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1 Introduction

Unbalanced (or incomplete) panel data are common occurrence in empirical analysis due to early

exits, late entries, dormant periods of economic activity, early recordings, and so on. This is also

the case for empirical studies using spatial panel data models where missing entities at a given

time period do not generate any spillover effects to their neighbors. Researchers dealing with

unbalanced panels often turn them to balanced panels by sub-setting the original panels to simplify

econometric analysis. This paper aims to fill the gap in available estimation and inference methods

for the spatial unbalanced panel data models. We consider a general spatial specification that allows

for (i) spatial dependence specified through matrix exponential terms, (ii) unobserved heterogeneity

across entities and time, and (iii) potential heteroskedasticity in the error terms across entities and

time. We will refer to this model as the matrix exponential unbalanced panel data model with fixed

effects.

The matrix exponential spatial specification (MESS) was introduced by LeSage and Pace (2007)

as an alternative to spatial autoregressive specification, and has several features that make it more

convenient for estimation (Chiu et al., 1996; Leonard and Hsu, 1992). In a MESS type model, the

spatial dependence in the dependent variable and/or the disturbance term is formulated through

a matrix exponential term of the form eαW , where α is a scalar spatial parameter, W is an n × n

spatial weights matrix whose elements are O(1/hn) uniformly, and hn is a sequence that can be

bounded or divergent (Lee, 2004). Therefore, the MESS imposes an exponential rate of decay for

the cross-sectional dependence. Moreover, since matrix exponential terms are always invertible,

there is no need to impose any restrictions on the parameter space of the spatial parameters to

ensure the existence of the reduced form of the model. Finally, the likelihood based estimation

of a MESS type model has the computational advantage because the likelihood function does not

involve any matrix determinant terms that need to be evaluated at each iteration during estimation.

Among others, see also LeSage and Pace (2009), Debarsy et al. (2015) and Yang et al. (2021).

We consider the likelihood based estimation of the matrix exponential unbalanced panel data

model with fixed effects. It is well known in the literature that the quasi maximum likelihood

estimator (QMLE) of the panel data regression models with entity fixed effects suffers from the

incidental parameter problem when panels are short, i.e., the time dimension is short (Neyman
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and Scott, 1948). With both entity and time fixed effects present, a transformation approach that

can wipe out the fixed effects from the model offers a feasible estimation approach. However, this

approach does not extend to the unbalanced panel data models with time varying spatial weights

matrices (Lee and Yu, 2010). Also, the transformation approach requires row-normalized weights

matrices, which we will not dictate in this paper. Instead of a transformation approach, we adopt

a likelihood-based direct approach in which we jointly estimate the common parameters and fixed

effects.

In the likelihood-based direct estimation approach, we first concentrate out the fixed effects

from the quasi log-likelihood function. Then, for the remaining parameters of the model, we derive

their corresponding score functions and their expectations at the true parameter vector. We show

that when the number of time periods is fixed, the expectations of the score functions may not

tend to zero, suggesting that the probability limit of the score functions is not zero. This result

suggests that the QMLE is inconsistent unless T is large. Therefore, we adjust these scores by

subtracting their respective expectations from them and then use these adjusted score functions

for consistent estimation. We define our suggested estimator as the root of these adjusted score

functions, and therefore our approach can be called the M-estimation as suggested by Yang (2018)

and Li and Yang (2021). In the case of heteroskedasticity, we also show that the QMLE may

not be consistent, and therefore we adopt a similar M-estimation strategy as in the case of the

homoskedastic specification by suitably adjusting the score functions so that their probability limit

becomes zero under an unknown form of heteroskedasticity.

We formally establish the consistency and the asymptotic normality of the proposed M-estimator

under both homoskedastic and heteroskedastic cases. The variance-covariance matrix of the pro-

posed M-estimator takes a sandwich form. We propose an approach based on the sample counterpart

and plug-in methods for consistent estimation of the variance-covariance matrix of the proposed

M-estimator. We show that the expectation of the Hessian matrix can be estimated consistently by

its sample counterpart, evaluated at consistent estimates, in both homoskedastic and heteroskedas-

tic cases. In the case of the variance of the adjusted score functions, we show that the plug-in

estimator can be inconsistent, and suggest an analytical bias correction in both homoskedastic and

heteroskedastic cases. In an extensive Monte Carlo study, we assess the finite sample properties of

the proposed estimator and the inference method. Our results attest that the proposed estimators
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perform satisfactorily in terms of finite sample bias and inference.

In an empirical application, we use our model to investigate the third country effects on the

US outward foreign direct investment (FDI) stock at the industry level. In the literature, there are

a few noteworthy empirical studies that employed unbalanced spatial panel data models. Among

others, see Antweiler (2001), Bai et al. (2015), Baltagi and Chang (1994), Baltagi et al. (2001),

Davis (2002), Wansbeek and Kapteyn (1989), and Wooldridge (2019). Our unbalanced panel data

cover 47 host countries across 10 industries over the period 2008–2014. Our model allows for three

types of spatial interaction: (i) spatial dependence in FDI specified through a matrix exponential

term (Blonigen et al., 2007; Coughlin and Segev, 2000; Debarsy et al., 2015), (ii) spatially weighted

third-country determinants of FDI that are motivated by the three-factor knowledge capital model

considered in Baltagi et al. (2007), and (iii) spatial dependence in the error terms specified through

a matrix exponential term in order to account for the transmission of shocks across host countries.

Also, our model allows for the presence of an unknown form of heteroskedasticity in the error terms

of the model. Our estimation results show evidence for the presence of the third country effects on

the US outward FDI stock.

Theoretically, our paper belongs to the recent expanding literature on the specification and

estimation of spatial panel data models. Our paper is closely related to Lee and Yu (2010) and

Meng and Yang (2021). Lee and Yu (2010) consider a direct likelihood-based estimation approach

for a balanced spatial panel data model with both entity and time fixed effects, and show that

the variance parameter cannot be consistently estimated when the number of time periods is fixed.

Similarly, Meng and Yang (2021) consider a direct likelihood-based estimation approach for an

unbalanced spatial panel data model that allows for entity and time fixed effects, as well as potential

heteroskedasticity in the error terms. Following Yang (2018), they propose an M-estimator for their

model and establish the large sample properties of the M-estimator. Wang and Lee (2013) consider

a panel data model with random effects and spatially lagged outcome variable in which some

observations on the dependent variable are missing at random. Using an imputation approach for

missing observations, they propose a nonlinear least squares approach and a generalized method of

moments approach for the estimation of the model. Our paper differs from these papers since we

specify the spatial dependence through matrix exponential terms instead of spatial autoregressive

processes.
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In the literature, it is well known that the quasi maximum likelihood estimator (QMLE) of

spatial autoregressive models may not be consistent in the presence of an unknown form of het-

eroskedasticity (Kelejian and Prucha, 2010; Lin and Lee, 2010; Liu and Yang, 2015). However,

in the case of MESS type models, the QMLE remains to be consistent under an unknown form

of heteroskedasticity provided that the panels are balanced, the spatial weights matrices are time

invariant and commute, and the model involves only entity fixed effects (Debarsy et al., 2015;

Zhang et al., 2019). We show that the QMLE of the matrix exponential unbalanced panel data

model with entity and time fixed effects may not be consistent. Following Yang (2018), we suggest

a heteroskedasticity robust M-estimator based on suitably adjusted score functions for estimation.

Our estimator has the standard large sample properties irrespective of whether the number of time

periods and hn are bounded or unbounded.

The rest of the paper is organized as follows. In Section 2, we provide the specification details

of the matrix exponential unbalanced panel data model with fixed effects. In Section 3, we present

the details of the M-estimation methodology for the homoskedastic specification and establish the

formal results for the large sample properties of the proposed estimator. In Section 4, we extend the

main ideas of the M-estimation methodology to the heteroskedastic specification and establish the

formal results. In Section 5, we investigate the finite sample performance of the proposed estimators

through an extensive Monte Carlo study. In Section 6, we provide our empirical application on the

third country effects on the US outward FDI stock at the industry level. In Section 7, we offer

concluding remarks. All technical details are left to a supplementary web appendix.

2 Model specification

The matrix exponential unbalanced panel data model requires stacking observed units for a given

time period so that the spatial dependence among these units can be accommodated. This stacking

scheme is similar to Wansbeek and Kapteyn (1989) for their unbalanced panel data error component

model. Then, the matrix exponential unbalanced panel data model that has the spatial dependence

in the dependent variable and in the error terms can be written as

eα0Wtyt = Xtβ0 + Ctµ0 + λt0lnt + ut, eτ0Mtut = εt, t = 1, 2, . . . , T. (2.1)
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Here, yt = (y1t, . . . , yntt)
′

is the nt × 1 dependent variable and nt is the number of spatial units

available at time t, Wt and Mt are nt×nt spatial weights matrices that have zero diagonal elements,

Xt is the nt × k matrix of exogenous variables with the matching parameter vector β0, ut =

(u1t, . . . , untt)
′

is the nt × 1 vector of regression error terms, and εt = (ε1t, . . . , εntt)
′

is the nt × 1

vector of idiosyncratic error terms (or innovations). In a given time period, we assume that there

can be at most n spatial entities, and we use the n× 1 vector µ0 to denote the entity fixed effects.

Thus, Ctµ0 denotes the entity fixed effects for the spatial units observed at time t, where Ct is

the nt × n sub-matrix obtained by deleting the rows corresponding to the missing entities at time

t from the n × n identity matrix In. The time fixed effect at period t is denoted by λt0, and lnt

is the nt × 1 vector of ones. The matrix exponential terms eα0Wt and eτ0Mt in (2.1) are defined

as eα0Wt =
∑∞

i=0(α0Wt)
i/i! and eτ0Mt =

∑∞
i=0(τ0Mt)

i/i!, where α0 and τ0 are the scalar spatial

parameters. These terms are always invertable, and the respective inverses are given by e−α0Wt

and e−τ0Mt . Thus, the reduced form of (2.1) is yt = e−α0Wt
(
Xtβ0 + Ctµ0 + λt0 lnt + e−τ0Mtεt

)
and

imposes no restrictions on the parameter space of the spatial parameters.

Let blkdiag(A1, . . . , An) be the block-diagonal matrix formed from the set of matrices {A1, . . . , An}.

Define eα0W = blkdiag(eα0W1 , . . . , eα0WT ), eτ0M = blkdiag(eτ0M1 , . . . , eτ0MT ), Cµ = (C
′
1, . . . , C

′
T )
′
,

and Cλ = blkdiag(ln1 , . . . , lnT ), Then, stacking the model across t, we obtain

eα0Wy = Xβ0 + Cµµ0 + Cλλ0 + u, eτ0Mu = ε, (2.2)

where y = (y
′
1, . . . , y

′
T )
′
, X = (X

′
1, . . . , X

′
T )
′
, λ0 = (λ10, . . . , λT0)

′
, u = (u

′
1, . . . , u

′
T )
′
, and ε =

(ε
′
1, . . . , ε

′
T )
′
. For the identification of entity and time fixed effects, we assume that the model is

subject to the normalization constraint l
′
Tλ0 = 0. Under this normalization constraint, (2.2) can

be expressed as

eα0Wy = Xβ0 + Cµµ0 + C∗λλ
∗
0 + u, eτ0Mu = ε, (2.3)

where C∗λ =
(
−lT−1l

′
n1
,blkdiag

′
(ln2 , . . . , lnT )

)′
, and λ∗0 = (λ∗20, . . . , λ

∗
T0)

′
is the new vector of time

fixed effects. In our analysis, we use θ0 = (β
′
0, σ

2
ε0, α0, τ0)

′
and δ0 = (µ

′
0, λ
∗′
0 )
′

to denote the true

parameter values, and θ = (β
′
, σ2

ε , α, τ)
′

and δ = (µ
′
, λ∗

′
)
′

to denote arbitrary parameter values.
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3 Estimation under homoskedasticity

In this section, we consider the quasi maximum likelihood estimation of (2.3) under the following

assumption.

Assumption 1. The {εit} are independent and identically distributed (i.i.d) across i and t with

mean zero and variance σ2
ε0, and E|εit|4+% <∞ for some % > 0.

Under this assumption, the elements of the innovation term are i.i.d across i and t. The moment

condition E|εit|4+% < ∞ is required for the application of the central limit theorem for linear and

quadratic forms (Kelejian and Prucha, 2001). Let N =
∑T

t=1 nt, C = (Cµ, C
∗
λ), and ζ = (α, τ)

′
.

