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Abstract

In spatial panel data modeling, researchers often need to choose a spatial weights matrix from a
pool of candidates, and decide between static and dynamic specifications. We propose observed-
data deviance information criteria to resolve these specification problems in a Bayesian setting.
The presence of high dimensional latent variables (i.e., the individual and time fixed effects)
in spatial panel data models invalidates the use of a deviance information criterion (DIC) for-
mulated with the conditional and the complete-data likelihood functions of spatial panel data
models. We first show how to analytically integrate out these latent variables from the complete-
data likelihood functions to obtain integrated likelihood functions. We then use the integrated
likelihood functions to formulate observed-data DIC measures for both static and dynamic spa-
tial panel data models. Our simulation analysis indicates that the observed-data DIC measures
perform satisfactorily to resolve specification problems in spatial panel data modeling. We also
illustrate the usefulness of the proposed observed-data DIC measures using an application from
the literature on spatial modeling of the house price changes in the US.
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1 Introduction

Spatial panel data models have found applications in recent literature varying from urban economics

to growth economics (Aquaro et al. 2021; Baltagi et al. 2015; LeSage and Sheng 2014; Parent

and LeSage 2010; Yang 2021a); environmental and energy economics to agriculture and land use

(Baldoni and Esposti 2021; Billé and Rogna 2022; Chen et al. 2020; Gori Maia et al. 2021; Jiang

et al. 2021; Krisztin et al. 2021; Kuschnig et al. 2021; Li et al. 2021; Song et al. 2021); health

economics to store sales and sports (Ehlert and Oberschachtsiek 2014; Guliyev 2020; Hunneman

et al. 2021; Krisztin et al. 2020; Lee and Lee 2021). Two common problems applied researchers

face in modeling are (i) how to choose a spatial weights matrix (or the connectivity matrix) from

a pool of candidates, and (ii) how to choose between the static and dynamic specifications. Often

it is the case that the model is specified in an ad-hoc manner and there is no guidance from an

underlying structural model to deal with these two problems. In this paper, we focus on these

model specification problems for spatial panel data models and propose observed-data deviance

information criteria to resolve them.

The deviance information criterion (DIC) was suggested by Spiegelhalter et al. (2002) for the

parametric model comparison exercises. The DIC measure is defined as the sum of the posterior

mean deviance and the effective number of parameters, and balances a trade-off between model fit

and complexity. Using a decision-theoretical perspective, Li et al. (2017, 2020) show that the DIC

provides an asymptotically unbiased estimator of the expected Kullback-Leibler (KL) divergence

between the true data generating process (DGP) and a suitable plug-in predictive distribution of

hypothetically replicate data. This result indicates that the DIC selects the candidate model that

has the better predictive performance, i.e., the smaller the DIC value is, the better the predictive

performance of the candidate model is.

There can be alternative definitions of the DIC measure depending on the type of likelihood

function used in the deviance term (Celeux et al. 2006). For example, in the latent variable

models, there can be three types of likelihood functions: (i) the conditional likelihood function,

i.e., the likelihood function obtained by conditioning on the latent variables, (ii) the complete

data likelihood function, i.e, the joint likelihood function of data and the latent variables, (iii) the

integrated likelihood function (or the observed-data likelihood function) obtained from the complete

likelihood function by integrating out the latent variables.

In the literature, there are numerous simulations studies showing that the DIC measure for-

mulated with the conditional likelihood function can perform unsatisfactorily in selecting the true

model, e.g., see Chan and Grant (2016a,b) and Millar (2009). Moreover, the DIC measures for-

mulated with the conditional likelihood and the complete data likelihood functions undermine the

assumptions required for the decision-theoretical perspective of Li et al. (2017, 2020). That is, these

measures provide biased estimators of the expected Kullback-Leibler (KL) divergence between the

true data generating process (DGP) and a suitable plug-in predictive distribution of hypothetically

replicate data. On the other hand, the simulation studies in Chan and Grant (2016a,b) indicate

that the DIC measure based on the integrated likelihood function, i.e., the observed-data DIC,
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performs well in selecting the true model among a pool of candidates.

In this study, we show how an observed-data DIC measure can be formulated in a Bayesian

estimation setting for spatial panel data models that have both individual and time fixed effects.

We consider static and dynamic spatial panel data models that have high order spatial lags in both

the dependent variable and the disturbance terms.1 In these models, the individual and time fixed

effects can be regarded as the high-dimensional latent variables. Though the conditional likelihood

functions are readily available, it is not clear how to formulate the integrated likelihood functions for

these models. A possible approach can be based on a transformation approach that can be used to

wipe out the latent variables from the models. For example, in the case of static spatial panel data

models, Lee and Yu (2010b) suggest two orthonormal transformations to wipe out both individual

and time effects from the model.2 However, this approach is possible only when all spatial weights

matrices are row-normalized. Moreover, in the case of spatial dynamic panel data models, there is

no such transformation that eliminates both individual and time effects, and preserve the structure

of specifications (see Lee and Yu (2010a,b) and Han et al. (2017) for the details).

Instead of a transformation approach, we suggest a direct approach to integrate out both the

individual and time fixed effects from the complete data likelihood functions of these models. To

that end, we assume multivariate normal prior distributions for the latent variables, and then use

some properties of multivariate normal distribution to analytically integrate out these variables

from the complete data likelihood functions of the models. We then use our closed-form integrated

likelihood functions to formulate the observed-data DIC measures for both static and dynamic

spatial panel data models. We design an extensive simulation study to assess the finite sample

performance of the observed-data DICs in selecting the true specification. Using a recent application

from the literature on spatial modeling of the house price changes in the US, we illustrate how

the proposed observed-data DICs can be used to choose a spatial weights matrix from a pool of

candidates, and to choose between the static and dynamic specifications. Our results from both

simulation study and empirical illustration indicate that the observed-data DICs can be useful for

the specification problems in spatial panel data models.3

1There is a growing literature on the spatial panel data models dealing mainly with the estimation and testing
approaches. The estimation methods considered in the literature include (i) the (quasi) maximum likelihood (ML)
methods, (ii) the generalized method of moments (GMM) and IV based approaches, (iii) the M-estimation approach,
and (iv) the Bayesian estimation approaches. Among others, see Baltagi et al. (2014), Elhorst (2005), Lee and Yu
(2010a,b), Qu et al. (2017), and Yu et al. (2008) on the (quasi) ML based estimation approaches, see Fingleton (2008),
Kapoor et al. (2007), and Lee and Yu (2014) on the GMM and IV based estimation approaches, see Li and Yang
(2020, 2021) and Yang (2018) on the M-estimation approach, and see Han and Lee (2016), Han et al. (2017), LeSage
(2014), and Parent and LeSage (2010, 2011, 2012) for the Bayesian estimation approaches. There is also a growing
literature on the testing spatial parameters in spatial panel data models, e.g., among other, see Baltagi and Yang
(2012, 2013), Baltagi et al. (2003, 2007a,b), Bera et al. (2019), Kelejian and Piras (2016), Robinson (2008), Taşpınar
et al. (2017), and Yang (2021b). Our approach based on the observed-data DIC is an alternative to usual testing
approaches.

