 .930 .940 .910 .960 .950 .970 .920 .960 .950 .970 .920
Time 712.1 657.7 658.3 710.1 26.3 27.3 27.2 25.6 4983.1 4500.9 4502.5 4989.0 36.1 35.1 36.2 34.4

τ=−0.2 Bias −.010 .006 .005 −.002 −.010 .006 .005 −.002 .010 .006 −.001 .010 .010 .006 −.001 .010
RMSE .078 .088 .075 .071 .078 .088 .075 .071 .048 .045 .054 .055 .048 .045 .054 .055
Coverage .940 .920 .930 .960 .940 .920 .930 .960 .950 .960 .910 .950 .950 .960 .910 .950
Time 660.6 604.6 605.1 664.7 26.0 27.1 26.9 25.6 4459.9 4004.1 4004.5 4487.9 36.1 34.3 35.5 34.1

τ=0.2 Bias .007 .008 .006 −.014 .007 .008 .006 −.014 −.004 .009 .004 −.007 −.004 .009 .004 −.007
RMSE .080 .074 .093 .077 .080 .074 .093 .077 .052 .054 .050 .053 .052 .054 .050 .053
Coverage .970 .940 .900 .940 .970 .940 .900 .940 .950 .960 .960 .950 .950 .960 .960 .950
Time 659.9 608.4 604.9 661.6 26.2 26.3 26.9 26.6 4469.0 4010.0 4004.6 4509.8 36.9 33.2 34.8 34.1

τ=2 Bias −.003 .010 .001 .003 −.003 .010 .001 .003 .004 −.001 −.002 .003 .004 −.001 −.002 .003
RMSE .040 .040 .032 .038 .040 .040 .032 .038 .029 .030 .023 .023 .029 .030 .023 .023
Coverage .950 .920 .980 .950 .950 .920 .980 .950 .960 .950 .950 .940 .960 .950 .950 .940
Time 710.2 656.8 660.0 713.0 26.4 26.8 26.6 25.4 4972.3 4496.2 4508.4 4937.4 36.2 34.1 33.8 34.2
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Table A.8: The Bayesian results of average direct effects for X1 and X2

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

τ=−2 Bias −.011 .002 .002 −.028 −.011 .002 .002 −.028 −.008 −.002 −.003 .028 −.008 −.002 −.003 .028
RMSE .113 .058 .055 .099 .113 .058 .055 .099 .074 .035 .039 .080 .074 .035 .039 .080
Coverage .940 .950 .940 .970 .940 .950 .940 .970 .940 .960 .950 .940 .940 .960 .950 .940
Time 6623.1 5988.2 5995.2 6603.0 446.7 394.2 395.1 441.1 46853.9 42049.8 41972.0 46883.2 2521.7 2046.1 2060.1 2511.4

τ=−0.2 Bias −.010 .002 .004 .000 −.010 .002 .004 .000 −.023 .004 −.001 −.006 −.023 .004 −.001 −.006
RMSE .143 .082 .084 .148 .143 .082 .084 .148 .121 .052 .044 .107 .121 .052 .044 .107
Coverage .970 .950 .910 .950 .970 .950 .910 .950 .920 .950 .980 .980 .920 .950 .980 .980
Time 6159.4 5540.2 5542.9 6194.0 451.9 392.3 393.6 445.3 42115.0 37546.8 37469.3 42343.4 2513.3 2007.1 2016.9 2508.7

τ=0.2 Bias −.022 −.003 .013 .001 −.022 −.003 .013 .001 −.017 −.007 .009 −.012 −.017 −.007 .009 −.012
RMSE .132 .073 .078 .174 .132 .073 .078 .174 .108 .055 .058 .110 .108 .055 .058 .110
Coverage .970 .970 .950 .960 .970 .970 .950 .960 .970 .970 .950 .940 .970 .970 .950 .940
Time 6153.8 5574.3 5539.1 6161.3 450.2 388.4 393.2 450.4 42169.3 37567.6 37441.1 42523.0 2534.6 1993.2 2012.0 2520.8

τ=2 Bias .009 −.001 −.004 .005 .009 −.001 −.004 .005 .000 .001 .000 −.001 .000 .001 .000 −.001
RMSE .074 .039 .049 .083 .074 .039 .049 .083 .057 .032 .031 .051 .057 .032 .031 .051
Coverage .950 .940 .950 .950 .950 .940 .950 .950 .970 .950 .970 .960 .970 .950 .970 .960
Time 6600.2 5968.9 6003.7 6623.9 446.6 386.7 386.6 440.4 46740.4 41953.4 41968.3 46378.7 2507.7 2005.1 2014.0 2459.6