Then, under Assumption 1, the quasi log-likelihood function of the model can be expressed as

l(θ, δ) = −N
2

ln(2πσ2
ε ) + ln

∣∣eαW
∣∣+ ln

∣∣eτM∣∣− 1

2σ2
ε

ε
′
(β, ζ, δ)ε(β, ζ, δ), (3.1)

where ε(β, ζ, δ) = eτM
(
eαWy −Xβ − Cδ

)
and | · | is the determinant operator. Since the spatial

weights matrices have zero diagonal elements, we have ln
∣∣eαW

∣∣ =
∑T

t=1 ln
(
eαtr(Wt)

)
= 0 and

ln
∣∣eτM∣∣ =

∑T
t=1 ln

(
eτtr(Mt)

)
= 0, where tr(·) denotes the trace operator. Thus, (3.1) becomes free

of the Jacobin terms and simplifies to

l(θ, δ) = −N
2

ln(2πσ2
ε )−

1

2σ2
ε

ε
′
(β, ζ, δ)ε(β, ζ, δ). (3.2)

Given θ, l(θ, δ) is partially maximized at

δ̂(β, ζ) =
(
C
′
(τ)C(τ)

)−1
C
′
(τ)eτM

(
eαWy −Xβ

)
, (3.3)

where C(τ) = eτMC. Substituting δ̂(β, ζ) into l(θ, δ), we obtain the following concentrated quasi

log-likelihood function

lc(θ) = −N
2

ln(2πσ2
ε )−

1

2σ2
ε

ε̃
′
(β, ζ)ε̃(β, ζ), (3.4)

where ε̃(β, ζ) = QC(τ)eτM
(
eαWy −Xβ

)
and QC(τ) = IN−PC(τ) with PC(τ) = C(τ)

(
C′(τ)C(τ)

)−1
C′(τ).

Then, the QMLE θ̂ of θ is defined by θ̂ = argmaxθ l
c(θ). Let Sca(θ) = ∂lc(θ)

∂a for a ∈ {β, σ2
ε , α, τ} and
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Sc(θ) =
(
Sc
′
β (θ), Scσ2

ε
(θ), Scα(θ), Scτ (θ)

)′
. Then, using (3.4), we obtain the following score functions:

Sc(θ) =



β : 1
σ2
ε
X
′
eτM

′
ε̃(β, ζ),

σ2
ε : − N

2σ2
ε

+ 1
2σ4
ε
ε̃
′
(β, ζ)ε̃(β, ζ),

α : − 1
σ2
ε
y
′
eαW

′
W
′
eτM

′
ε̃(β, ζ),

τ : − 1
σ2
ε
ε̃
′
(β, ζ)Mε̃(β, ζ),

(3.5)

where W = blkdiag(W1, . . . ,WT ) and M = blkdiag(M1, . . . ,MT ). A necessary condition required

for the consistency of the QMLE θ̂ is plimN→∞
1
N S

c(θ0) = 0. To investigate this necessary condi-

tion, we derive E (Sc(θ0)) as

E (Sc(θ0)) =



β : 0k×1,

σ2
ε : −n+T−1

2σ2
ε0

,

α : −tr
(
QC(τ0)eτ0MWe−τ0M

)
,

τ : −tr (QC(τ0)M) .

(3.6)

The order of the elements of E (Sc(θ0)) is required for the large sample analysis. As such, we make

the following assumptions.

Assumption 2. (i) n is large, and T can be large or small, (ii) nt increases with n at the same

rate for all t, and (iii) all spatial entities are observed for at least two time periods.

Assumption 3. (i) The elements of the time varying spatial weights matrices {Wt} and {Mt} are

at most of order h−1
n uniformly such that hn/n → 0 as n → ∞. (ii) The spatial weights matrices

{Wt} and {Mt} are uniformly bounded in both row sum and column sum matrix norms.

Assumption 4. There exists a constant c > 0 such that |α| ≤ c and |τ | ≤ c, and the true parameter

vector ζ0 lies in the interior of ∆ = [−c, c]× [−c, c].

Assumption 5. (i) Let γmax(A) and γmin(A) be respectively the largest and smallest eigenvalues

of the symmetric matrix A. There exist some real numbers dα, dτ , dα and dτ such that 0 < dα ≤

inf γmin

(
eαW

′
eαW

)
≤ sup γmax

(
eαW

′
eαW

)
≤ dα < ∞ and 0 < dτ ≤ inf γmin

(
eτM

′
eτM

)
≤

sup γmax

(
eτM

′
eτM

)
≤ dτ < ∞. (ii) eτMsCs

(
1
T

∑T
t=1C

′
te
τM ′tKt(τ)eτMtCt

)−1
C
′
te
τM ′t is bounded
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in both row sum and column sum matrix norms, uniformly in τ ∈ ∆τ for all s and t, where

Kt(τ) = In1 for t = 1, and Kt(τ) = Int − eτMt lnt

(
l
′
nte

τM ′teτMt lnt

)−1
l
′
nte

τM ′t for t = 2, . . . , T .

Assumption 2 lays out the asymptotic setting. The first part requires that n is large and T can

be large or small, and does not impose any conditions on the relative growth rates of n and T . The

second part requires that nt increases with n ensuring that the number of observed spatial units in

each period is not small relative to n. The third part ensures that the spatial structure is complete

after the entity fixed effects are concentrated out from the model.

Assumption 3 provides the essential properties of the spatial weights matrices. The first part

is considered in Lee (2004), and requires that the elements of the spatial weights matrices have

order O(h−1
n ) uniformly. Here, hn can be bounded or divergent with the property hn/n → 0 as

n → ∞. The second part ensures that the spatial correlation is limited to a manageable degree

so that the large sample analysis remains tractable (Kelejian and Prucha, 2001). The assumption

rules out the cases where as n tends to infinity each unit remains spatially correlated with all

remaining (n − 1) units and hn is divergent. For instance, take hn = O(n) and each unit remains

spatially correlated with all remaining (n− 1) units. Although Assumption 3 (ii) is satisfied in this

case, Assumption 3 (i) is violated. As another example, take hn = O(n1/2) and each unit remains

spatially correlated with all remaining (n − 1) units. Although Assumption 3 (i) is satisfied in

this case, Assumption 3 (ii) is violated. Such cases can arise for example when the domain of the

spatial units is kept fixed and n tends to infinity (Cressie, 1993, p.350). Assumption 4 requires

that the parameter space of the spatial parameters is compact, as in Debarsy et al. (2015). Note

that the parameter space does not depend on the features of the spatial weights matrices. This

assumption and the second part of Assumption 3 imply that the matrix exponential terms in our

model are uniformly bounded in both row sum and column sum matrix norms. This can be seen

from
∥∥eαWt

∥∥ =
∥∥∑∞

i=0 α
iW i

t /i!
∥∥ ≤∑∞i=0 |α|i‖Wt‖i/i! = e|α|‖Wt‖, which is bounded if |α| and ‖Wt‖

are bounded, where ‖ · ‖ is either the row sum or the column sum matrix norm.

The first part of Assumption 5 states that the minimum and the maximum eigenvalues of

eαW
′
eαW and eτM

′
eτM are bounded uniformly. Note that these terms are positive definite, so

their smallest eigenvalues are positive. In the first part of Assumption 5, we require that the

eigenvalues of these terms are strictly uniformly positive over the parameter space. In addition,
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the largest eigenvalues of eαW
′
eαW and eτM

′
eτM are bounded since these terms are uniformly

bounded in both row and column sums under Assumptions 3 (ii) and 4. We further require that

the eigenvalues of these terms are uniformly bounded above over ∆. Finally, the last part of

Assumption 5 ensures that QC(τ) is uniformly bounded in both row sum and column sum matrix

norms.

Under these assumptions, it follows that 1
NE

(
Scσ2

ε
(θ0)

)
= O ((n+ T )/N) = O(1/T ). Also,

1
NE (Scα(θ0)) = − 1

N tr
(
QC(τ0)eτ0MWe−τ0M

)
= − 1

N tr
(
eτ0MWe−τ0M

)
+ 1
N tr

(
PC(τ0)eτ0MWe−τ0M

)
=

1
N tr

(
PC(τ0)eτ0MWe−τ0M

)
= O (1/max{T, hn}) by Lemma A.2 (iv) of the web appendix. Sim-

ilarly, 1
NE (Scτ (θ0)) = − 1

N tr (QC(τ0)M) = − 1
N tr (M) + 1

N tr (PC(τ0)M) = O (1/max{T, hn}) by

Lemma A.2 (iv) of the web appendix. Thus, the necessary condition plimN→∞
1
N S

c(θ0) = 0 for the

consistency of the QMLE is satisfied if T is divergent. Also note that we have 1
NE (Scτ (θ0)) = o(1)

and 1
NE (Scα(θ0)) = o(1) when either T or hn is unbounded. Therefore, it is important to adjust

the score functions such that plimN→∞
1
N S

c(θ0) = 0 holds in all cases. To that end, we consider

the general form of the adjusted quasi-score functions S∗(θ0) = Sc(θ0)− E (Sc(θ0)):

S∗(θ) =



β : 1
σ2
ε
X
′
eτM

′
ε̃(β, ζ),

σ2
ε : − N1

2σ2
ε

+ 1
2σ4
ε
ε̃
′
(β, ζ)ε̃(β, ζ),

α : − 1
σ2
ε
y
′
eαW

′
W
′
eτM

′
ε̃(β, ζ) + tr

(
QC(τ)eτMWe−τM

)
,

τ : − 1
σ2
ε
ε̃
′
(β, ζ)Mε̃(β, ζ) + tr (QC(τ)M) ,

(3.7)

where N1 = N − n− T + 1. From the first two adjusted score functions in S∗(θ), we can formulate

the estimators of β and σ2
ε for a given ζ value as

β̂
∗
(ζ) =

(
X
′
eτM

′
QC(τ)eτMX

)−1
X
′
eτM

′
QC(τ)eτMeαWy, (3.8)

σ̂∗2ε (ζ) = ε̂
′
(ζ )̂ε(ζ)/N1, (3.9)

where ε̂(ζ) = ε̃(β̂
∗
(ζ), ζ). Substituting β̂

∗
(ζ) and σ̂∗2ε (ζ) into α and τ elements of S∗(θ), we obtain

Sc∗(ζ) =


α : − 1

σ̂∗2ε (ζ)
y
′
eαW

′
W
′
eτM

′
ε̂(ζ) + tr

(
QC(τ)eτMWe−τM

)
,

τ : − 1
σ̂∗2ε (ζ)

ε̂
′
(ζ)Mε̂(ζ) + tr (QC(τ)M) .

(3.10)
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Our suggested M-estimator (ME) ζ̂
∗

of ζ0 is obtained by solving Sc∗(ζ) = 0, i.e., ζ̂
∗

= argsolve {Sc∗(ζ) = 0}.

Using ζ̂
∗
, we can formulate the M-estimators of β0 and σ2

ε0 by β̂
∗

= β̂
∗
(ζ̂
∗
) and σ̂∗2ε = σ̂∗2ε (ζ̂

∗
).

To prove the consistency of ζ̂
∗
, we need the population counterpart of Sc∗(ζ). Let S∗(θ) =

E (S∗(θ)). The consistency of ζ̂
∗

requires that S∗c(ζ) converges to Sc∗(ζ) uniformly over ∆, i.e.,

supζ∈∆
1
N1

∥∥S∗c(ζ)− S∗c(ζ)
∥∥ p−−→ 0 (van der Vaart, 1998). Given ζ, we can derive the following

population counterparts of (3.8) and (3.9) as:

β∗(ζ) =
(
X
′
eτM

′
QC(τ)eτMX

)−1
X
′
eτM

′
QC(τ)G(ζ)E(y), (3.11)

σ∗2ε (ζ) = E
(
ε
′
(ζ)ε(ζ)

)
/N1, (3.12)

where G(ζ) = eτMeαW and ε(ζ) = ε̃(β∗(ζ), ζ). Note that we can express ε(ζ) as

ε(ζ) = QC(τ)eτM
(
eαWy −Xβ∗(ζ)

)
= QC(τ)G(ζ)y − PX(τ)QC(τ)G(ζ)E(y)

= (PX(τ) + QX(τ))QC(τ)G(ζ)y − PX(τ)QC(τ)G(ζ)E(y)

= PX(τ)QC(τ)G(ζ) (y − E(y)) + QX(τ)QC(τ)G(ζ)y, (3.13)

where X(τ) = QC(τ)eτMX, QX(τ) = IN − PX(τ), and PX(τ) is the projection matrix based on

X(τ). Substituting β∗(ζ) and σ∗2ε (ζ) into the α and τ elements of S∗(θ), we get the population

counterpart of Sc∗(ζ):

Sc∗(ζ) =

 α : − 1
σ∗2ε (ζ)

E
(
y
′
eαW

′
W
′
eτM

′
ε(ζ)

)
+ tr

(
QC(τ)eτMWe−τM

)
,

τ : − 1
σ∗2ε (ζ)

E
(
ε
′
(ζ)Mε(ζ)

)
+ tr (QC(τ)M) .

(3.14)

Using the result in (3.14), we state the identification condition in our setting by the following

assumption.

Assumption 6. infζ: d(ζ,ζ0)≥ϑ
∥∥S∗c(ζ)

∥∥ > 0 for every ϑ > 0, where d(ζ, ζ0) is a measure of distance

between ζ and ζ0.

Assumption 6 is a high level assumption and can be difficult to verify in practice. However,

we can investigate sufficient low level conditions from the requirement that S∗c(ζ) 6= 0 whenever

ζ 6= ζ0. In Section F of the accompanying web appendix, we provide such conditions under which

11



Assumption 6 holds.