2These transformations are based on the decomposition of Jn =
(
In − 1

n
lnl

′
n

)
and JT =

(
IT − 1

T
lT l

′
T

)
, where

In is the n× n identity matrix and ln is the n× 1 vector of ones. See Lee and Yu (2010b) for the details.
3There are also some other approaches for the specification problems in the spatial econometric literature. One

strand of the literature focuses on the model averaging approaches to account for the model uncertainty associated
with the choice of spatial weights matrices (Crespo and Feldkircher 2013; Debarsy and LeSage 2020; LeSage 2014;
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The rest of this paper is organized as follows. In Section 2, we first specify static and dynamic

spatial panel data models, and then discuss the stability conditions for each model. In Section 3,

we discuss different variants of DIC and show how the observed-data likelihood function can be

derived for static and dynamic spatial panel data models. In Section 4, we provide the details of

our suggested Bayesian estimation approach. In Section 5, we investigate the performance of the

observed-data DIC in an extensive simulation study. In Section 6, we illustrate the methodology

with an application to spatial modeling of the US house price data. In Section 7, we present our

conclusions. Some technical results are relegated to an Appendix.

2 Model Specifications

In this section, we first present the static and dynamic spatial panel data models, and then discuss

the parameter space of spatial parameters ensuring stability of these models. We start with a

static spatial panel data model that includes (i) individual effects, (ii) time effects, (iii) high order

spatial lags of the dependent variable, and (iv) high order spatial lags of the disturbance terms.

Let Yt = (y1t, y2t, . . . , ynt)
′

be the n × 1 vector of dependent variable at time t. We assume the

following data generating process (DGP) for Yt:

Yt =

p1∑
r1=1

λr1W1r1Yt + Xtβ + cn + αtln + Ut, (2.1)

Ut =

p2∑
r2=1

ρr2W2r2Ut + Vt, for t = 1, . . . , T,

where Xt is the n× k matrix of non-stochastic time-varying regressors with a matching parameter

vector β, cn = (c1, c2, . . . , cn)
′

is the n×1 vector of time-invariant individual effects, αtln represents

individual invariant time effect at period t, ln is the n× 1 vector of ones, Ut = (u1t, u2t, . . . unt)
′

is

the n× 1 vector of regression disturbance term, and Vt = (v1t, v2t, . . . , vnt)
′

is the n× 1 vectors of

innovations. The high order spatial lag terms are
∑p1

r1=1 W1r1Yt and
∑p2

r2=1 W2r2Ut, where W1r1

and W2r2 are the n × n non-stochastic spatial weights matrices that have zero diagonal elements

for r1 = 1, 2, . . . , p1 and r2 = 1, 2, . . . , p2. Thus, Ut is allowed to incorporate spatial autoregres-

sive features. The scalar spatial parameters are denoted by λr1 and ρr2 for r1 = 1, 2, . . . , p1 and

r2 = 1, 2, . . . , p2. We assume that vit’s are independent and identically distributed normal random

variables with mean zero and variance σ2 across i = 1, 2, . . . , n and t = 1, 2, . . . , T .

Piribauer and Crespo 2016; Zhang and Yu 2018). Another strand of the literature focuses on how the elements of
spatial weight matrices can be estimated (Kelejian and Piras 2014; Krisztin and Piribauer 2021; Lam and Souza
2020). Finally, instead of selecting a spatial weights matrix from a pool of candidates, there are some studies focusing
on a modeling approach for specifying the elements of an endogenous spatial weight matrix (Han and Lee 2016; Qu
and Lee 2015; Qu et al. 2017).
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Next, we consider a dynamic version of (2.1), which can be in the following form:

Yt =

p1∑
r1=1

λr1W1r1Yt + γYt−1 +

p1∑
r1=1

ηr1W1r1Yt−1 + Xtβ + cn + αtln + Ut, (2.2)

Ut =

p2∑
r2=1

ρr2W2r2Ut + Vt, for t = 1, . . . , T,

where the scalar parameter γ of time lag-term Yt−1 measures the persistence in Yt, and the scalar

parameters ηr1 ’s of spatial time lag terms W1r1Yt−1 capture the dynamic diffusion effects. Note

that, in (2.1) and (2.2), we have ci + αt = (ci + κ) + (αt − κ) for arbitrary κ. Thus, the individual

and time effects are not identified, and we need to impose normalization-type constraints to achieve

identification. For this purpose, we may require that c
′
nln = 0, or we may simply set α1 = 0.

Next, we discuss the stability conditions. Let λ = (λ1, λ2, . . . , λp1)
′
, ρ = (ρ1, ρ2, . . . , ρp2)

′
,

S1(λ) = In −
∑p1

r1=1 λr1W1r1 and S2(ρ) = In −
∑p2

r2=1 ρr2W2r2 . Since the spatial autoregressive

models represent equilibrium relationships, we require that S1(λ) and S2(ρ) are invertible for all

λ and ρ values. Let ϑi(A) be the ith eigenvalue of the n × n matrix A. Then, by Lemma 1

in Appendix, S1(λ) and S2(ρ) are invertible under the following respective sufficient conditions:

(1a) max1≤i≤n
{∣∣ϑi (∑p1

r1=1 λr1W1r1

)∣∣} < 1, and (2a) max1≤i≤n
{∣∣ϑi(∑p2

r2=1 ρr2W2r2)
∣∣} < 1. The

proof of Lemma 1 indicates that the necessary and sufficient condition for the invertibility of S1(λ)

is ϑi(
∑p1

r1=1 λr1W1r1) 6= 1 for i = 1, . . . , n (the analogous result also applies to S2(ρ)). Thus, the

sufficient conditions (1a) and (2a) may lead to restrictive parameter spaces for λ and ρ. However,

by requiring that all eigenvalues of
∑p1

r1=1 λr1W1r1 are less than one in absolute value, we rule out

the unstable Nash equilibria.4

By Lemmas 1 and 2 in Appendix, we may alternatively specify the parameter space restrictions

for stability using the following relatively restrictive sufficient conditions: (1∗a)
∥∥∑p1

r1=1 λr1W1r1

∥∥ <
1 and (2∗a)