Results for X2

τ=−2 Bias −.019 .002 .012 −.025 −.019 .002 .012 −.025 .012 −.001 −.008 .000 .012 −.001 −.008 .000
RMSE .092 .059 .053 .106 .092 .059 .053 .106 .068 .039 .038 .065 .068 .039 .038 .065
Coverage .950 .930 .930 .930 .950 .930 .930 .930 .960 .950 .970 .940 .960 .950 .970 .940
Time 6622.9 5988.2 5995.2 6602.9 441.1 388.9 389.8 435.5 46852.5 42047.8 41973.9 46884.1 2520.9 2044.7 2058.7 2509.7

τ=−0.2 Bias −.016 .006 .006 −.005 −.016 .006 .006 −.005 .009 .006 −.001 .011 .009 .006 −.001 .011
RMSE .137 .088 .076 .124 .137 .088 .076 .124 .087 .045 .054 .098 .087 .045 .054 .098
Coverage .950 .930 .930 .940 .950 .930 .930 .940 .940 .970 .910 .950 .940 .970 .910 .950
Time 6158.9 5540.2 5542.7 6193.4 446.3 386.5 388.8 440.0 42113.2 37544.2 37471.8 42345.5 2512.1 2003.5 2012.7 2507.8

τ=0.2 Bias .001 .009 .007 −.027 .001 .009 .007 −.027 −.012 .010 .004 −.012 −.012 .010 .004 −.012
RMSE .136 .075 .094 .143 .136 .075 .094 .143 .092 .054 .050 .093 .092 .054 .050 .093
Coverage .950 .940 .900 .960 .950 .940 .900 .960 .960 .970 .960 .940 .960 .970 .960 .940
Time 6153.1 5574.5 5539.2 6160.9 444.8 382.6 387.8 443.6 42167.6 37565.5 37444.5 42525.4 2533.2 1989.7 2008.4 2519.7

τ=2 Bias −.006 .010 .001 .004 −.006 .010 .001 .004 .007 −.001 −.002 .004 .007 −.001 −.002 .004
RMSE .069 .040 .033 .073 .069 .040 .033 .073 .054 .030 .023 .042 .054 .030 .023 .042
Coverage .940 .940 .970 .930 .940 .940 .970 .930 .950 .960 .970 .960 .950 .960 .970 .960
Time 6599.9 5969.2 6004.0 6623.8 441.5 381.5 381.1 435.7 46739.1 41951.6 41971.0 46380.8 2506.3 2003.2 2011.9 2458.5
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Table A.9: The Bayesian results of average indirect effects for X1 and X2

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

τ=−2 Bias −.071 .010 −.008 .027 −.071 .010 −.008 .027 −.009 .007 −.001 −.028 −.009 .007 −.001 −.028
RMSE .546 .078 .067 .095 .546 .078 .067 .095 .401 .059 .040 .082 .401 .059 .040 .082
Coverage .940 .920 .950 .960 .940 .920 .950 .960 .970 .980 .960 .930 .970 .980 .960 .930
Time 6968.0 6273.2 6280.8 6948.5 785.4 679.4 681.6 776.6 49273.4 43999.5 43930.4 49319.1 4908.2 3958.2 3985.9 4891.4

τ=−0.2 Bias −.018 .001 −.002 .002 −.018 .001 −.002 .002 −.161 −.004 .003 .009 −.161 −.004 .003 .009
RMSE .836 .132 .092 .147 .836 .132 .092 .147 .640 .092 .060 .107 .640 .092 .060 .107
Coverage .940 .960 .950 .940 .940 .960 .950 .940 .930 .950 .960 1.000 .930 .950 .960 1.000
Time 6508.1 5827.4 5830.7 6544.0 796.4 675.1 680.5 785.2 44502.3 39476.8 39410.1 44758.0 4892.8 3883.1 3899.8 4887.4