Using (3.10) and (3.14), we can express S∗c(ζ)− S∗c(ζ) as

S∗c(ζ)− S∗c(ζ) =


α : − 1

σ̂∗2ε (ζ)
y
′
eαW

′
W
′
eτM

′
ε̂(ζ) + 1

σ∗2ε (ζ)
E
(
y
′
eαW

′
W
′
eτM

′
ε(ζ)

)
,

τ : − 1
σ̂∗2ε (ζ)

ε̂
′
(ζ)Mε̂(ζ) + 1

σ∗2ε (ζ)
ε
′
(ζ)Mε(ζ).

(3.15)

The results in (3.15) coupled with (3.13) will be useful for showing the consistency of ζ̂
∗
. To that

end, we also require the following assumption.

Assumption 7. X is exogenous, with uniformly bounded elements, and has full column rank. Also

limN→∞
1
NX′(τ)X(τ) exists and is nonsingular, uniformly in τ ∈ ∆τ .

Assumption 7 provides a regularity condition for the exogenous variables (Debarsy et al., 2015).

In particular this assumption ensures that QX(τ) is uniformly bounded in row sum and column

sum matrix norms, uniformly in τ ∈ ∆τ . Under our stated assumptions, the uniform convergence

supζ∈∆
1
N1

∥∥S∗c(ζ)− S∗c(ζ)
∥∥ p−−→ 0 ensures the consistency of ζ̂

∗
. The following theorem formalizes

the consistency of θ̂
∗

under our stated assumptions.

Theorem 3.1. Under Assumptions 1–7, it follows that θ̂
∗ p−−→ θ0 as N →∞.

Proof. See Section C in the web appendix.

To derive the asymptotic distribution of θ̂
∗
, we apply the mean value theorem to S∗(θ̂

∗
) =

0 at θ0, to obtain
√
N1(θ̂

∗
− θ0) = −

(
1
N1

∂S∗(θ)

∂θ′

)−1
1√
N1
S∗(θ0), where θ lies between θ0 and θ̂

∗

elementwise (Jennrich, 1969, Lemma 3). Let φ = Xβ0 + Cδ0. Then, y can be expressed as

y = e−α0W(φ + e−τ0Mε). Substituting y = e−α0W(φ + e−τ0Mε) and ε̃(β0, ζ0) = QC(τ0)ε into

S∗(θ0), we can express S∗(θ0) in terms of linear and quadratic forms of ε in the following way:

S∗(θ0) =



β : 1
σ2
ε0
X′(τ0)ε,

σ2
ε : − N1

2σ2
ε0

+ 1
2σ4
ε0
ε
′QC(τ0)ε,

α : − 1
σ2
ε0
ε
′
S
′
(τ0)QC(τ0)ε− 1

σ2
ε0
φ
′
eτ0M

′
S
′
(τ0)QC(τ0)ε+ tr (QC(τ0)S(τ0)) ,

τ : − 1
σ2
ε0
ε
′Q′C(τ0)MQC(τ0)ε+ tr (QC(τ0)M) ,

(3.16)
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where S(τ0) = eτ0MWe−τ0M. Then, we can apply the central limit theorem (CLT) for linear-

quadratic forms in Kelejian and Prucha (2001) to establish the asymptotic normality of 1√
N1
S∗(θ0).

Also, our assumptions ensure that 1
N1

∂S∗(θ)

∂θ′
− 1

N1
E
(
∂S∗(θ0)

∂θ′

)
= op(1). These results, as shown in

the proof, lead to the following theorem.

Theorem 3.2. Under Assumptions 1–7, as N →∞, we have

√
N1(θ̂

∗
− θ0)

d−−→ N

(
0, lim
N→∞

Ψ∗−1(θ0)Ω∗(θ0)Ψ∗
′−1(θ0)

)
, (3.17)

where Ψ∗(θ0) = − 1
N1

E
(
∂S∗(θ0)

∂θ′

)
and Ω∗(θ0) = 1

N1
Var (S∗(θ0)) are assumed to exist and Ψ∗(θ0) is

assumed to be positive definite for sufficiently large N .

Proof. See Section C in the web appendix.

Theorem 3.2 indicates that we need a consistent estimate of the variance-covariance matrix

Ψ∗−1(θ0)Ω∗(θ0)Ψ∗
′−1(θ0) for inference. In the case of Ψ∗(θ0), we can use the observed counterpart

given by Ψ∗(θ̂
∗
) = − 1

N1

∂S∗(θ)

∂θ′
|
θ=θ̂

∗ . Let H∗a(θ) = − 1
N1

∂S∗(θ)

∂a′
for a ∈ {β, σ2

ε , α, τ} and As = A + A
′

for any square matrix A. Then, it is easy to show that

N1H
∗
ββ(θ) =

1

σ2
ε

X
′
(τ)X(τ), N1H

∗
βσ2

ε
(θ) = N1H

∗′
σ2
εβ

(θ) =
1

σ4
ε

X
′
(τ)ε̃(β, ζ),

N1H
∗
βα(θ) = H∗

′
αβ(θ) = − 1

σ2
ε

X
′
(τ)y(ζ), N1H

∗
βτ (θ) = H∗

′
τβ(θ) = − 1

σ2
ε

X
′
(τ)Msε̃(β, ζ),

N1H
∗
σ2
εσ

2
ε
(θ) = − N1

2σ4
ε

+
1

σ6
ε

ε̃
′
(β, ζ)ε̃(β, ζ), N1H

∗
σ2
εα

(θ) = N1H
∗
ασ2

ε
(θ) = − 1

σ4
ε

y
′
(ζ)ε̃(β, ζ),

N1H
∗
σ2
ε τ

(θ) = N1H
∗
τσ2
ε
(θ) = − 1

2σ4
ε

ε̃
′
(β, ζ)Msε̃(β, ζ), N1H

∗
αα(θ) =

1

σ2
ε

[y
′
2(ζ)ε̃(β, ζ) + y

′
(ζ)y(ζ)],

N1H
∗
ατ (θ) =

1

σ2
ε

y
′
(ζ)Msε̃(β, ζ) + tr (PC(τ)MsQC(τ)S(τ)) ,

N1H
∗
τα(θ) =

1

σ2
ε

y
′
(ζ)Msε̃(β, ζ),

N1H
∗
ττ (θ) =

1

σ2
ε

ε̃
′
(β, ζ)D

′
(τ)Msε̃(β, ζ) + tr (QC(τ)MPC(τ)Ms) ,

where y(ζ) = QC(τ)eτMWeαWy, y2(ζ) = QC(τ)eτMW2eαWy, D(τ) = QC(τ)M − PC(τ)M
′
, and

R(τ) = eτMMe−τM. Under our stated assumptions, it can be shown that Ψ∗(θ̂
∗
) = Ψ∗(θ0)+op(1)

(see the proof of Theorem 3.2 for the details).
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In the case of Ω∗(θ0), we suggest a plug-in estimator. Let vecD(A) be the vector that contains

the diagonal elements of a square matrix A. Define q1 = vecD (QC(τ0)), Q2(τ0) = QC(τ0)S(τ0),

Q3(τ0) = QC(τ0)eτ0MW, Q4(τ0) = QC(τ0)MQC(τ0) and qr = vecD (Qr(τ0)) for r = 2, 3, 4. Let

ρ = E(ε3i )/σ
3
ε0 and κ = E(ε4i )/σ

4
ε0 − 3 be the skewness and excess kurtosis parameters, respectively.

Let Ω∗ab(θ0) = 1
N1

E
(
S∗a(θ0)S∗

′
b (θ0)

)
for a, b ∈ {β, σ2

ε , α, τ}. Then, using Lemma A.6 of the web

appendix, we can derive the following closed-form expressions for the elements of Ω∗(θ0):

N1Ω∗ββ(θ0) =
1

σ2
ε0

X
′
(τ0)X(τ0), N1Ω∗βσ2

ε
(θ0) =

ρ

2σ3
ε0

X
′
(τ0)q1,

N1Ω∗βα(θ0) = − 1

σ2
ε0

X
′
(τ0)Q3(τ0)φ− ρ

σε0
X
′
(τ0)q2,

N1Ω∗βτ (θ0) = − ρ

σε0
X
′
(τ0)q4, N1Ω∗σ2

εσ
2
ε
(θ0) =

1

4σ4
ε0

(κq
′
1q1 + 2N1), (3.18)

N1Ω∗σ2
εα

(θ0) = − ρ

2σ3
ε0

q
′
1Q3(τ0)φ− 1

2σ2
ε0

(
κq
′
1q2 + 2tr(Q2(τ0))

)
,

N1Ω∗σ2
ε τ

(θ0) = − 1

2σ2
ε0

(
κq
′
1q4 + 2tr(QC(τ0)M)

)
,

N1Ω∗αα(θ0) =
1

σ2
ε0

φ
′Q′3(τ0)Q3(τ0)φ+

2ρ

σε0
q
′
2Q3(τ0)φ+ κq

′
2q2 + tr (Q2(τ0)Qs2(τ0)) ,

N1Ω∗ατ (θ0) =
ρ

σε0
q
′
4Q3(τ0)φ+ κq

′
2q4 + tr (Q2(τ0)Qs4(τ0)) ,

N1Ω∗ττ (θ0) = κq
′
4q4 + tr (Q4(τ0)Qs4(τ0)) .

Since φ appears in the elements of Ω∗(θ0), we need a consistent estimator of φ to derive a consistent

estimator of Ω∗(θ0). Let δ̂
∗

= δ̂(β̂
∗
, ζ̂
∗
) be the plug-in estimator of δ0 obtained from (3.3), and ρ̂ and

κ̂ be consistent estimators of ρ and κ, respectively. Then, the plug-in estimator of Ω∗(θ0) is given

by Ω∗(θ̂
∗
) = Ω∗(θ)|

θ=θ̂
∗
, δ=δ̂

∗
, ρ=ρ̂, κ=κ̂

. In the next theorem, we show that this plug-in estimator is

a biased estimator of Ω∗(θ0) under our stated assumptions.

Theorem 3.3. Under Assumptions 1–7, as N →∞, we have

Ω∗(θ̂
∗
) = Ω∗(θ0) + Bias∗(τ0) + op(1), (3.19)

where Bias∗(τ0) is an (k+ 3)× (k+ 3) matrix with zero entries everywhere except the (α, α) entry,

which is 1
N1

tr
(
PC(τ0)Q′2(τ0)Q2(τ0)

)
.
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Proof. See Section C in the web appendix.

The bias term arises because we may not be able to consistently estimate δ0 when T is fixed.

Under our assumptions, both Q2(τ0) and PC(τ0) are bounded in row sum and column sum matrix

norms. Moreover, in Lemma A.2 (iii) of the web appendix, we show that the elements of PC(τ0)

are O(max{1/n, 1/T}) uniformly. Also, it follows from Lemma A.1 of the web appendix that the

elements of Q2(τ0) are O(1/hn) uniformly. Hence, 1
N1

tr
(
PC(τ0)Q′2(τ0)Q2(τ0)

)
is O(1/max{T, hn})

by Lemma A.2 (iv) of the web appendix. Therefore, in settings with large T and bounded hn, or

with fixed T and divergent hn, the bias term becomes negligible. However, in settings with fixed T

and bounded hn, the bias correction is necessary for valid inference.

The bias corrected estimator is given by Ω̂
∗

= Ω∗(θ̂
∗
) − Bias∗(τ̂∗). Note that this bias cor-

rected estimator requires the consistent estimators of ρ and κ. To that end, we start from a

consistent estimator for ε̃ = ε̃(β0, ζ0) = QC(τ0)eτ0M(eα0Wy −Xβ0) = QC(τ0)ε, which is given by

ε̂ = ε̂(β̂
∗
, ζ̂
∗
) = QC(τ̂∗)eτ̂

∗M(eα̂
∗Wy −Xβ̂

∗
). Let qjh be the (j, h)th element of QC(τ0). Let εj and

ε̃j be the jth element of ε and ε̃, respectively. Then, ε̃j = qj1ε1 + . . . + qjN εN . Utilizing the fact

that εit’s are i.i.d, we have E(ε̃3j ) =
∑N

h=1 q
3
jhE(ε3h) = σ3

ε0ρ
∑N

h=1 q
3
jh. Summing E(ε̃3j ) over j and

solving for ρ, we obtain

ρ =

∑N
j=1 E(ε̃3j )

σ3
ε0

∑N
j=1

∑N
h=1 q

3
jh

. (3.20)

This result suggests the following sample counterpart as a consistent estimator for ρ:

ρ̂ =

∑N
j=1 ε̂

3
j

σ̂∗3ε
∑N

j=1

∑N
h=1 q̂

3
jh

, (3.21)

where ε̂j is the jth element of ε̂(β̂
∗
, ζ̂
∗
) and q̂jh is the (j, h)th element of QC(τ̂∗). Similarly,

E(ε̃4j ) =
N∑
h=1

q4
jhE(ε4h) + 3σ4

ε0

N∑
h=1

N∑
l=1

q2
jhq

2
jl − 3σ4

ε0

N∑
h=1

q4
jh

= κ

N∑
h=1

q4
jhσ

4
ε0 + 3σ4

ε0

N∑
h=1

N∑
l=1

q2
jhq

2
jl. (3.22)
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Summing E(ε̃4j ) over j and solving for κ, we have

κ =

∑N
j=1 E(ε̃4j )− 3σ4

ε0

∑N
j=1

∑N
h=1

∑N
l=1 q

2
jhq

2
jl

σ4
ε0

∑N
j=1

∑N
h=1 q

4
jh

. (3.23)

Thus, we can consider the following sample counterpart of this equation as a consistent estimator

for κ:

κ̂ =

∑N
j=1 ε̂

4
j − 3σ̂∗4ε

∑N
j=1

∑N
h=1

∑N
l=1 q̂

2
jhq̂

2
jl

σ̂∗4ε
∑N

j=1

∑N
h=1 q̂

4
jh

. (3.24)

The next theorem shows that ρ̂ and κ̂ are consistent estimators.