∥∥∑p2
r2=1 ρr2W2r2

∥∥ < 1, where ‖ · ‖ is any matrix norm.5 Also, note that∥∥∥∥∥∥
p∑
j=1

ajWj

∥∥∥∥∥∥ ≤ |a1| · ‖W1‖+ . . .+ |ap| · ‖Wp‖ ≤

 p∑
j=1

|aj |

× max
1≤j≤p

‖Wj‖,

where aj ’s are scalar parameters and Wj ’s are n × n matrices. Thus, we can further restrict the

parameter space by requiring the following easy-to-check sufficient conditions: (1∗a)
(∑p1

r1=1 |λr1 |
)
×

max1≤r1≤p1 ‖W1r1‖ < 1, and (2∗a)
(∑p2

r2=1 |ρr2 |
)
× max1≤r2≤p2 ‖W2r2‖ < 1. If we choose the

matrix row sum norm, which is denoted by ‖ · ‖∞, the above conditions further simplifies for the

row-normalized spatial weights matrices: (1∗a)
∑p1

r1=1 |λr1 | < 1, and (2∗a)
∑p2

r2=1 |ρr2 | < 1.

The stability conditions for the dynamic specification in (2.2) can be investigated from its

4See Kelejian and Prucha (2010) for the details.
5Note that these conditions are relatively restrictive since they provide upper bounds on the conditions in (1a)

and (2a) respectively.
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reduced form, which can be expressed as

Yt = S−11 (λ)

(
γIn +

p1∑
r1=1

ηr1W1r1

)
Yt−1 + S−11 (λ)

(
Xtβ + cn + αtln + S−12 (ρ)Vt

)
. (2.3)

Let A(λ, γ,η) = S−11 (λ)(γIn +
∑p1

r1=1 ηr1W1r1), where η = (η1, η2, . . . , ηp1)
′
. If all eigenvalues of

A(λ, γ,η) lie inside the unit circle, then Yt in (2.3) is a stable process (Hamilton 1994, Proposition

10.1). Therefore, in the case of the dynamic specification, the required sufficient conditions for

stability are (1b) max1≤i≤n
{∣∣ϑi(∑p1

r1=1 λr1W1r1)
∣∣} < 1, (2b) max1≤i≤n

{∣∣ϑi(∑p2
r2=1 ρr2W2r2)

∣∣} <
1, and (3b) max1≤i≤n {|ϑi (A(λ, γ,η))|} < 1. By Lemma 2 in Appendix, the relatively restrictive

sufficient conditions for (3b) is given by (3∗b) ‖A(λ, γ,η)‖ < 1. We can also investigate upper

bounds for these conditions to formulate further restrictive, but easy-to-check conditions. Note

that

‖A(λ, γ,η)‖ ≤
∥∥S−11 (λ)

∥∥× ∥∥∥∥∥γIn +

p1∑
r1=1

ηr1W1r1

∥∥∥∥∥
=

∥∥∥∥∥∥In +

(
p1∑
r1=1

λr1W1r1

)
+

(
p1∑
r1=1

λr1W1r1

)2

+ . . .

∥∥∥∥∥∥×
∥∥∥∥∥γIn +

p1∑
r1=1

ηr1W1r1

∥∥∥∥∥
≤ 1

1− τ1
×

(
|γ|+

(
p1∑
r1=1

|ηr1 |

)
× max

1≤r1≤p1
‖W1r1‖

)
,

where τ1 =
(∑p1

r1=1 |λr1 |
)
× max1≤r1≤p1 ‖W1r1‖ < 1. Then, the more restrictive suffi-

cient conditions for the stability of the dynamic specification in (2.2) can be expressed as

(1∗b)
(∑p1

r1=1 |λr1 |
)
× max1≤r1≤p1 ‖W1r1‖ < 1, (2∗b)

(∑p2
r2=1 |ρr2 |

)
× max1≤r2≤p2 ‖W2r2‖ < 1, and

(3∗b) 1
1−τ1 ×

(
|γ|+

(∑p1
r1=1 |ηr1 |

)
×max1≤r1≤p1 ‖W1r1‖

)
< 1. Note that when spatial weights matri-

ces are row-normalized, the above conditions further simplify. For example, using the matrix row

sum norm, the conditions in (1∗b)− (3∗b) reduce to (1∗b)
∑p1

r1=1 |λr1 | < 1, (2∗b)
∑p2

r2=1 |ρr2 | < 1 and

(3∗b)
∑p1

r1=1 |λr1 |+
∑p1

r1=1 |ηr1 |+ |γ| < 1.

3 Observed-data DIC for Spatial Panel Data Models

In this section, we show how the DIC suggested by Spiegelhalter et al. (2002) can be used in model

selection exercises involving the static and dynamic spatial panel data specifications in Section 2.

In latent variable models, there can be alternative definitions of the DIC depending on the type of

likelihood function considered in the formulation of the DIC (Celeux et al. 2006). Note that for

the static and dynamic spatial panel data specifications in Section 2, the latent high-dimensional

variables are cn and α, where α = (α1, . . . , αT )
′

is the T × 1 vector of time effects. Let Φ =

(β
′
, σ2)

′
, and Ψ = (λ

′
,ρ
′
)
′

be the (p1 + p2) × 1 vector of spatial parameters in the case of (2.1),

and Ψ = (λ
′
, γ,η

′
,ρ
′
)
′

be the (2p1 + p2 + 1) × 1 vector of parameters in the case of (2.2). We
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use p(Y|Φ,Ψ, cn,α) to denote the conditional likelihood function, and p(Y|Φ,Ψ) to denote the

observed data likelihood function (or the integrated likelihood function), where Y = (Y
′
1, . . . ,Y

′
T )
′
.

Accordingly, we call the DIC formulated with p(Y|Φ,Ψ, cn,α) “the conditional DIC”, and the DIC

formulated with p(Y|Φ,Ψ) “the observed-data DIC.”

The conditional likelihood functions are readily available. We start with the conditional likeli-

hood function of (2.1). Define YL = (IT⊗S1(λ))Y−Xβ−lT⊗cn−α⊗ln, where X = (X
′
1, . . . ,X

′
T )
′
.