τ=0.2 Bias −.157 .017 −.004 .003 −.157 .017 −.004 .003 −.112 .012 −.002 .012 −.112 .012 −.002 .012
RMSE .798 .120 .101 .177 .798 .120 .101 .177 .595 .094 .066 .112 .595 .094 .066 .112
Coverage .960 .970 .960 .940 .960 .970 .960 .940 .930 .970 .970 .940 .930 .970 .970 .940
Time 6500.7 5863.8 5827.2 6510.1 793.1 669.1 678.7 790.7 44566.5 39503.8 39383.6 44952.3 4933.2 3857.0 3890.5 4913.1

τ=2 Bias .030 −.008 −.001 −.003 .030 −.008 −.001 −.003 .004 −.007 .000 .002 .004 −.007 .000 .002
RMSE .352 .068 .060 .086 .352 .068 .060 .086 .355 .046 .036 .050 .355 .046 .036 .050
Coverage .950 .980 .940 .940 .950 .980 .940 .940 .930 .980 .950 .960 .930 .980 .950 .960
Time 6942.3 6252.7 6289.8 6969.0 786.1 665.9 666.2 777.4 49150.4 43891.8 43925.0 48762.6 4880.2 3879.9 3897.7 4789.5

Results for X2

τ=−2 Bias −.079 .006 −.005 .023 −.079 .006 −.005 .023 .052 .004 .001 −.001 .052 .004 .001 −.001
RMSE .370 .043 .033 .098 .370 .043 .033 .098 .284 .031 .021 .061 .284 .031 .021 .061
Coverage .960 .950 .950 .930 .960 .950 .950 .930 .960 .990 .950 .940 .960 .990 .950 .940
Time 6968.5 6275.2 6282.5 6949.3 785.6 679.6 681.8 776.6 49275.7 44000.9 43933.2 49321.9 4911.6 3960.8 3987.6 4893.6

τ=−0.2 Bias −.047 .000 −.002 .006 −.047 .000 −.002 .006 −.009 −.002 .001 −.009 −.009 −.002 .001 −.009
RMSE .587 .063 .046 .118 .587 .063 .046 .118 .390 .046 .032 .092 .390 .046 .032 .092
Coverage .940 .970 .950 .950 .940 .970 .950 .950 .930 .960 .930 .960 .930 .960 .930 .960
Time 6508.4 5828.7 5832.1 6544.5 796.7 675.4 680.9 785.2 44504.6 39479.7 39412.0 44761.5 4896.4 3882.8 3900.2 4889.8

τ=0.2 Bias −.037 .012 −.001 .027 −.037 .012 −.001 .027 −.068 .009 .000 .011 −.068 .009 .000 .011
RMSE .572 .067 .051 .137 .572 .067 .051 .137 .404 .050 .033 .089 .404 .050 .033 .089
Coverage .910 .970 .940 .960 .910 .970 .940 .960 .960 .960 .950 .930 .960 .960 .950 .930
Time 6501.3 5865.0 5828.6 6510.6 793.2 669.3 678.6 792.4 44568.6 39506.3 39385.6 44956.1 4935.0 3857.2 3890.8 4914.4

τ=2 Bias −.019 −.002 −.002 −.003 −.019 −.002 −.002 −.003 .024 −.004 .000 −.003 .024 −.004 .000 −.003
RMSE .273 .033 .033 .071 .273 .033 .033 .071 .243 .024 .018 .041 .243 .024 .018 .041
Coverage .910 .960 .950 .930 .910 .960 .950 .930 .940 .930 .970 .960 .940 .930 .970 .960
Time 6942.9 6254.7 6291.6 6970.0 786.4 666.2 666.2 777.5 49152.6 43894.2 43927.7 48764.1 4882.3 3881.5 3899.1 4792.2

37



Table A.10: The Bayesian results of average total effects for X1 and X2

n=169 n=361

expm mvp expm mvp

α α α α

−2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2 −2 −0.2 0.2 2

Results for X1

τ=−2 Bias −.082 .011 −.006 −.001 −.082 .011 −.006 −.001 −.018 .005 −.004 .000 −.018 .005 −.004 .000
RMSE .647 .103 .073 .012 .647 .103 .073 .012 .467 .081 .047 .007 .467 .081 .047 .007
Coverage .940 .920 .970 .930 .940 .920 .970 .930 .970 .940 .980 .950 .970 .940 .980 .950
Time 6622.8 5988.8 5996.0 6602.9 440.6 388.3 389.4 435.0 46847.3 42042.2 41970.5 46880.4 2516.1 2040.8 2054.6 2505.6