Theorem 3.4. Under Assumptions 1–7, as N →∞, we have ρ̂ = ρ+ op(1) and κ̂ = κ+ op(1).

Proof. See Section C in the web appendix.

4 Estimation under an unknown form of heteroskedasticity

In this section, we allow for both cross-sectional and time-series heteroskedasticity, and present a

robust estimation and inference method for our matrix exponential unbalanced panel data model.

Heteroskedasticity in matrix exponential models has been discussed in Debarsy et al. (2015) for

cross-sectional data, and in Zhang et al. (2019) for balanced panel data. However in both papers

the discussion on the (quasi) likelihood based estimation scheme has been limited to the case

where the spatial weights matrix W involving the dependent variable and M involving the error

terms are commutative, i.e., WM = MW . These papers show that the QMLE is consistent,

if the commutativity property holds. However, this desirable feature of the matrix exponential

specification extends neither to the matrix exponential unbalanced panel data models nor to the

matrix exponential balanced panel data models with two-way error components. Therefore, a robust

method for estimation and inference is highly desired for the matrix exponential unbalanced panel

data models with an unknown form of heteroskedasticity. The following assumption specifies the

form of heteroskedasticity in our setting.

Assumption 8. The {εj} for j = 1, . . . , N are independent but not identically distributed (i.n.i.d),

i.e., {εj} ∼ i.n.i.d(0, σ2
j ) and E |εj |4+% <∞ for some % > 0.
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Let Γ = diag(σ2
1, . . . , σ

2
N ), i.e., Var(ε) = Γ. As in the case of homoskedasticity, we will compute

the expectations of the α and τ elements of the concentrated quasi score function in (3.5) under

Assumption 8, and then adjust these elements using their corresponding expectations. First, we con-

sider the score function with respect to α. Recall that G(ζ0)y = eτ0Mφ+ ε, S(τ0) = eτ0MWe−τ0M

and ε̃ = QC(τ0)ε. Then, using the fact that tr(DA) = tr(D diag(A)) for a diagonal matrix D and

any conformable matrix A, we have

E
(
y
′
eα0W

′
W
′
eτ0M

′
ε̃
)

= E
(
y
′
G
′
(ζ0)S

′
(τ0)QC(τ0)ε

)
= tr

(
ΓS
′
(τ0)QC(τ0)

)
= tr

(
Γ diag

(
S
′
(τ0)QC(τ0)

))
= tr

(
Γ diag

(
S
′
(τ0)QC(τ0)

)
diag (QC(τ0))−1 QC(τ0)

)
, (4.1)

where the last equality follows from the fact that Γ diag
(
S
′
(τ0)QC(τ0)

)
diag (QC(τ0))−1 is a diagonal

matrix. Let S
′
(τ0) = diag

(
S
′
(τ0)QC(τ0)

)
diag (QC(τ0))−1. Then, using G(ζ0)y = eτ0Mφ + ε, the

result in (4.1) suggests that

E
(
y
′
eα0W

′
W
′
eτ0M

′
ε̃
)

= tr
(

ΓS
′
(τ0)QC(τ0)

)
= E

(
y
′
G
′
(ζ0)S

′
(τ0)QC(τ0)ε

)
,

=⇒ E
(
y
′
G
′
(ζ0)S

′
(τ0)QC(τ0)ε

)
− E

(
y
′
G
′
(ζ0)S

′
(τ0)QC(τ0)ε

)
= 0

=⇒ E
(
y
′
G
′
(ζ0)

(
S
′
(τ0)− S

′
(τ0)

)
QC(τ0)ε

)
= 0. (4.2)

Thus, our suggested robust adjusted quasi score function for α is the sample counterpart of the

result in (4.2):

−y′G′(ζ)
(
S
′
(τ)− S

′
(τ)
)
ε̃(β, ζ). (4.3)

By construction, the quadratic form in (4.3) has an expectation of zero at the true parameter value

θ0 under Assumption 8. Using similar steps for the τ element of the concentrated quasi score

function in (3.5), we obtain

E
(
ε̃
′
Mε̃
)

= E
(
ε
′
QC(τ0)MQC(τ0)ε

)
= tr (ΓQ4(τ0)) = tr (Γ diag(Q4(τ0)))

= tr
(

Γ diag (Q4(τ0)) diag (QC(τ0))−1 QC(τ0)
)

= E
(
ε
′Q4(τ0)QC(τ0)ε

)
, (4.4)
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where Q4(τ0) = diag (Q4(τ0)) diag (QC(τ0))−1. A quadratic form that has a zero mean can be

constructed from (4.4) as

E
(
ε
′
QC(τ0)MQC(τ0)ε

)
− E

(
ε
′Q4(τ0)QC(τ0)ε

)
= 0 =⇒ E

(
ε
′ (Q4(τ0)−Q4(τ0)

)
QC(τ0)ε

)
= 0.

(4.5)

Also, note that

E
(
ε
′ (Q4(τ0)−Q4(τ0)

)
QC(τ0)ε

)
= 0 =⇒ E

((
eτ0MCδ0 + ε

)′ (
Q4(τ0)−Q4(τ0)

)
QC(τ0)ε

)
= 0

Since eτ0M
(
eα0Wy −Xβ

)
= eτ0MCδ0 + ε, the sample counterpart of (4.5) is given by

−(eαWy −Xβ)
′
eτM

′ (
Q4(τ)−Q4(τ)

)
ε̃(β, ζ). (4.6)

Then, using (4.3) and (4.6) together with the β element of the adjusted quasi score functions

in (3.5), which is robust against the unknown heteroskedasticity, we suggest the following robust

adjusted quasi score functions under Assumption 8:

S†(β, ζ) =


β : X′(τ)ε̃(β, ζ),

α : −y′G′(ζ)
(
S
′
(τ)− S

′
(τ)
)
ε̃(β, ζ),

τ : −
(
eαWy −Xβ

)′
eτM

′ (
Q4(τ)−Q4(τ)

)
ε̃(β, ζ).

(4.7)

Note that from (4.1), we have 1
NE

(
y
′
eα0W

′
W
′
eτ0M

′
ε̃
)

= 1
N tr

(
ΓS
′
(τ0)QC(τ0)

)
= 1

N tr
(

ΓS
′
(τ0)

)
−

1
N tr

(
ΓS
′
(τ0)PC(τ0)

)
= O(1/hn) + O(1/max{hn, T}) = O(1/hn) by Lemmas A.1 and A.2 of

the web appendix. Note that if M and W are commutative, then tr
(

ΓS
′
(τ0)

)
= 0, suggest-

ing that 1
NE

(
y
′
eα0W

′
W
′
eτ0M

′
ε̃
)

= O(1/max{hn, T}). Also, from (4.4), we have 1
NE

(
ε̃
′
Mε̃
)

=

1
N tr (ΓQ4(τ0)) = 1

N tr (ΓQC(τ0)MQC(τ0)) = 1
N tr (ΓPC(τ0)MPC(τ0))− 1

N tr (ΓMPC(τ0))− 1
N tr (ΓPC(τ0)M) =

O(1/max{hn, T}) by Lemmas A.1 and A.2 of the web appendix. Thus, under heteroskedasticity,

the necessary condition plimN→∞
1
N S

c(θ0) = 0 for the consistency of the QMLE is satisfied if

hn is divergent. However, if hn is bounded, then we should use S†(β, ζ) for ensuring consistent

estimation.
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To derive the robust M-estimator from (4.7), we can similarly first solve for β given ζ, which is

the same as (3.8):

β̂
†
(ζ) = β̂

∗
(ζ) =

(
X
′
eτM

′
QC(τ)eτMX

)−1
X
′
eτM

′
QC(τ)eτMeαWy. (4.8)

Then, substituting β̂
†
(ζ) into the α and τ elements of (4.7), we obtain the concentrated robust

adjusted quasi score functions as:

S†c(ζ) =


α : −y′G′(ζ)

(
S
′
(τ)− S

′
(τ)
)
ε̂(ζ),

τ : −
(
eαWy −Xβ̂

†
(ζ)
)′

eτM
′ (
Q4(τ)−Q4(τ)

)
ε̂(ζ),

(4.9)

where ε̂(ζ) = ε̃(β̂
†
(ζ), ζ). Then, our robust M-estimator (RME) ζ̂

†
of ζ0 is defined by ζ̂

†
=

argsolve{S†c(ζ) = 0}. Substituting ζ̂
†

into (4.8), we will get the RME β̂
†

= β̂
†
(ζ̂
†
) of β0.

Similar to the homoskedasticity case, we will prove the consistency of ζ̂
†
, which leads to the

consistency of β̂
†
(ζ̂
†
). Let S†(β, ζ) = E

(
S†(β, ζ)

)
be the population counterpart of the robust

adjusted quasi score functions. Given ζ, we can derive the estimator β†(ζ) = β∗(ζ) in (3.11), which

can be substituted into the α and τ elements of S†(β, ζ) to obtain:

S†c(ζ) =


α : −E

(
y
′
G
′
(ζ)
(
S
′
(τ)− S

′
(τ)
)
ε(ζ)

)
,

τ : −E
((

eαWy −Xβ†(ζ)
)′
eτM

′ (
Q4(τ)−Q4(τ)

)
ε(ζ)

)
,

(4.10)

where ε(ζ) = ε̃(β†(ζ), ζ). Then, similar to the homoskedastic case, ζ̂
†

is a consistent estimator if

supζ∈∆
1
N1

∥∥S†c(ζ)− S†c(ζ)
∥∥ p−−→ 0 and the following identification assumption holds.

Assumption 9. infζ: d(ζ,ζ0)≥ϑ
∥∥S†c(ζ)

∥∥ > 0 for every ϑ > 0, where d(ζ, ζ0) is a measure of distance

between ζ and ζ0.

Let ω = (β
′
, ζ
′
)
′

and ω̂† = (β̂
†′
, ζ̂
†′

)
′
, then we have the following theorem.

Theorem 4.1. Under Assumptions 2–5 and 7–9, as N →∞, we have ω̂†
p−−→ ω0.

Proof. See Section C in the web appendix.
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Substituting ε̃(β0, ζ0) = QC(τ0)ε and y = e−α0W
(
φ+ e−τ0Mε

)
into S†(ω0), we have

S†(ω0) =


β : X′(τ0)ε,

α : −φ′eτ0M
′ (

S
′
(τ0)− S

′
(τ0)

)
QC(τ0)ε− ε′

(
S
′
(τ0)− S

′
(τ0)

)
QC(τ0)ε,

τ : −δ′0C
′
(τ0)

(
Q4(τ0)−Q4(τ0)

)
QC(τ0)ε− ε′

(
Q4(τ0)−Q4(τ0)

)
QC(τ0)ε.

(4.11)

Similar to the homoskedastic case, we can show the asymptotic normality of 1√
N1
S†(ω0) using the

CLT for linear-quadratic forms in Kelejian and Prucha (2001). Together with the appropriate

asymptotic property of 1
N1

∂S†(ω)

∂ω′
for some ω between ω̂† and ω0 elementwise, we have the following

theorem.

Theorem 4.2. Under Assumptions 2–5 and 7–9, as N →∞,

√
N1

(
ω̂† − ω0

)
d−−→ N

(
0, lim
n→∞

Ψ†−1(ω0)Ω†(ω0)Ψ†−1′(ω0)
)
, (4.12)

where Ψ†(ω0) = − 1
N1

E
(
∂S†(ω0)

∂ω′

)
and Ω†(ω0) = 1

N1
Var

(
S†(ω0)

)
are assumed to exist and Ψ†(ω0)

is assumed to be positive definite for sufficiently large N .

Proof. See Section C in the web appendix.