Then, the conditional likelihood function of (2.1) can be written as

p(Y|Φ,Ψ, cn,α) = (2π)−nT/2(σ2)−nT/2 · |S1(λ)|T · |S2(ρ)|T × exp

(
−1

2
Y
′
L (IT ⊗Ω(Υ)) YL

)
,

(3.1)

where Ω(Υ) = S
′
2(ρ)S2(ρ)/σ2 and Υ = (ρ

′
, σ2)

′
. Next, we derive the conditional likelihood

function of (2.2). To that end, we assume that the initial values at time t = 0 in Y0 are exogenously

given. Let Yf = (IT ⊗ S1(λ))Y − (IT ⊗ R(γ,η))Y−1, where R(γ,η) = γIn +
∑p1

r1=1 ηr1W1r1 ,

Y = (Y
′
1, . . . ,Y

′
T )
′

and Y−1 = (Y
′
0, . . . ,Y

′
T−1)

′
. Then, the conditional likelihood function of (2.2)

is

p(Y|Φ,Ψ, cn,α) = (2π)−nT/2(σ2)−nT/2 · |S1(λ)|T · |S2(ρ)|T (3.2)

× exp

(
−1

2

(
Yf −Xβ − lT ⊗ cn −α⊗ ln

)′
(IT ⊗Ω(Υ))

(
Yf −Xβ − lT ⊗ cn −α⊗ ln

))
,

where Ω(Υ) = S
′
2(ρ)S2(ρ)/σ2 and Υ = (ρ

′
, σ2).

The conditional likelihood functions in (3.1) and (3.2) are useful in designing Gibbs samplers for

the estimation of models, but they cannot be used to formulate DIC measures as they undermine

the assumptions required for the decision-theoretical perspective of Li et al. (2017, 2020). Also, see

Chan and Grant (2016a,b) and Millar (2009) for the simulation evidence on the poor performance of

the DIC measure formulated with the conditional likelihood functions. To formulate the observed-

data DIC measures, we need to derive the integrated likelihood functions. To that end, we assume

the following independent prior distributions for cn and α: cn ∼ N(µc,Vc), αt ∼ N(µα, Vα) for

t = 1, . . . , T . Under these prior distributions, we can obtain the integrated likelihood functions as

p(Y|Φ,Ψ) =

∫
p(Y, cn,α|Φ,Ψ) dcndα =

∫
p(Y|Φ,Ψ, cn,α)p(cn)p(α) dcndα, (3.3)

where p(Y, cn,α|Φ,Ψ) is the complete-data likelihood function, p(cn) is the prior distribution of

cn, and p(α) is the prior distribution of α. In the following proposition, we provide p(Y|Φ,Ψ) in

the case of each model.

Proposition 1. Let Bn = (In, ln), µf = (µ
′
c, µα)

′
and

Vf =

(
Vc 0n×1

01×n Vα

)
.
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Define B = IT ⊗Bn, µF = lT ⊗ µf and VF = IT ⊗Vf .

(i) The observed-data likelihood function of the static specification in (2.1) is

p(Y|Φ,Ψ) = (2π)−nT/2(σ2)−nT/2 · |S1(λ)|T · |S2(ρ)|T · |VF |−1/2 · |KF |−1/2 (3.4)

× exp

(
−1

2

(
YF ′ (IT ⊗Ω(Υ)) YF + µ

′
FV−1F µF − k

′
FK−1F kF

))
,

where YF = (IT ⊗ S1(λ))Y − Xβ, KF = B
′
(IT ⊗Ω(Υ)) B + V−1F and kF =

B
′
(IT ⊗Ω(Υ)) YF + V−1F µF .

(ii) The observed-data likelihood function of the dynamic specification in (2.2) is

p(Y|Φ,Ψ) = (2π)−nT/2(σ2)−nT/2 · |S1(λ)|T · |S2(ρ)|T · |VF |−1/2 · |KF |−1/2 (3.5)

× exp

(
−1

2

((
Yf −Xβ

)′
(IT ⊗Ω(Υ))

(
Yf −Xβ

)
+ µ

′
FV−1F µF − k

′
FK−1F kF

))
,

where KF = B
′
(IT ⊗Ω(Υ))B + V−1F and kF = B

′
(IT ⊗Ω(Υ))(Yf −Xβ) + V−1F µF .

Proof. See Appendix B.

Next, we use p(Y|Φ,Ψ) to formulate the observed-data DIC measures. The Bayesian deviance

term defined in Spiegelhalter et al. (2002) is given by D(Φ,Ψ) = −2 log p(Y|Φ,Ψ) + 2 log f(Y),

where f(Y) is some fully specified standardizing term which is a function of data alone. For model

comparison exercises, we set f(Y) = 1 (Berg et al. 2004). Then, the observed-data DIC takes the

following form:

DIC = D(Φ,Ψ) + PD, (3.6)

where D(Φ,Ψ) = −2E (log p(Y|Φ,Ψ)|Y) is the posterior mean deviance and serves as a Bayesian

measure of model fit. When the model is compatible with data, the likelihood attains larger values,

leading to smaller values for D(Φ,Ψ). Thus, the better the model fit is, the smaller D(Φ,Ψ)

is. The second term PD is defined as the difference between the posterior mean deviance and the

deviance at the estimated parameters, and is given by

PD = D(Φ,Ψ)−D(Φ̃, Ψ̃) = −2E (log p(Y|Φ,Ψ)|Y) + 2 log p(Y|Φ̃, Ψ̃),

where Φ̃ and Ψ̃ are the joint maximum a posterior (MAP) estimators (Celeux et al. 2006).6 PD can

be understood as a measure of the effective number of parameters in the model, i.e. it is a measure

of model complexity. Gelman et al. (2003) consider a related way to measure model complexity

6The MAP estimates can be approximated by the posterior draws of tuples (Φ,Ψ) that yield the largest value for
p(Y|Φ,Ψ)p(Φ)p(Ψ), where p(Φ) and p(Ψ) are the prior density functions.
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defined as two times the posterior variance of the likelihood function. This alternative always takes

positive values and is given by PDV = 2×Var(log p(Y|Φ,Ψ)|Y). Thus, depending on the measure

of model complexity, we have the following observed-data DIC measures:

DIC1 = −4E (log p(Y|Φ,Ψ)|Y) + 2 log p(Y|Φ̃, Ψ̃), (3.7)

DIC2 = −2E (log p(Y|Φ,Ψ)|Y) + 2Var(log p(Y|Φ,Ψ)|Y). (3.8)

The posterior term E (log p(Y|Φ,Ψ)|Y) in DIC1 and DIC2 can be estimated by averaging the

log-integrated likelihood function log p(Y|Φ,Ψ) over the posterior draws of Φ and Ψ. The

term log p(Y|Φ̃, Ψ̃) in DIC1 is obtained by evaluating log p(Y|Φ,Ψ) at Φ̃ and Ψ̃, and the term

Var(log p(Y|Φ,Ψ)|Y) of DIC2 is computed by taking the variance of log p(Y|Φ,Ψ) over the pos-

terior draws of Φ and Ψ.