τ=−0.2 Bias −.029 .003 .002 .002 −.029 .003 .002 .002 −.185 .000 .002 .003 −.185 .000 .002 .003
RMSE .965 .168 .096 .019 .965 .168 .096 .019 .753 .117 .071 .013 .753 .117 .071 .013
Coverage .960 .950 .980 .940 .960 .950 .980 .940 .930 .930 .980 .960 .930 .930 .980 .960
Time 6158.9 5540.6 5543.4 6193.5 445.9 386.0 388.3 439.3 42109.2 37538.8 37467.6 42341.2 2507.6 2000.0 2009.6 2503.9

τ=0.2 Bias −.180 .014 .010 .004 −.180 .014 .010 .004 −.129 .005 .008 .000 −.129 .005 .008 .000
RMSE .914 .147 .107 .020 .914 .147 .107 .020 .694 .111 .070 .013 .694 .111 .070 .013
Coverage .960 .980 .960 .950 .960 .980 .960 .950 .930 .970 .970 .960 .930 .970 .970 .960
Time 6153.1 5575.0 5539.8 6160.9 444.3 382.1 387.2 443.1 42164.0 37560.7 37441.2 42521.2 2529.1 1986.4 2004.5 2515.6

τ=2 Bias .038 −.009 −.005 .002 .038 −.009 −.005 .002 .004 −.006 −.001 .001 .004 −.006 −.001 .001
RMSE .416 .082 .074 .009 .416 .082 .074 .009 .408 .058 .039 .007 .408 .058 .039 .007
Coverage .940 .920 .950 .920 .940 .920 .950 .920 .940 .940 .960 .960 .940 .940 .960 .960
Time 6599.8 5969.7 6004.6 6623.9 441.0 380.7 380.5 435.2 46734.2 41946.5 41968.2 46376.3 2502.4 1999.5 2008.0 2454.7

Results for X2

τ=−2 Bias −.097 .008 .006 −.001 −.097 .008 .006 −.001 .065 .003 −.007 −.001 .065 .003 −.007 −.001
RMSE .457 .087 .057 .010 .457 .087 .057 .010 .348 .059 .036 .007 .348 .059 .036 .007
Coverage .960 .920 .930 .890 .960 .920 .930 .890 .960 .940 .970 .960 .960 .940 .970 .960
Time 6622.1 5989.0 5995.9 6602.3 439.8 387.5 388.5 434.2 46845.4 42038.7 41967.7 46877.6 2513.3 2037.6 2051.9 2502.8

τ=−0.2 Bias −.063 .006 .004 .001 −.063 .006 .004 .001 .000 .004 .000 .003 .000 .004 .000 .003
RMSE .717 .115 .075 .012 .717 .115 .075 .012 .472 .070 .050 .009 .472 .070 .050 .009
Coverage .940 .940 .950 .950 .940 .940 .950 .950 .950 .950 .970 .950 .950 .950 .970 .950
Time 6158.1 5540.3 5543.2 6192.8 444.9 385.2 387.6 438.5 42107.0 37535.4 37466.3 42339.5 2505.1 1999.1 2009.4 2500.6

τ=0.2 Bias −.036 .021 .006 .000 −.036 .021 .006 .000 −.080 .019 .004 .000 −.080 .019 .004 .000
RMSE .698 .120 .092 .013 .698 .120 .092 .013 .492 .082 .051 .009 .492 .082 .051 .009
Coverage .920 .950 .940 .940 .920 .950 .940 .940 .980 .960 .970 .950 .980 .960 .970 .950
Time 6152.3 5574.7 5539.6 6160.3 443.4 381.0 386.3 442.1 42161.3 37558.1 37439.3 42518.5 2526.6 1985.5 2003.5 2512.8

τ=2 Bias −.025 .008 .000 .001 −.025 .008 .000 .001 .031 −.005 −.001 .001 .031 −.005 −.001 .001
RMSE .338 .053 .032 .006 .338 .053 .032 .006 .294 .043 .026 .004 .294 .043 .026 .004
Coverage .920 .930 .950 .970 .920 .930 .950 .970 .930 .940 .930 .950 .930 .940 .930 .950
Time 6599.4 5970.1 6004.9 6623.3 440.1 380.1 379.6 434.2 46731.9 41943.0 41965.9 46373.9 2498.8 1997.6 2005.7 2451.6
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