We need consistent estimators of Ψ†(ω0) and Ω†(ω0) to conduct valid inference. Given the

expressions of ∂S
†(ω)

∂ω′
in the proof of Theorem 4.2, Ψ†(ω0) can be estimated by its sample counterpart

Ψ†(ω̂†) = − 1
N1

∂S†(ω)

∂ω
′ |ω=ω̂† . Let H†a(ω) = − 1

N1

∂S†(ω)

∂a
′ for a ∈ {β, α, τ}. Then, we have

N1H
†
ββ(ω) = X

′
(τ)X(τ), N1H

†
βα(ω) = −X′(τ)y(ζ), N1H

†
βτ (ω) = −X′(τ)Msε̃(β, ζ),

N1H
†
αβ(ω) = −y′G′(ζ)

(
S
′
(τ)− S

′
(τ)
)
X(τ),

N1H
†
αα(ω) = y

′
W
′
G
′
(ζ)
(
S
′
(τ)− S

′
(τ)
)
ε̃(β, ζ) + y

′
G
′
(ζ)
(
S
′
(τ)− S

′
(τ)
)
y(ζ),

N1H
†
ατ (ω) = y

′
G
′
(ζ)

(
M
′
(

(S
′
(τ)− S

′
(τ)
)

+ Ṡ
′
(τ)− Ṡ

′

(τ) +
(

(S
′
(τ)− S

′
(τ)
)
D(τ)

)
ε̃(β, ζ),

N1H
†
τβ(ω) = −ε̃′(β, ζ)

(
Q′4(τ)−Q′4(τ)

)
eτMX −

(
eαWy −Xβ

)′
eτM

′ (
Q4(τ)−Q4(τ)

)
X(τ),

N1H
†
τα(ω) = y

′
W
′
G
′
(ζ)
(
Q4(τ)−Q4(τ)

)
ε̃(β, ζ) +

(
eαWy −Xβ

)′
eτM

′ (
Q4(τ)−Q4(τ)

)
y(ζ),

N1H
†
ττ (ω) =

(
eαWy −Xβ

)′
eτM

′ (
M
′ (Q4(τ)−Q4(τ)

)
+ Q̇4(τ)− Q̇4(τ) +

(
Q4(τ)−Q4(τ)

)
D(τ)

)
ε̃,
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where Ṡ
′

(τ) = diag
(
Ṡ
′
(τ)QC(τ)− S

′
(τ)Q̇C(τ)

)
diag (QC(τ))−1+S(τ) diag

(
Q̇C(τ)

)
diag (QC(τ))−1,

Ṡ
′
(τ) = S

′
(τ)M

′−M′
S
′
(τ), Q̇4(τ) = diag

(
Q̇4(τ)

)
diag (QC(τ))−1−Q4(τ) diag

(
Q̇C(τ)

)
diag (QC(τ))−1,

Q̇4(τ) = Q̇C(τ)MQC(τ) + QC(τ)MQ̇C(τ) and Q̇C(τ) = −
(
QC(τ)MPC(τ) + PC(τ)M

′QC(τ)
)
. The

proof for the consistency of Ψ†(ω̂†) is provided in the proof of Theorem 4.2.

For Ω†(ω0), we first derive its closed-form expression using Lemma A.7 of the web appendix:

N1Ω†βω(ω0) = N1

(
Ω†ββ(ω0), Ω†βα(ω0), Ω†βτ (ω0)

)
=
(
X
′
(τ0)ΓX(τ0), −X′(τ0)ΓS(τ0)eτ0Mφ, −X′(τ0)ΓQ(τ0)C(τ0)δ0

)
,

N1Ω†αα(ω0) = φ
′
eτ0M

′
S
′
(τ0)ΓS(τ0)eτ0Mφ+ tr

(
ΓS(τ0)ΓS

s
(τ0)

)
,

N1Ω†ατ (ω0) = φ
′
eτ0M

′
S
′
(τ0)ΓQ(τ0)C(τ0)δ0 + tr

(
ΓS(τ0)ΓQs(τ0)

)
,

N1Ω†ττ (ω0) = δ
′
0C
′
(τ0)Q

′
(τ0)ΓQ(τ0)C(τ0)δ0 + tr

(
ΓQ(τ0)ΓQs(τ0)

)
,

where S(τ0) = QC(τ0)
(
S(τ0)− S(τ0)

)
and Q(τ0) = QC(τ0)

(
Q′4(τ0)−Q′4(τ0)

)
. When deriving the

above terms we utlilized the fact that diag
(
S(τ0)

)
= diag

(
QC(τ0)(S(τ0)− S(τ0))

)
= diag (QC(τ0)S(τ0))−

diag (QC(τ0)) diag (QC(τ0))−1 diag(QC(τ0)S(τ0)) = 0N×N , which implies that the diagonal elements

of S(τ0) are zeroes. Similarly, the diagonal elements of Q(τ0) are also zeroes. By Lemma A.7 of

the web appendix, all terms involving the 3rd and 4th moments of the disturbances disappear, i.e.,

Ω†(ω0) is free from the 3rd and 4th moments of the disturbances. For convenience of exposition,

let us write Ω†(ω0) as Ω†(ω0, δ0,Γ). Let δ̂
†

be the estimator of δ0 derived from the RME using

(3.3). Let Ω†(ω̂†, δ̂
†
,Γ) be the estimator of Ω†(ω0) given Γ. Then, we can derive a bias-corrected

estimator for Ω†(ω0, δ0,Γ) as follows.

Theorem 4.3. Under Assumptions 2–5 and 7–9, we have

Ω†(ω̂†, δ̂
†
,Γ) = Ω†(ω0, δ0,Γ) + Bias†δ(τ0,Γ) + op(1),

where Bias†δ(τ0,Γ) is an (k + 2)× (k + 2) matrix with zero entries everywhere except the ζ part of
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the matrix, which is given by

Bias†δ,αα(τ0,Γ) Bias†δ,ατ (τ0,Γ)

Bias†δ,τα(τ0,Γ) Bias†δ,ττ (τ0,Γ)

, where

Bias†δ,αα(τ0,Γ) =
1

N1
tr
(

ΓPC(τ0)S
′
(τ0)ΓS(τ0)PC(τ0)

)
,

Bias†δ,ατ (τ0,Γ) = Bias†δ,τα(τ0,Γ) =
1

N1
tr
(

ΓPC(τ0)Q
′
(τ0)ΓS(τ0)PC(τ0)

)
, and

Bias†δ,αα(τ0,Γ) =
1

N1
tr
(

ΓPC(τ0)Q
′
(τ0)ΓQ(τ0)PC(τ0)

)
.

Proof. See Section C in the web appendix.

Under our assumptions and Lemma A.2 of the web appendix, it can be shown that Bias†δ(τ0,Γ) =

O(1/max{T, hn}). Therefore, in settings with large T and bounded hn, or with fixed T and di-

vergent hn, the bias term becomes negligible. However, in settings with fixed T and bounded

hn, the bias correction is necessary for valid inference. Now we need to provide consistent es-

timators for the trace terms involving Γ. Since ε̃ = ε̃(β0, ζ0) = QC(τ0)ε, we have E(ε̃ � ε̃) =

(QC(τ0)�QC(τ0)) (σ2
1, . . . , σ

2
N )
′
, where � denotes the Hadamard product. This implies an estima-

tor for (σ2
1, . . . , σ

2
N )
′

as

(σ̂2
1, . . . , σ̂

2
N )
′

=
(
QC(τ̂ †)�QC(τ̂ †)

)−
(̂ε� ε̂), (4.13)

where A− denotes the generalized inverse of A and ε̂ = ε̂(β̂
†
, ζ̂
†
) = QC(τ̂ †)eτ̂

†M(eα̂
†Wy − Xβ̂

†
).

Note that elements of Ω†(ω0) takes forms of either tr(ΓC) or tr(ΓAΓB). We now show the effect

of replacing the unknown Γ by Γ̂ = diag(σ̂2
1, . . . , σ̂

2
N ) in large samples.

Theorem 4.4. Assume Π(τ) = (QC(τ)�QC(τ))−1 exists for τ in a neighborhood of τ0 and is

bounded in row and column sum norms. Let A and B be two N × N matrices that have zero

diagonal elements with elements aij and bij, respectively, and be bounded in row and column sum

norms. Let C be an N ×N matrix that has uniformly bounded diagonal elements. Then,

(i) 1
N tr(Γ̂C)− 1

N tr(ΓC) = op(1),

(ii) 1
N tr(Γ̂AΓ̂B)− 1

N tr(ΓAΓB)− 2
N tr((A�B)Π(τ0)Λ(Γ)Π(τ0)) = op(1),

where Λ(Γ) = (QC(τ0)ΓQC(τ0))� (QC(τ0)ΓQC(τ0)).
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Proof. See Section C in the web appendix.

Our results in Theorems 4.3 and 4.4 suggest that the bias corrected estimator of Ω†(ω0) is given

by

Ω̂
†

= Ω†(ω̂†, δ̂
†
, Γ̂)− Bias†δ(τ̂

†, Γ̂)− Bias†Γ(τ̂ †, Γ̂), (4.14)

where Bias†Γ(τ̂ †, Γ̂) is an (k+2)×(k+2) matrix with zero entries everywhere except the ζ part, which

is given by Bias†Γ,ab(τ0) = 2
N1

tr
((

Ξa(τ0)� Ξsb(τ0)− PC(τ0)Ξ
′
a(τ0)� Ξb(τ0)PC(τ0)

)
Π(τ0)Λ(Γ)Π(τ0)

)
,

where Ξα(τ0) = S(τ0), Ξτ (τ0) = Q(τ0) and a, b ∈ {α, τ}. In the next corollary, we establish the

consistency of Ω̂
†

and Ψ†(ω̂†).

Corollary 4.1. Under Assumptions 2–5 and 7–9, as N → ∞, Ψ†(ω̂†) − Ψ†(ω0)
p−−→ 0 and

Ω̂
†
− Ω†(ω0)

p−−→ 0, and therefore Ψ†−1(ω̂†)Ω̂
†
Ψ†−1′(ω̂†)−Ψ†−1(ω0)Ω†(ω0)Ψ†−1′(ω0)

p−−→ 0.

Proof. See Section D in the web appendix.

5 A Monte Carlo study

In this section, we investigate the finite sample performance of the proposed ME and RME. To this

end, we consider the following specification for n entities with elements randomly missing over T

periods,

eα0Wtyt = X1tβ10 +X2tβ20 + Ctµ0 + λt0lnt + ut, eτ0Mtut = εt, t = 1, 2, . . . , T. (5.1)

We first generate n elements for X1t and X2t by drawing independently from the standard normal

distribution and U(0,
√

12), respectively, where U(0,
√

12) denotes the uniform distribution (0,
√

12).

Some of these observations are dropped subsequently when we introduce the unbalancedness. For

the entity fixed effects, we consider a Mundlak type specification, µ0 = 1
T

∑T
t=1X1t + et, where the

elements of et are drawn independently from the standard normal distribution. The elements of

the λt0 are drawn independently from the standard normal distribution.

For the spatial weights matrices, we consider the rook and the queen contiguity cases. To this

end, we first generate a vector containing a random permutation of the integers from 1 to n without
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repeating elements. Then, we reshape this vector into an k×m rectangular lattice, where m = n/k.

In the rook contiguity case, we set the ij-th element of the weights matrix to 1 if the j’th entity is

adjacent (left/right/above or below) to the i’th entity on the lattice. In the queen contiguity case,

we set the ij-th element of the weights matrix to 1 if the j’th entity is adjacent to, or shares a border

with the i’th entity. Subsequently, the rows and columns corresponding to the missing entities are

deleted from Wt and Mt when we introduce the unbalancedness, and then we row normalize the

weights matrices.

We set εit = σitηit, and consider two cases for ηit. In the homoskedastic scenario, we set σit = 1

for all i and t, and generate ηit’s independently from either (i) the standard normal distribution

or (ii) the standardized Gamma(2, 1), where Gamma(a, b) denotes the gamma distribution with

the shape parameter a and the scale parameter b. In the heteroskedastic scenario, we consider

σ2
it = exp(0.1 + 0.35X2,it), where X2,it is the (i, t)th element of X2, and ηit’s are again drawn

independently from either (i) the standard normal distribution or (ii) the standardized Gamma(2, 1).

In the accompanying web appendix, we consider two additional specifications for the variance terms.

The unbalancedness of the panels is introduced by randomly dropping at most 10% of the n

entities in each period, while making sure that each entity is observed at least twice over T periods.

For n and T we consider the following values, n ∈ {50, 100} and T ∈ {3, 7}. The true parameter

values are β10 = −1, β20 = 2, α0 = −2, τ0 ∈ {−1, 1}. The number of resamples is 1000 in each

experiment. The matrix-vector products approach considered in Yang et al. (2021) can be used for

fast estimation of our model. We provide pseudo estimation algorithms describing the steps in the

M-estimation in the accompanying web appendix.

The results from the experiments are presented in Tables 1 – 4. In these tables, we report the

empirical mean, the empirical standard deviation (in brackets) and the average of the asymptotic

standard error (in square brackets) for the QMLE, ME and RME. The asymptotic standard errors

are calculated using the consistent estimators of the variance-covariance matrices of the ME and

RME provided in Theorems 3.2 and 4.2, respectively. Below, we summarize our findings from the

tables.

1. As expected, the QMLE suffers from the incidental parameter problem. When T = 3, the

QMLE of σ2 is downward biased significantly, close to −40%. As T increases to 7, the bias
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gets smaller, but there still remains a significant amount of bias, about −20%.

2. In general, the ME and the RME show excellent finite sample performance in terms of finite

sample bias. This result is not sensitive to the presence of heteroskedasticity and/or the

type of distribution chosen for the disturbances. For example, in Table 1 when T = 3 and

τ0 = −1, we observe that the bias of the ME and the RME are very close to each other for all

parameters. The largest of the bias values occur for τ in the case where n = 50, W=Queen

and M=Rook. In this case, the bias of the ME is about −2.6% and the bias of the RME is

about −2.5%. When T increases to 7, we observe that the bias of the ME and the bias of the

RME decrease to about −1.1%. For the other parameters both ME and RME impose almost

no bias.