4 Posterior Analysis

In this section, we provide the posterior analysis for the static and dynamic spatial panel data

specifications in Section 2. We assume the following independent prior distributions:

λr1 ∼ Uniform(−1, 1), ηr1 ∼ Uniform(−1, 1), r1 = 1, 2, . . . , p1,

ρr2 ∼ Uniform(−1, 1), r2 = 1, 2, . . . , p2, γ ∼ Uniform(−1, 1),

cn ∼ N(µc,Vc), αt ∼ N(µα, Vα), t = 2, . . . , T,

β ∼ N(µβ,Vβ), σ2 ∼ IG(a0, b0),

where Uniform(−1, 1) denotes the uniform distribution over the interval (−1, 1) and IG(a0, b0)

denotes the inverse gamma distribution with shape parameter a0 and scale parameter b0. The

hyper-parameters can take the following values: µc = 0, Vc = 10In, µα = 0, Vα = 10, µβ = 0,

Vβ = 10Ik, a0 = 0.01 and b0 = 0.01 (Han et al. 2017).

Since we assume the conjugate priors for the common parameters β, σ2, cn and α, the condi-

tional posterior distributions of these parameters take known forms, indicating direct sampling for

these parameters in each model. We leave the details of the sampler for these parameters to the

Appendix C. However, the conditional posterior distribution of Ψ does not result in a known form

in the context of each model. Therefore, we use the adaptive Metropolis (AM) algorithm suggested

in Haario et al. (2001) and Roberts and Rosenthal (2009) to generate draws from the conditional

posterior distribution p(Ψ|Y,Φ, cn,α).7 In the AM algorithm, the historical MCMC draws of Ψ

are used to determine the covariance matrix of proposal distributions. We summarize the steps

required for this algorithm below.

Algorithm 1 (AM Algorithm for Ψ).

7Han and Lee (2016) and Han et al. (2017) use similar AM algorithms to generate draws for the spatial parameters
in spatial panel data models. Their results show that the AM algorithm can perform satisfactorily.
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1. Draw a candidate Ψ̃ as follows: At the iteration g for g = 1, 2, . . . , G,

(a) if g ≤ 2p, propose Ψ̃ ∼ N
(
Ψ(g−1), (0.1)2

p × Ip

)
, where p = p1 + p2 for the static

specification and p = 2p1 + p2 + 1 for the dynamic specification,

(b) if g > 2p, propose Ψ̃ ∼ 0.95 × N
(
Ψ(g−1), κ (2.38)2

p × Cov
(
Ψ(0), . . . ,Ψ(g−1)

))
+ 0.05 ×

N
(
Ψ(g−1), (0.1)2

p × Ip

)
, which is a mixture of two normal distributions.

2. Check whether Ψ̃ satisfies the stability conditions in Section 2. If not, draw a new candidate

Ψ̃ until it meets the stability conditions.

3. Set the acceptance probability to

P(Ψ(g−1), Ψ̃) = min

(
p(Y|Φ(g−1), Ψ̃, c

(g−1)
n α(g−1))

p(Y|Φ(g−1),Ψ(g−1), c
(g−1)
n α(g−1))

, 1

)
.

Then, return Ψ̃ with probability P(Ψ(g−1), Ψ̃); otherwise return Ψ(g−1).

4. Adjust the tuning parameter according to κ(g) = κ(g−1)/1.05 if the acceptance rate is less

than 40 percent, and κ(g) = κ(g−1) × 1.05 if the acceptance rate is greater than 60 percent.

Remark 1. Note that the covariance of the proposal distribution in the AM algorithm is

formulated with the historical draws of Ψ. The proposal distribution consists of two com-

ponents. The first component is N
(
Ψ(g−1), (0.1)2

p × Ip

)
, and is used to generate the candi-

date draws when g ≤ 2p. The second component is a mixture of two normal distributions,

and is used when g > 2p. The first mixture component is chosen with probability 0.95,

and is given by N
(
Ψ(g−1), κ (2.38)2

p × Cov
(
Ψ(0), . . . ,Ψ(g−1)

))
, where Cov

(
Ψ(0), . . . ,Ψ(g−1)

)
=

1
g

∑g−1
j=0 Ψ(j)Ψ(j)′ −Ψ(g−1)Ψ(g−1)′ with Ψ(g−1) = 1

g

∑g−1
j=0 Ψ(j), and κ is a tuning parameter. The

second mixture component N
(
Ψ(g−1), (0.1)2

p × Ip

)
has a probability of 0.05, and prevents the al-

gorithm to generate a singular covariance matrix. The candidate values generated in Step 1 are

subject to the stability conditions in Section 2 as stated in Step 2. In Step 3, we choose the candi-

date Ψ̃ generated in Step 1 with probability P(Ψ(g−1), Ψ̃). Finally, in Step 4, we adjust the tuning

parameter κ during the estimation such that the acceptance rate falls between 40 percent and 60

percent.8

5 A Simulation Study

In this section, we examine the performance of the observed-data DIC measures in an extensive

simulation study. To this end, we are interested in the performance of the observed-data DIC

measures in two scenarios an empiricist is likely to face: (i) a weights matrix selection problem,

8Alternatively, in Step 2, after rejecting the candidate Ψ̃ that does not satisfy the stability condition, the tuning
parameter can be adjusted before drawing a new candidate.
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and (ii) a static vs. dynamic model selection problem. We consider the following DGPs:

M1 : Yt = λ1W11Yt + Xtβ + cn + αt + Ut, Ut = ρ1W21Ut + Vt,

M2 : Yt = λ1W11Yt + λ2W12Yt + Xtβ + cn + αt + Ut, Ut = ρ1W21Ut + Vt

M3 : Yt = λ1W11Yt + γYt−1 + η1W11Yt−1 + Xtβ + cn + αt + Ut,

Ut = ρ1W21Ut + Vt,

M4 : Yt = λ1W11Yt + λ2W12Yt + γYt−1 + η1W11Yt−1 + η2W12Yt−1

+ Xtβ + cn + αt + Ut, Ut = ρ1W21Ut + Vt,

for t = 1, 2, . . . , T . We let X = (X1,X2), where X1it’s and X2it’s are drawn independently from

N(0, 2). For the parameters, we consider the following true values: λ1 = 0.6, λ2 = 0.1, γ = 0.1,

η1 = −0.1, η2 = −0.1, ρ1 = 0.2, β1 = β2 = 1, and σ2 = 1. The time fixed effects are drawn

independently from the standard normal distribution. The individual fixed effects are generated

according to Mundlak (1978) as follows, cn = 0.3X1+0.3X2+ε, where X1 and X2 are the empirical

time-averages of X1 and X2 respectively, and εi’s are drawn independently from N(0, 0.05).

For the spatial weights matrices, we consider rook and queen contiguity cases. We first generate

a vector containing a random permutation of the integers from 1 to n without repeating elements.

Then, we reshape this vector into an k×m rectangular lattice, where m = n/k. In the case of rook

contiguity, we set wij = 1 if the j’th observation is adjacent (left/right/above or below) to the i’th

observation on the lattice. In the case of queen contiguity, we set wij = 1 if the j’th observation

is adjacent to, or shares a border with the i’th observation. We set k = 10, and row-normalize all

spatial weights matrices.9 We consider two sample sizes: {n = 50, T = 18} and {n = 100, T = 6}
to represent the long and short panel cases, respectively. The MCMC estimation is based on 10000

draws with 5000 draws discarded as burn-ins. The number of resamples is set to 200 in each

experiment. We set the initial value of the tuning parameter κ to 1.5 in the AM algorithm.

To explore the performance of the observed-data DICs in each scenario, we use histogram plots

as suggested by Chan and Grant (2016b). More specifically, these histogram plots will present the

empirical distribution of the difference between the observed-data DIC of the misspecified model

and the observed-data DIC of the correct model, over 200 resamples. Since the model with the

smallest DIC value is the preferred model, a non-negative value for the difference of the observed-

data DICs would indicate that the correct model is favored. In other words, if the observed-data

DIC performs satisfactorily, the majority of the mass should be placed on the non-negative values.

For the weights matrix selection problem, we consider four experiments. In the first experiment,

we use M1 (a static spatial panel data model) with both W11 and W21 generated according to the

queen contiguity case to generate 200 samples. In this experiment, the empiricist who is unaware

of the true process has the dilemma to choose between the rook and queen contiguity based weights

9In Section D of Appendix, we provide some additional simulation results by considering a wider set of spatial
weights matrices. We generate the candidate weights matrices based on (i) the 5-nearest neighbors scheme (K5), (ii)
the 10-nearest neighbors scheme (K10), (iii) the group interaction scheme (Group), (iv) the rook scheme (Rook), and
(v) the queen scheme (Queen).
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matrices. We use each sample to fit M1 with true weights matrices (queen contiguity) and compute

the observed-data DICs. Similarly, we use the same sample to fit M1 with the wrong weights

matrices (rook contiguity) and compute the observed-data DICs. We then compute the difference

between the observed-data DIC of the misspecified model (rook contiguity) and the observed-data

DIC of the correct model (queen contiguity) over 200 samples and present them in histogram plots

in Figure 1. We find that the observed-data DICs choose the correct model in all of the samples

for the long and short panels. In the second experiment, we use M2 ( a high-order static spatial

panel data model) with W11, W12 and W21 generated according to the rook contiguity case to

generate 200 samples. We again use each sample to fit M2 with the true weight matrices and the

wrong weight matrices. Figure 2 shows the histograms of the difference between the observed-data

DIC of the misspecified model (queen contiguity) and the observed-data DIC of the correct model

(rook contiguity) over 200 samples. Again, we observed that for all samples, the observed-data

DICs choose the correct model under both sample sizes.

In the third experiment, the true process is M3 (a dynamic spatial panel data model), and W11

and W21 are generated according to the rook contiguity case. Again, we generate 200 samples

and fit M3 with both true weights matrices and the wrong weights matrices. The histogram plots

in Figure 3 show the difference between the observed-data DIC of the misspecified model (queen

contiguity) and the observed-data DIC of the correct model (rook contiguity) over 200 samples.

For the long panel case (n, T ) = (50, 18), for almost all of the samples, the observed-data DICs

report positive values (99.5%), choosing the correct specification. In the case of the short panel

case (n, T ) = (100, 6), the the observed-data DICs favor the correct model in all samples. In the

last experiment, we use M4 (a high order dynamic spatial panel data model) with W11, W12 and

W21 generated according to the queen contiguity case. The histogram plots in Figure 4 show

the difference between the observed-data DIC of the misspecified model (rook contiguity) and the

observed-data DIC of the correct model (queen contiguity) over 200 samples. The observed-data

DICs favor the correct model in all resamples for the long and short panels.

For the static vs. dynamic specification problem, we again consider four experiments. In

the first experiment, the true process follows M1 (static specification) with both W11 and W21

generated according to the rook contiguity case. The empiricist who is unaware of the true process

has the dilemma to choose between M1 and M3 (dynamic specification) for the empirical analysis.

We again compute the difference between the observed-data DIC of the misspecified model (M3)

and the observed-data DIC of the correct model (M1) over 200 samples, and present them in the

histogram plots. The top panels in Figure 5 presents the result for the short panel case. We observe

that the difference is positive for the majority of samples, 71% in the case of DIC1 and 92% in the

case of DIC2, indicating that the observed-data DICs generally choose the correct model. In the

second experiment, we use M2 (a static specification) with W11, W12 and W21 generated according

to the queen contiguity case to generate 200 samples. The empiricist who is unaware of the true

process has the dilemma to choose between M2 and M4 (a dynamic specification) for the empirical

analysis. The bottom panels in Figure 5 presents the result for the short panel case. Again we find
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that the observed-data DICs choose the correct model in majority of the samples, 93% in the case

of DIC1 and 88.5% in the case of DIC2.

In the third experiment, we use M3 (a dynamic specification) with both W11 and W21 generated

according to the queen contiguity to generate 200 samples. In this experiment, the empiricist needs

to choose between M1 (a static specification) and M3 for the empirical analysis. The results in

Figure 6 show the difference between the observed-data DIC of the misspecified model (M1) and

the observed-data DIC of the correct model (M3) over 200 samples. In the long panel case, the

observed-data DICs favor the correct model for in all samples. In the short panel case, for the

majority of samples, 90% in the case of DIC1 and 96.5% in the case of DIC2, the observed-data

DICs favor the correct model. In the final experiment, the true process follows M4 (a dynamic

specification) with W11, W12 and W21 generated according to the rook contiguity case. In this

case, the empiricist needs to choose between M4 and M2 (static specification) for the empirical

analysis. The histograms in Figure 7 show the difference between the observed-data DIC of the

misspecified model (M2) and the observed-data DIC of the correct model (M4) over 200 samples.