3. Similarly, in the small T case, when τ0 = 1, we observe that the bias of the ME and the RME

are very close to each other for all parameters. The largest of the bias values occur for τ in

the case where W=Rook and M=Queen. For example, in Table 3 for n = 50, the bias of the

ME is about 7.2% and the bias of the RME is about 7.8%. It gets significantly smaller when

T increases to 7, and we observe that the bias of the ME and the bias of the RME decrease

to about 2%.

4. In terms of finite sample inference, we observe that both the ME and the RME show excellent

performance. The reported average values for the asymptotic standard errors are very close to

the corresponding empirical standard deviations for all parameters. We also observe that as

T increases both the ME and the RME become more precise as both report smaller empirical

standard deviations and average asymptotic standard errors. These findings are not sensitive

to the choice of weights matrices, and/or the distributional specification for the disturbance

term.

5. In the heteroskedastic scenario, we expect that the RME should outperform the ME in terms

of finite sample bias and inference. However, the results from Tables 2 and 4 show that our

heteroskedasticity specification using the skedastic function does not seem to deteriorate the

finite sample properties of the ME significantly.
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Table 1: Homoskedastic case with ηit ∼ N(0, 1)

W=Rook, M=Queen W=Queen, M=Rook

QMLE ME RME QMLE ME RME

n = 50, T = 3

β10 = −1 −1.0008(.095) −0.9996(.095)[.093] −0.9995(.095)[.090] −0.9982(.083) −0.9997(.083)[.081] −0.9999(.083)[.079]
β20 = 2 1.9962(.090) 1.9949(.089)[.085] 1.9950(.089)[.083] 1.9982(.072) 1.9977(.073)[.073] 1.9979(.073)[.071]
α0 = −2 −1.9943(.056) −2.0001(.056)[.055] −2.0002(.056)[.054] −1.9908(.070) −1.9977(.070)[.072] −1.9981(.071)[.071]
τ0 = −1 −0.9712(.184) −1.0091(.180)[.184] −1.0085(.180)[.180] −1.0490(.167) −1.0263(.152)[.160] −1.0251(.152)[.154]
σ2

0 = 1 0.6054(.096) 0.9519(.150)[.136] − 0.5960(.092) 0.9447(.146)[.137] −

n = 50, T = 7

β10 = −1 −0.9977(.056) −0.9982(.056)[.054] −0.9982(.056)[.054] −1.0001(.049) −1.0002(.049)[.046] −1.0002(.049)[.046]
β20 = 2 1.9991(.051) 1.9994(.051)[.051] 1.9994(.051)[.050] 1.9980(.045) 1.9991(.045)[.045] 1.9992(.045)[.045]
α0 = −2 −1.9929(.034) −2.0001(.034)[.036] −2.0002(.034)[.035] −1.9938(.039) −2.0017(.039)[.039] −2.0018(.039)[.039]
τ0 = −1 −0.9532(.107) −0.9986(.105)[.103] −0.9986(.105)[.103] −0.9963(.083) −1.0112(.081)[.080] −1.0111(.081)[.080]
σ2

0 = 1 0.8152(.067) 0.9845(.081)[.084] − 0.8185(.067) 0.9855(.081)[.083] −

n = 100, T = 3

β10 = −1 −1.0035(.069) −1.0044(.069)[.068] −1.0044(.069)[.067] −1.0002(.060) −1.0002(.060)[.061] −1.0003(.060)[.060]
β20 = 2 1.9989(.063) 1.9983(.063)[.063] 1.9983(.063)[.062] 2.0009(.054) 2.0001(.054)[.054] 2.0001(.054)[.053]
α0 = −2 −1.9956(.042) −1.9988(.042)[.043] −1.9987(.042)[.042] −1.9916(.053) −1.9964(.053)[.052] −1.9968(.053)[.051]
τ0 = −1 −1.0032(.131) −0.9989(.127)[.130] −0.9994(.128)[.131] −1.0286(.102) −1.0093(.096)[.101] −1.0094(.096)[.099]
σ2

0 = 1 0.6205(.067) 0.9802(.107)[.103] − 0.6305(.068) 0.9803(.106)[.101] −

n = 100, T = 7

β10 = −1 −1.0000(.037) −1.0002(.037)[.037] −1.0002(.037)[.037] −0.9996(.033) −0.9996(.033)[.033] −0.9996(.033)[.033]
β20 = 2 1.9981(.038) 1.9982(.038)[.037] 1.9982(.038)[.037] 2.0015(.034) 2.0009(.034)[.034] 2.0009(.034)[.034]
α0 = −2 −1.9964(.024) −1.9998(.024)[.024] −1.9998(.024)[.024] −1.9941(.028) −1.9984(.029)[.028] −1.9985(.029)[.028]
τ0 = −1 −0.9811(.072) −1.0012(.072)[.070] −1.0012(.071)[.069] −1.0109(.058) −1.0057(.056)[.057] −1.0055(.056)[.057]
σ2

0 = 1 0.8361(.051) 0.9939(.061)[.059] − 0.8292(.050) 0.9923(.060)[.060] −

n = 50, T = 3

β10 = −1 −1.0026(.092) −1.0021(.092)[.088] −1.0025(.092)[.086] −0.9964(.089) −0.9962(.088)[.087] −0.9961(.088)[.086]
β20 = 2 2.0029(.094) 2.0010(.092)[.089] 2.0014(.092)[.086] 1.9962(.088) 1.9980(.087)[.086] 1.9978(.087)[.084]
α0 = −2 −1.9914(.065) −1.9977(.064)[.062] −1.9974(.065)[.062] −1.9891(.071) −1.9946(.070)[.073] −1.9949(.071)[.073]
τ0 = 1 1.2295(.259) 1.0731(.222)[.222] 1.0760(.227)[.222] 1.1229(.164) 1.0282(.151)[.156] 1.0284(.155)[.156]
σ2

0 = 1 0.6000(.093) 0.9491(.147)[.138] − 0.5950(.093) 0.9469(.148)[.138] −

n = 50, T = 7

β10 = −1 −0.9972(.050) −0.9973(.049)[.050] −0.9973(.049)[.050] −1.0019(.046) −1.0013(.046)[.047] −1.0013(.046)[.047]
β20 = 2 2.0005(.048) 1.9992(.048)[.045] 1.9992(.048)[.044] 2.0020(.044) 2.0010(.044)[.045] 2.0010(.044)[.045]
α0 = −2 −1.9953(.033) −2.0014(.033)[.034] −2.0014(.033)[.034] −1.9906(.039) −1.9977(.039)[.038] −1.9977(.040)[.038]
τ0 = 1 1.1126(.121) 1.0203(.113)[.111] 1.0199(.113)[.110] 1.0590(.082) 1.0090(.080)[.080] 1.0090(.080)[.079]
σ2

0 = 1 0.8130(.071) 0.9838(.086)[.084] − 0.8183(.071) 0.9865(.085)[.084] −

n = 100, T = 3

β10 = −1 −0.9996(.061) −0.9989(.061)[.061] −0.9991(.061)[.061] −0.9992(.064) −0.9990(.064)[.061] −0.9989(.064)[.060]
β20 = 2 1.9963(.067) 1.9968(.067)[.064] 1.9969(.067)[.063] 1.9982(.057) 1.9990(.056)[.057] 1.9990(.056)[.057]
α0 = −2 −1.9970(.041) −1.9996(.040)[.041] −1.9994(.040)[.040] −1.9893(.053) −1.9945(.053)[.054] −1.9942(.053)[.054]
τ0 = 1 1.1811(.177) 1.0320(.145)[.151] 1.0298(.146)[.151] 1.0713(.102) 1.0150(.096)[.101] 1.0144(.096)[.100]
σ2

0 = 1 0.6126(.064) 0.9731(.101)[.103] − 0.6289(.064) 0.9793(.099)[.101] −

n = 100, T = 7

β10 = −1 −0.9976(.034) −0.9978(.034)[.035] −0.9978(.034)[.035] −0.9995(.032) −0.9999(.032)[.032] −0.9999(.032)[.032]
β20 = 2 1.9988(.034) 1.9992(.034)[.034] 1.9992(.034)[.034] 2.0000(.036) 1.9996(.036)[.034] 1.9996(.036)[.034]
α0 = −2 −1.9972(.023) −2.0002(.023)[.023] −2.0002(.023)[.023] −1.9953(.031) −1.9997(.031)[.029] −1.9996(.031)[.029]
τ0 = 1 1.0577(.075) 1.0124(.073)[.072] 1.0123(.073)[.072] 1.0444(.059) 1.0038(.057)[.057] 1.0041(.057)[.057]
σ2

0 = 1 0.8366(.051) 0.9951(.061)[.059] − 0.8297(.051) 0.9939(.061)[.060] −
Notes: We report the empirical mean (standard deviation) [average asymptotic standard error].
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Table 2: Heteroskedastic case with ηit ∼ N(0, 1)

W=Rook, M=Queen W=Queen, M=Rook

QMLE ME RME QMLE ME RME

n = 50, T = 3

β10 = −1 −1.0084(.094) −1.0070(.094)[.093] −1.0068(.094)[.090] −0.9949(.086) −0.9962(.086)[.082] −0.9964(.086)[.082]
β20 = 2 1.9978(.089) 1.9966(.089)[.085] 1.9965(.089)[.085] 1.9988(.077) 1.9984(.077)[.073] 1.9985(.077)[.072]
α0 = −2 −1.9926(.053) −1.9984(.053)[.055] −1.9989(.053)[.053] −1.9877(.071) −1.9947(.071)[.072] −1.9946(.072)[.069]
τ0 = −1 −0.9680(.182) −1.0060(.179)[.184] −1.0045(.179)[.180] −1.0520(.168) −1.0295(.153)[.158] −1.0292(.153)[.151]
σ2

0 = 1 0.6073(.094) 0.9549(.148)[.144] − 0.6029(.095) 0.9556(.151)[.144] −

n = 50, T = 7

β10 = −1 −1.0004(.056) −1.0009(.056)[.054] −1.0009(.056)[.054] −0.9984(.046) −0.9985(.046)[.046] −0.9985(.046)[.046]
β20 = 2 2.0028(.054) 2.0031(.054)[.051] 2.0031(.054)[.053] 1.9964(.046) 1.9976(.046)[.045] 1.9976(.046)[.046]
α0 = −2 −1.9950(.037) −2.0022(.037)[.036] −2.0021(.037)[.036] −1.9890(.039) −1.9969(.039)[.039] −1.9971(.039)[.039]
τ0 = −1 −0.9600(.104) −1.0058(.103)[.104] −1.0043(.103)[.102] −0.9945(.078) −1.0093(.075)[.080] −1.0094(.075)[.079]
σ2

0 = 1 0.8162(.073) 0.9858(.088)[.090] − 0.8183(.075) 0.9853(.090)[.090] −

n = 100, T = 3

β10 = −1 −0.9962(.068) −0.9971(.068)[.068] −0.9972(.068)[.066] −1.0013(.062) −1.0013(.062)[.060] −1.0013(.062)[.060]
β20 = 2 2.0018(.068) 2.0012(.068)[.062] 2.0012(.068)[.065] 2.0031(.054) 2.0024(.054)[.053] 2.0024(.054)[.055]
α0 = −2 −1.9953(.044) −1.9984(.044)[.043] −1.9986(.044)[.042] −1.9949(.052) −1.9996(.052)[.051] −1.9998(.053)[.052]
τ0 = −1 −1.0052(.136) −1.0009(.132)[.129] −1.0020(.133)[.130] −1.0325(.109) −1.0131(.104)[.100] −1.0145(.104)[.099]
σ2

0 = 1 0.6194(.071) 0.9783(.111)[.109] − 0.6273(.071) 0.9753(.110)[.106] −

n = 100, T = 7

β10 = −1 −1.0019(.037) −1.0021(.037)[.037] −1.0021(.037)[.037] −0.9999(.032) −0.9999(.032)[.033] −0.9999(.032)[.033]
β20 = 2 2.0004(.039) 2.0005(.039)[.037] 2.0005(.039)[.039] 2.0008(.036) 2.0002(.036)[.034] 2.0002(.036)[.035]
α0 = −2 −1.9984(.023) −2.0017(.023)[.024] −2.0017(.023)[.024] −1.9951(.029) −1.9994(.029)[.028] −1.9994(.029)[.029]
τ0 = −1 −0.9798(.073) −0.9999(.072)[.070] −0.9997(.072)[.069] −1.0101(.056) −1.0050(.054)[.057] −1.0049(.054)[.057]
σ2

0 = 1 0.8331(.053) 0.9904(.063)[.063] − 0.8278(.053) 0.9907(.064)[.065] −

n = 50, T = 3

β10 = −1 −0.9982(.087) −0.9986(.085)[.088] −0.9989(.085)[.083] −1.0056(.092) −1.0056(.092)[.087] −1.0056(.092)[.089]
β20 = 2 2.0043(.097) 2.0028(.097)[.090] 2.0032(.097)[.091] 1.9984(.091) 1.9997(.090)[.085] 2.0000(.091)[.086]
α0 = −2 −1.9929(.061) −1.9990(.060)[.063] −1.9992(.061)[.063] −1.9902(.073) −1.9958(.073)[.072] −1.9969(.074)[.072]
τ0 = 1 1.2120(.250) 1.0575(.215)[.223] 1.0693(.226)[.226] 1.1289(.167) 1.0330(.153)[.157] 1.0328(.157)[.156]
σ2