In the long panel, we observe again that the observed-data DICs choose the correct model in almost

all of the samples. In the short panel case, for the majority of samples, 98.5% in the case of DIC1

and 97% in the case of DIC2, the observed-data DICs favor the correct model.
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Figure 1: Histogram plots for the DIC of M1 with the rook case minus the DIC of M1 with the
queen case.

Figure 2: Histogram plots for the DIC of M2 with the queen case minus the DIC of M2 with the
rook case.
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Figure 3: Histogram plots for the DIC of M3 with the queen case minus the DIC of M3 with the
rook case.

Figure 4: Histogram plots for the DIC of M4 with the rook case minus the DIC of M4 with the
queen case.
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Figure 5: Top panel: Histogram plots for the DIC of M3 minus the DIC of M1. Bottom panel:
Histogram plots for the DIC of M4 minus the DIC of M2

Figure 6: Histogram plots for the DIC of M1 minus the DIC of M3.
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Figure 7: Histogram plots for the DIC of M2 minus the DIC of M4.

17



6 An Empirical Illustration

In this section, we provide an empirical illustration to flesh out how the observed-data DIC can

be useful in model selection problems for spatial panel data models. To this end, we consider the

empirical application on the US house prices in Aquaro et al. (2021). These authors put together a

dataset for the US house price changes at the Metropolitan Statistical Areas (MSA) level between

1975 and 2014. Their estimation specification is a dynamic spatial panel data model which also

allows for heterogenous coefficients and an unknown form of heteroskedasticity in the error terms.

For the spatial weights matrix, they consider three candidates that are based on the distance

between the MSAs. The geodesic distances between each pair of MSAs are computed, and the

radius threshold of 75, 100 and 125 miles are used to generate the spatial weights matrices. We

will denote them by W75,W100 and W125 respectively.

In this illustration, we are interested in utilizing the observed-data DIC to resolve (i) the spa-

tial weights matrix selection problem, and (ii) the static vs. dynamic model selection problem.

Following Yang (2021a) and Aquaro et al. (2021), we consider the following static and dynamic

specifications:

yit = λ
n∑
j=1

wijyjt + β1gpopit + β2gincit + ci + αt + vit, (6.1)

yit = λ

n∑
j=1

wijyjt + γyi,t−1 + η

n∑
j=1

wijyj,t−1 + β1gpopit + β2gincit + ci + αt + vit, (6.2)

where yit is the percent quarterly rate of change of real house price in the MSA i in quarter t,

gpopit is the percent quarterly rate of change of population, and gincit is the percent quarterly rate

of change in real capita income. The data set consists of 160 quarters and 377 MSAs.

We use Algorithms 2 and 3 given in Appendix C to estimate the static and dynamic speci-

fications.10 We present the estimation results for both specifications in Table 1. All parameter

estimates are statistically significant and provide the same set of inference with those reported in

Yang (2021a) and Aquaro et al. (2021). Our reported parameter estimates can be compared to

those from the first two columns in Table 3 of Yang (2021a) for the static specification, and those

from the last panel in Table 3 of Aquaro et al. (2021) for the dynamic specification. For example,

for the static specification using W100, Yang (2021a) reports 0.730, 0.380 and 0.099 for λ, β1 and

β2, respectively. For the dynamic specification using W75, Aquaro et al. (2021) reports 0.603, 0.667,

-0.515, 0.250 and 0.050 for λ, γ, η, β1 and β2, respectively. Our estimates reported in Table 1 are

consistent with these estimates.

The observed-data DIC estimates are presented in Table 2. We find that the smallest DIC

values are observed in the case of W125 for both the static and dynamic specifications. Also, for

a given spatial weights matrix, the observed-data DIC favors the dynamic specification over the

10We use the hyperparameter values given in Section 4. The estimation results are based on 10000 draws with 5000
draws discarded as burn-ins.
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Table 1: Estimation results for the US house price models

Static model Dynamic model

λ β1 β2 λ γ η β1 β2

W75 0.588∗∗∗ 0.412∗∗∗ 0.134∗∗∗ 0.629∗∗∗ 0.652∗∗∗ −0.440∗∗∗ 0.166∗∗∗ 0.062∗∗∗

(0.003) (0.010) (0.004) (0.003) (0.003) (0.004) (0.008) (0.003)

W100 0.690∗∗∗ 0.355∗∗∗ 0.114∗∗∗ 0.734∗∗∗ 0.661∗∗∗ −0.520∗∗∗ 0.145∗∗∗ 0.052∗∗∗

(0.002) (0.009) (0.004) (0.002) (0.003) (0.004) (0.007) (0.003)

W125 0.748∗∗∗ 0.350∗∗∗ 0.111∗∗∗ 0.796∗∗∗ 0.664∗∗∗ −0.567∗∗∗ 0.142∗∗∗ 0.051∗∗∗

(0.002) (0.009) (0.004) (0.002) (0.003) (0.004) (0.007) (0.003)

Significance levels: ***, **, * denote respectively 1, 5 and 10 percent significance level.

static specification. Indeed, the estimates of γ and η are statistically significant in all cases. In

lights of these points, we conclude that there is statistical evidence for choosing the dynamic spatial

panel data model with W125 as the preferred model in this empirical exercise.

Table 2: Observed-data DICs for the US house price models

DIC1 DIC2

W75 W100 W125 W75 W100 W125

Static model 270221 269465 267742 273247 272437 269952

Dynamic model 264917 265112 263124 269268 268802 266400

7 Conclusion

In this paper, we focused on two common specification problems in spatial panel data modeling,

namely, choosing a spatial weights matrix from a set of candidates, and choosing between static

and dynamic specifications. We proposed using observed-data DICs to settle these specification

problems. Our approach has the advantage that the DIC measures are based on the integrated

likelihood functions that result from analytically integrating out the latent variables from the com-

plete data likelihood function. Therefore, there is no need for numerical schemes to obtain the

integrated likelihood functions in our approach. Our simulation results attest that the resulting

DIC measures, the observed-data DICs, perform well in finite samples. In future studies, our ap-

proach can be extended to more general specifications such as the spatial panel data model with

interactive fixed effects, MESS-type specifications, specifications allowing for an unknown form of

heteroskedasticity, and specifications allowing for endogeneity in weights matrices. We leave these

extensions for future studies.
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Appendix

A Some Useful Lemmas

The following lemmas are useful for the investigation of stability conditions.