0 = 1 0.6020(.094) 0.9522(.148)[.148] − 0.5938(.093) 0.9451(.148)[.142] −

n = 50, T = 7

β10 = −1 −0.9989(.051) −0.9987(.051)[.050] −0.9987(.051)[.051] −1.0013(.048) −1.0005(.048)[.047] −1.0005(.048)[.047]
β20 = 2 2.0020(.048) 2.0008(.048)[.045] 2.0008(.048)[.046] 2.0017(.049) 2.0006(.050)[.045] 2.0006(.050)[.047]
α0 = −2 −1.9944(.034) −2.0005(.034)[.034] −2.0001(.034)[.034] −1.9915(.039) −1.9987(.039)[.038] −1.9989(.038)[.038]
τ0 = 1 1.1105(.117) 1.0176(.110)[.112] 1.0169(.110)[.111] 1.0643(.082) 1.0139(.079)[.080] 1.0140(.079)[.080]
σ2

0 = 1 0.8141(.077) 0.9851(.093)[.091] − 0.8170(.074) 0.9850(.089)[.089] −

n = 100, T = 3

β10 = −1 −1.0031(.061) −1.0022(.060)[.061] −1.0024(.060)[.060] −1.0012(.062) −1.0010(.062)[.061] −1.0009(.062)[.059]
β20 = 2 1.9971(.069) 1.9983(.069)[.064] 1.9984(.069)[.064] 1.9996(.058) 2.0002(.058)[.057] 2.0003(.058)[.057]
α0 = −2 −1.9970(.041) −1.9996(.041)[.041] −1.9992(.041)[.040] −1.9923(.054) −1.9974(.054)[.054] −1.9978(.054)[.054]
τ0 = 1 1.1866(.186) 1.0359(.152)[.152] 1.0357(.154)[.153] 1.0768(.105) 1.0193(.099)[.102] 1.0176(.099)[.100]
σ2

0 = 1 0.6121(.070) 0.9725(.111)[.108] − 0.6254(.069) 0.9739(.108)[.106] −

n = 100, T = 7

β10 = −1 −0.9986(.036) −0.9988(.036)[.035] −0.9989(.036)[.035] −0.9991(.031) −0.9995(.031)[.032] −0.9995(.031)[.032]
β20 = 2 1.9977(.037) 1.9981(.037)[.034] 1.9981(.037)[.036] 1.9984(.035) 1.9980(.035)[.034] 1.9980(.035)[.035]
α0 = −2 −1.9953(.023) −1.9984(.023)[.023] −1.9985(.023)[.023] −1.9955(.029) −1.9998(.029)[.029] −1.9996(.029)[.029]
τ0 = 1 1.0534(.075) 1.0084(.072)[.072] 1.0082(.073)[.072] 1.0447(.058) 1.0041(.056)[.058] 1.0039(.056)[.057]
σ2

0 = 1 0.8333(.052) 0.9912(.062)[.063] − 0.8266(.056) 0.9901(.067)[.064] −
Notes: We report the empirical mean (standard deviation) [average asymptotic standard error].
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Table 3: Homoskedastic case with ηit ∼ Gamma(2, 1)

W=Rook, M=Queen W=Queen, M=Rook

QMLE ME RME QMLE ME RME

n = 50, T = 3

β10 = −1 −0.9962(.094) −0.9949(.094)[.093] −0.9948(.094)[.090] −0.9998(.077) −0.9999(.077)[.073] −0.9999(.077)[.071]
β20 = 2 2.0015(.088) 2.0003(.088)[.085] 2.0003(.087)[.082] 1.9958(.081) 1.9964(.081)[.076] 1.9965(.081)[.073]
α0 = −2 −1.9923(.053) −1.9980(.053)[.055] −1.9981(.053)[.054] −1.9844(.079) −1.9934(.079)[.077] −1.9932(.079)[.075]
τ0 = −1 −0.9600(.186) −0.9979(.182)[.183] −0.9976(.182)[.177] −1.0416(.157) −1.0326(.146)[.154] −1.0319(.148)[.145]
σ2

0 = 1 0.6023(.126) 0.9470(.198)[.176] − 0.5928(.132) 0.9393(.209)[.180] −

n = 50, T = 7

β10 = −1 −1.0004(.054) −1.0013(.054)[.053] −1.0013(.054)[.052] −1.0010(.047) −0.9999(.047)[.046] −0.9998(.047)[.046]
β20 = 2 1.9981(.056) 1.9978(.056)[.054] 1.9978(.056)[.053] 1.9986(.046) 1.9985(.046)[.045] 1.9985(.046)[.044]
α0 = −2 −1.9931(.035) −1.9998(.035)[.035] −1.9998(.035)[.034] −1.9940(.035) −2.0014(.035)[.036] −2.0014(.035)[.036]
τ0 = −1 −0.9554(.111) −0.9992(.109)[.106] −0.9990(.109)[.104] −0.9957(.087) −1.0083(.084)[.082] −1.0084(.084)[.081]
σ2

0 = 1 0.8172(.106) 0.9914(.128)[.122] − 0.8185(.103) 0.9879(.124)[.122] −

n = 100, T = 3

β10 = −1 −1.0001(.073) −0.9994(.073)[.074] −0.9994(.073)[.073] −1.0011(.053) −1.0022(.053)[.053] −1.0022(.053)[.052]
β20 = 2 1.9988(.061) 1.9982(.061)[.062] 1.9982(.061)[.061] 1.9992(.056) 1.9999(.056)[.054] 1.9999(.056)[.054]
α0 = −2 −1.9967(.047) −2.0007(.047)[.047] −2.0007(.047)[.046] −1.9932(.049) −1.9974(.049)[.048] −1.9975(.049)[.047]
τ0 = −1 −0.9954(.132) −0.9996(.129)[.126] −0.9995(.129)[.123] −1.0362(.103) −1.0220(.099)[.100] −1.0212(.098)[.097]
σ2

0 = 1 0.6229(.092) 0.9739(.144)[.137] − 0.6291(.090) 0.9743(.139)[.135] −

n = 100, T = 7

β10 = −1 −0.9994(.039) −0.9993(.039)[.039] −0.9993(.039)[.038] −1.0009(.032) −1.0008(.032)[.031] −1.0008(.032)[.031]
β20 = 2 1.9997(.039) 2.0001(.039)[.038] 2.0001(.039)[.038] 1.9992(.031) 1.9994(.031)[.030] 1.9994(.031)[.030]
α0 = −2 −1.9955(.027) −1.9993(.027)[.026] −1.9993(.027)[.026] −1.9955(.026) −1.9991(.026)[.026] −1.9991(.026)[.026]
τ0 = −1 −0.9839(.072) −1.0003(.071)[.072] −1.0003(.071)[.071] −1.0103(.059) −1.0062(.057)[.057] −1.0062(.058)[.056]
σ2

0 = 1 0.8316(.075) 0.9935(.089)[.089] − 0.8298(.076) 0.9915(.091)[.088] −

n = 50, T = 3

β10 = −1 −0.9997(.083) −0.9981(.081)[.081] −0.9986(.082)[.078] −1.0055(.096) −1.0064(.096)[.095] −1.0063(.096)[.093]
β20 = 2 2.0014(.083) 2.0014(.082)[.081] 2.0015(.082)[.080] 1.9958(.079) 1.9980(.078)[.077] 1.9979(.078)[.074]
α0 = −2 −1.9913(.059) −1.9967(.058)[.059] −1.9972(.058)[.058] −1.9836(.088) −1.9958(.087)[.087] −1.9955(.088)[.085]
τ0 = 1 1.2170(.250) 1.0721(.216)[.221] 1.0784(.230)[.223] 1.1200(.165) 1.0273(.151)[.159] 1.0262(.153)[.152]
σ2

0 = 1 0.5997(.128) 0.9480(.203)[.180] − 0.6000(.121) 0.9548(.192)[.186] −

n = 50, T = 7

β10 = −1 −0.9997(.048) −0.9998(.048)[.049] −0.9998(.048)[.049] −1.0007(.050) −0.9999(.049)[.048] −0.9999(.049)[.048]
β20 = 2 2.0001(.052) 2.0002(.052)[.052] 2.0002(.052)[.052] 1.9994(.051) 2.0010(.051)[.051] 2.0010(.051)[.051]
α0 = −2 −1.9932(.034) −1.9987(.034)[.034] −1.9987(.034)[.034] −1.9906(.043) −1.9997(.043)[.042] −1.9996(.043)[.042]
τ0 = 1 1.1228(.125) 1.0211(.116)[.115] 1.0210(.116)[.114] 1.0644(.084) 1.0110(.081)[.081] 1.0108(.082)[.080]
σ2

0 = 1 0.8121(.107) 0.9877(.130)[.125] − 0.8199(.115) 0.9911(.139)[.123] −

n = 100, T = 3

β10 = −1 −0.9967(.067) −0.9972(.067)[.066] −0.9975(.067)[.065] −0.9966(.055) −0.9968(.055)[.056] −0.9968(.055)[.055]
β20 = 2 1.9987(.064) 2.0003(.063)[.062] 2.0003(.063)[.061] 1.9995(.056) 1.9997(.056)[.058] 1.9997(.056)[.057]
α0 = −2 −1.9958(.048) −1.9998(.047)[.046] −1.9999(.048)[.046] −1.9939(.046) −1.9971(.046)[.045] −1.9972(.046)[.045]
τ0 = 1 1.1221(.152) 1.0326(.139)[.141] 1.0353(.143)[.143] 1.0683(.099) 1.0176(.094)[.099] 1.0169(.094)[.097]
σ2

0 = 1 0.6268(.093) 0.9824(.146)[.139] − 0.6304(.094) 0.9776(.146)[.135] −

n = 100, T = 7

β10 = −1 −1.0003(.034) −1.0005(.034)[.034] −1.0005(.034)[.034] −0.9998(.032) −0.9997(.032)[.030] −0.9997(.032)[.030]
β20 = 2 2.0007(.036) 2.0009(.036)[.035] 2.0010(.036)[.035] 2.0006(.036) 2.0011(.036)[.037] 2.0011(.036)[.037]
α0 = −2 −1.9972(.025) −2.0005(.025)[.025] −2.0005(.025)[.025] −1.9971(.029) −2.0016(.029)[.030] −2.0016(.029)[.030]
τ0 = 1 1.0663(.079) 1.0107(.076)[.075] 1.0106(.075)[.075] 1.0402(.059) 1.0038(.057)[.056] 1.0038(.057)[.056]
σ2

0 = 1 0.8289(.078) 0.9911(.093)[.088] − 0.8299(.074) 0.9925(.089)[.089] −
Notes: We report the empirical mean (standard deviation) [average asymptotic standard error].
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Table 4: Heteroskedastic case with ηit ∼ Gamma(2, 1)

W=Rook, M=Queen W=Queen, M=Rook

QMLE ME RME QMLE ME RME

n = 50, T = 3

β10 = −1 −1.0029(.091) −1.0016(.090)[.093] −1.0015(.090)[.091] −1.0017(.078) −1.0019(.078)[.074] −1.0017(.078)[.073]
β20 = 2 2.0029(.091) 2.0017(.091)[.085] 2.0016(.091)[.084] 2.0001(.081) 2.0006(.081)[.077] 2.0006(.081)[.077]
α0 = −2 −1.9921(.053) −1.9978(.053)[.054] −1.9982(.053)[.053] −1.9893(.079) −1.9984(.079)[.078] −1.9984(.079)[.076]
τ0 = −1 −0.9788(.181) −1.0166(.177)[.185] −1.0153(.177)[.177] −1.0403(.152) −1.0313(.142)[.155] −1.0289(.142)[.147]
σ2

0 = 1 0.6119(.133) 0.9621(.208)[.189] − 0.6031(.134) 0.9557(.213)[.189] −

n = 50, T = 7

β10 = −1 −0.9981(.054) −0.9990(.054)[.052] −0.9990(.054)[.052] −1.0009(.045) −0.9997(.045)[.046] −0.9997(.045)[.046]
β20 = 2 2.0018(.058) 2.0015(.058)[.053] 2.0015(.058)[.057] 2.0016(.046) 2.0015(.046)[.045] 2.0016(.046)[.047]
α0 = −2 −1.9937(.035) −2.0003(.035)[.034] −1.9999(.035)[.034] −1.9922(.037) −1.9996(.037)[.036] −1.9994(.037)[.037]
τ0 = −1 −0.9579(.104) −1.0021(.102)[.107] −1.0020(.102)[.104] −0.9952(.089) −1.0077(.086)[.082] −1.0080(.086)[.081]
σ2

0 = 1 0.8056(.106) 0.9773(.129)[.129] − 0.8181(.110) 0.9874(.132)[.130] −

n = 100, T = 3

β10 = −1 −0.9977(.077) −0.9970(.077)[.074] −0.9970(.077)[.076] −0.9988(.053) −0.9998(.053)[.053] −0.9999(.053)[.051]
β20 = 2 1.9972(.064) 1.9966(.064)[.062] 1.9966(.064)[.063] 1.9992(.057) 1.9999(.057)[.055] 1.9999(.057)[.056]
α0 = −2 −1.9922(.046) −1.9962(.046)[.046] −1.9962(.046)[.046] −1.9964(.046) −2.0007(.046)[.048] −2.0008(.046)[.046]
τ0 = −1 −0.9971(.126) −1.0012(.124)[.126] −1.0009(.124)[.124] −1.0278(.102) −1.0140(.097)[.100] −1.0131(.097)[.096]
σ2

0 = 1 0.6243(.098) 0.9762(.153)[.143] − 0.6321(.093) 0.9789(.143)[.143] −

n = 100, T = 7

β10 = −1 −1.0008(.038) −1.0008(.038)[.039] −1.0008(.038)[.039] −1.0015(.031) −1.0014(.031)[.032] −1.0014(.031)[.031]
β20 = 2 2.0013(.039) 2.0017(.039)[.038] 2.0017(.039)[.038] 2.0021(.031) 2.0022(.031)[.030] 2.0022(.031)[.031]
α0 = −2 −1.9964(.025) −2.0003(.025)[.026] −2.0004(.025)[.026] −1.9959(.027) −1.9995(.027)[.026] −1.9996(.027)[.026]
τ0 = −1 −0.9836(.072) −1.0000(.071)[.072] −1.0001(.071)[.071] −1.0106(.057) −1.0065(.055)[.056] −1.0068(.055)[.056]
σ2

0 = 1 0.8292(.081) 0.9906(.097)[.094] − 0.8349(.081) 0.9976(.097)[.094] −

n = 50, T = 3

β10 = −1 −1.0011(.085) −0.9994(.084)[.081] −0.9997(.084)[.078] −0.9979(.093) −0.9991(.092)[.094] −0.9992(.092)[.088]
β20 = 2 2.0009(.086) 2.0009(.086)[.082] 2.0014(.086)[.083] 1.9942(.086) 1.9961(.086)[.076] 1.9960(.086)[.077]
α0 = −2 −1.9923(.058) −1.9977(.058)[.059] −1.9984(.058)[.057] −1.9842(.088) −1.9958(.087)[.086] −1.9957(.087)[.085]
τ0 = 1 1.1957(.237) 1.0547(.207)[.218] 1.0643(.218)[.223] 1.1231(.161) 1.0316(.148)[.157] 1.0303(.149)[.150]
σ2

0 = 1 0.6049(.133) 0.9559(.209)[.192] − 0.5888(.128) 0.9369(.204)[.186] −

n = 50, T = 7

β10 = −1 −1.0016(.050) −1.0017(.050)[.049] −1.0018(.050)[.048] −1.0014(.047) −1.0005(.047)[.048] −1.0006(.047)[.048]
β20 = 2 2.0007(.053) 2.0010(.053)[.052] 2.0011(.053)[.054] 1.9969(.054) 1.9984(.054)[.051] 1.9984(.054)[.053]
α0 = −2 −1.9938(.034) −1.9994(.034)[.034] −1.9996(.034)[.034] −1.9896(.041) −1.9987(.041)[.042] −1.9984(.041)[.041]
τ0 = 1 1.1247(.121) 1.0231(.113)[.114] 1.0236(.113)[.113] 1.0587(.085) 1.0057(.082)[.081] 1.0056(.082)[.080]
σ2

0 = 1 0.8133(.116) 0.9891(.141)[.130] − 0.8173(.112) 0.9880(.136)[.131] −

n = 100, T = 3

β10 = −1 −0.9964(.065) −0.9971(.064)[.065] −0.9973(.064)[.064] −1.0001(.057) −1.0001(.057)[.056] −1.0001(.057)[.056]
β20 = 2 1.9980(.063) 1.9993(.063)[.062] 1.9994(.063)[.060] 1.9997(.061) 1.9999(.061)[.058] 2.0000(.061)[.060]
α0 = −2 −1.9964(.046) −2.0002(.045)[.046] −2.0004(.045)[.046] −1.9955(.045) −1.9987(.045)[.046] −1.9990(.045)[.045]
τ0 = 1 1.1127(.157) 1.0249(.142)[.140] 1.0278(.144)[.141] 1.0637(.103) 1.0132(.098)[.099] 1.0129(.098)[.098]
σ2

0 = 1 0.6180(.096) 0.9687(.151)[.142] − 0.6290(.095) 0.9753(.147)[.141] −

n = 100, T = 7

β10 = −1 −0.9993(.034) −0.9996(.034)[.034] −0.9996(.034)[.034] −0.9998(.030) −0.9997(.030)[.030] −0.9997(.030)[.030]
β20 = 2 1.9988(.036) 1.9990(.036)[.035] 1.9990(.036)[.036] 1.9986(.038) 1.9991(.038)[.037] 1.9991(.038)[.038]
α0 = −2 −1.9961(.026) −1.9994(.026)[.025] −1.9994(.026)[.025] −1.9942(.030) −1.9986(.030)[.030] −1.9986(.030)[.029]
τ0 = 1 1.0679(.079) 1.0123(.076)[.075] 1.0125(.076)[.075] 1.0441(.059) 1.0076(.057)[.056] 1.0076(.057)[.056]
σ2

0 = 1 0.8274(.080) 0.9894(.096)[.093] − 0.8306(.078) 0.9933(.093)[.094] −
Notes: We report the empirical mean (standard deviation) [average asymptotic standard error].
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6 The third country effects on the US outward FDI stock

In this section, we consider an extension of the bilateral specification of the three-factor knowledge

capital model suggested in Baltagi et al. (2007) to investigate the third country effects on the US

outward FDI stock at the industry level. We collect data on the US outward FDI stock in 47

host countries at the industry level between 2008–2014. These host countries include developed,

developing and undeveloped ones, and thus yielding a comprehensive sample.

In our analysis, each unit is a country-industry pair, denoted by a subscript i. The dependent

variable is LFDIit, which is the natural log of US outward FDI stock in country-industry pair i at

year t, where i = 1, . . . , nt and t = 1, . . . , T . In our sample, there are seven periods, i.e., T = 7,

covering the period 2008–2014, and nt varies from period to period, from a minimum of 340 country-

industry pairs in 2013 to a maximum of 364 country-industry pairs in 2011. The dataset is thus

unbalanced with a total number of observations, N =
∑T

t=1 nt = 2454, spanning 47 host countries

and 10 industries. The set of independent variables includes a measure of absolute bilateral country

size, given by Git = ln(GDPUS,t + GDPit), where the US subscript denotes the parent country

and the i subscript denotes the host country. We also include a similarity measure of country size

proposed by Helpman and Krugman (1985) and Helpman (1987), and is given by Sit = 1−s2
US,t−s2

it,

where sUS,t = GDPUS,t/ (GDPUS,t + GDPit) and sit = GDPit/ (GDPUS,t + GDPit) are the share

of respective country’s GDP in the bilateral GDP. Another independent variable is a measure of

relative capital stock defined by kit = ln(KUS,t/Kit), where KUS,t and Kit are the capital stocks

of the US and the host country i, respectively. A measure of relative skilled labor endowment

is also considered as an independent variable. This measure is defined by hsit = ln(HUS,t/Hit),

with HUS,t and Hit denoting the skilled labor endowments in the US and the host country i,

respectively. Similarly, we also have a measure of relative unskilled labor endowment, given by

huit = ln(LUS,t/Lit), with LUS,t and Lit denoting the unskilled labor endowments in the US and

the host country i, respectively. The model includes two interaction terms: Ψit = Git × kit and

Φit = ln(dUS,i × (kit − huit)), where dUS,i is the physical distance between the capitals of the US

and the host country i. The last independent variable is an indicator of host country investment

risk, denoted by R, computed as the inverse of an investment profile index. The sources and the

descriptive statistics of our sample data are given in the web appendix.
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Table 5: Estimation results for the US outward FDI Stock

ME RME

α −0.0826 −0.1692***
(.057) (.053)

τ 0.1201 0.2756***
(.135) (.063)

G −4.0850 −5.1272**
(3.024) (2.594)

S 1.5493*** 1.5418**
(.455) (.630)

k −2.3859 4.5631
(10.734) (9.262)

hs −0.6624** −0.4840
(.286) (.368)

hu −1.9157 −1.2527
(2.004) (1.871)

Ψ 0.1552 −0.1034
(.372) (.320)

Φ −0.2895 −0.1943
(.240) (.212)

R 0.0494*** 0.0447*
(.019) (.024)

WG −0.0292*** −0.0340***
(.010) (.007)

WS 0.8893*** 0.9491***
(.260) (.175)

Wk 0.8501 0.9316
(1.727) (1.645)

Whs 0.1795* 0.2877***
(.106) (.081)

Whu 1.2566*** 1.3541***
(.481) (.414)

WΦ −0.0398 −0.0447
(.055) (.054)

WΨ 0.1139** 0.1192***
(.051) (.046)

WR −0.0232*** −0.0266***
(.008) (.006)

σ2 0.2598***
(.019)

R2 94.93% 94.93%

Significance levels: ∗: 10%, ∗∗: 5%, and ∗∗∗: 1%.

We augment the model suggested in Baltagi et al. (2007) with three types of spatial dependence:

(i) spatial dependence in FDI specified through a matrix exponential term, (ii) spatial lags of the

third-country determinants of FDI, and (iii) spatial dependence in the error terms specified through

a matrix exponential term. Our estimation equation allows for heterogeneity in two dimensions,

namely, the country-industry pairs and time dimensions. Thus, our estimation equation takes the
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following form:

eαWtLFDIt = β0lnt + β1Gt + β2St + β3kt + β4h
s
t + β5h

u
t + β6Ψt + β7Φt + β8Rt

+ β9WtGt + β10WtSt + β11Wtkt + β12Wth
s
t + β13Wth

u
t + β14WtΨt + β15WtΦt

+ β16WtRt + Ctµ+ λtlnt + ut, eτWtut = εt.

The elements of the nt×nt spatial weights matrix Wt are specified as wij = d−1
ij /

∑N
j=1 d

−1
ij for i 6= j

and wij = 0 for i = j, and dij is the bilateral physical distance between capitals of i and j taken

from Mayer and Zignago (2011). The country-industry pairs and time fixed effects are respectively

denoted by µ and λt. We also allow for the presence of an unknown form of heteroskedasticity in

the error term εt.

We use our suggested M-estimators to estimate the parameters of the model. Table 5 provides

the estimation results. The first column contains the estimation results obtained under homoskedas-

ticity assumption from the ME. The second column provides the estimation results obtained from

the RME under the assumption of an unknown form of heteroskedasticity. In the case of spatial

parameters, the ME reports statistically insignificant results, whereas the RME reports statistically

significant results. The RME estimates of α and τ are −0.1692 and 0.2756, respectively. Since the

US outward FDI stock is likely to be affected differently by the unobserved factors in different host

countries, it is more likely that the disturbance terms are heteroskedastic in our model. The ME re-

ports a negative and insignificant estimate for G, while the RME reports a negative and statistically

significant estimate. Both estimators report a positive and statistically significant estimate for the

similarity variable, which is in line with prediction of the bilateral specification of the three-factor

knowledge capital model suggested in Baltagi et al. (2007). In the case of k, hu, Ψ and Φ, both

estimators report statistically insignificant estimates.

The third-country effects are captured by the spatially weighted regressors. We can see that

most of their coefficient estimates are significant, which means that the third-country effects are

important and should not be neglected. Both estimators report negative and statistically significant

estimate for the spatial lag of bilateral country size. This result indicates that there can be re-

allocation of plants from the host country to the third country when there is an increase in the size

of third country (Baltagi et al., 2007). Both estimators report positive and statistically significant
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estimates for the spatially weighted similarity variable and the relative skilled labor endowment

variable. These results are in line with the horizontal and export-platform FDI modes described

in Baltagi et al. (2007). Both estimators report positive and statistically significant estimates

for the relative unskilled labor endowment, which supports horizontal and vertical FDI modes.

Both estimators report negative and statistically insignificant estimates for WΦ, while positive

and significant estimates for WΨ. These results support vertical mode in the case of WΦ, and

horizontal, export-platform and complex vertical modes in the case of WΨ. The last row of the

table provides a pseudo-R2 measure for model fit. Both estimators report a pseudo-R2 value of

94.93%. Finally, both estimators report negative and statistically significant estimates for WR.

Overall, our results show that the third-country effects are important in the US outward FDI

stock.

7 Conclusion

In this paper, we considered a direct likelihood based estimation of the matrix exponential un-

balanced panel data model that has the entity and time fixed effects. Our estimation approach

allowed for the estimation of the common parameters and fixed effects simultaneously. We first

showed that the QMLE of our model may not be consistent under both homoskedastic and het-

eroskedastic disturbance terms. We then adjusted the score functions under both homoskedastic

and heteroskedastic cases, and defined valid M-estimators based on the adjusted score functions.

We established the large sample properties of the resulting M-estimators, the ME and the RME,

respectively. For inference, we suggested an analytical bias correction approach involving the sam-

ple counterpart and plug-in methods to consistently estimate the variance-covariance matrices of

the suggested estimators. Through an extensive Monte Carlo study, we showed that our suggested

estimators have good finite sample properties. In an empirical application, we showed that there

is statistical evidence for the presence of third country effects on the US outward FDI stock.

Supplementary materials

Additional materials are given in an accompanying web appendix.
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