Lemma 1. Let S(λ) = (In −
∑p

r=1 λrWr), where λ = (λ1, . . . , λp)
′

is the p × 1 vector. Let

ϑi(
∑p

r=1 λrWr) be the ith eigenvalue of (
∑p

r=1 λrWr) for i = 1, . . . , n. Then S(λ) is non-singular

for all values of λ satisfying

max
1≤i≤n

{∣∣∣∣∣ϑi(
p∑
r=1

λrWr)

∣∣∣∣∣
}
< 1. (A.1)

Proof. Note that S(λ) is non-singular if and only if its determinant is non-zero, i.e., |S(λ)| 6= 0.

The determinant of S(λ) is

|S(λ)| =

∣∣∣∣∣In −
p∑
r=1

λrWr

∣∣∣∣∣
=

(
1− ϑ1(

p∑
r=1

λrWr)

)
×

(
1− ϑ2(

p∑
r=1

λrWr)

)
× . . .×

(
1− ϑn(

p∑
r=1

λrWr)

)
.

Thus, |S(λ)| 6= 0 if and only if ϑi(
∑p

r=1 λrWr) 6= 1 for i = 1, 2, . . . , n. In particular, S(λ) is

non-singular for all values of λ satisfying

max

{∣∣∣∣∣ϑ1(
p∑
r=1

λrWr)

∣∣∣∣∣ ,
∣∣∣∣∣ϑ2(

p∑
r=1

λrWr)

∣∣∣∣∣ , . . . ,
∣∣∣∣∣ϑn(

p∑
r=1

λrWr)

∣∣∣∣∣
}
< 1. (A.2)

Lemma 2. Let A be an n× n matrix and ϑi(A) be the ith eigenvalue of A. Then,

max
1≤i≤n

{|ϑi(A)|} ≤ ‖A‖, (A.3)

where ‖ · ‖ denotes any matrix norm.

Proof. See Horn and Johnson (2013, Theorem 5.6.9).

B Proof of Proposition 1

In this section, we provide the proof of Proposition 1. We first introduce some notations. Let

θ = (Φ
′
,Ψ
′
, c
′
n,α

′
)
′
, Bn = (In, ln), B = (IT ⊗Bn) and Ft = (c

′
n, αt)

′
. Then, the prior distribution
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of Ft is N(µf ,Vf ), where

µf =

(
µc

µα

)
, and Vf =

(
Vc 0n×1

01×n Vα

)
.

Define F = (F
′
1, . . . ,F

′
T )
′
, which has the prior distribution N(µF ,VF ), where µF = lT ⊗ µf and

VF = IT ⊗Vf . Note that BF = lT ⊗ cn +α⊗ ln, which plays an important role in our derivation.

We start with showing the first part. Let YF = (IT ⊗S1(λ))Y−Xβ = (YF ′
1 , . . . ,YF ′

T )′, where

YF
t = S1(λ)Yt − Xtβ. In terms of this new notation, the likelihood function of (2.1) can be

expressed as

p(Y|θ) = c1 × exp

(
−1

2

(
YF −BF

)′
(IT ⊗Ω(Υ))

(
YF −BF

))
, (B.1)

where c1 = (2π)−nT/2(σ2)−nT/2 · |S1(λ)|T · |S2(ρ)|T . Then, the integrated likelihood function is

p(Y|Φ,Ψ) =

∫
p(Y|Φ,Ψ,F)p(F)dF

=c2

∫
exp

(
−1

2

(
YF −BF

)′
(IT ⊗Ω(Υ))

(
YF −BF

)
− 1

2
(F− µF )

′
V−1F (F− µF )

)
dF,

where c2 = (2π)−(nT+T/2)(σ2)−nT/2 · |S1(λ)|T · |S2(ρ)|T · |VF |−1/2. Thus, our aim is to integrate

out F. Then, p(Y|Φ,Ψ) can be written as

p(Y|Φ,Ψ) = c2

∫
exp

(
−1

2

(
YF ′ (IT ⊗Ω(Υ)) YF + F

′
KFF− 2F

′
kF + µ

′
FV−1F µF

))
dF,

where KF = B
′
(IT ⊗Ω(Υ)) B + V−1F and kF = B

′
(IT ⊗Ω(Υ)) YF + V−1F µF . By completion of

square, we have

F
′
KFF− 2F

′
kF = F

′
KFF− 2F

′
kF + k

′
FK−1F kF − k

′
FK−1F kF

= (F−K−1F kF )
′
KF (F−K−1F kF )− k

′
FK−1F kF . (B.2)
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Using (B.2) in p(Y|Φ,Ψ), we derive the closed form of p(Y|Φ,Ψ) in the following way:

p(Y|Φ,Ψ) = c2 exp

(
−1

2

(
YF ′ (IT ⊗Ω(Υ)) YF + µ

′
FV−1F µF − k

′
FK−1F kF

))
×
∫

exp

(
−1

2

(
(F−K−1F kF )

′
KF (F−K−1F kF )

))
dF

= c2(2π)T (n+1)/2|KF |−1/2 exp

(
−1

2

(
YF ′ (IT ⊗Ω(Υ)) YF + µ

′
FV−1F µF − k

′
FK−1F kF

))
= (2π)−nT/2(σ2)−nT/2 · |S1(λ)|T · |S2(ρ)|T · |VF |−1/2 · |KF |−1/2

× exp

(
−1

2

(
T∑
t=1

YF ′
t Ω(Υ)YF

t + Tµ
′
fV
−1
f µf −

T∑
t=1

(B
′
nΩ(Υ)YF

t + V−1f µf )
′

(B
′
nΩ(Υ)Bn + V−1f )−1(B

′
nΩ(Υ)YF

t + V−1f µf )
))

.

Note that the second equality above follows from the fact that∫
exp

(
−1

2

(
(F−K−1F kF )

′
KF (F−K−1F kF )

))
dF = (2π)T (n+1)/2|KF |−1/2. Finally, in the

case of (2.2), we use the likelihood function in (3.2), which can be expressed as

p(Y|θ) = c1 × exp

(
−1

2

(
YF −BF

)′
(IT ⊗Ω(Υ))

(
YF −BF

))
(B.3)

where c1 = (2π)−nT/2(σ2)−nT/2|S2(ρ)|T and YF = (Yf − Xβ) = (IT ⊗ S1(λ))Y − (IT ⊗
R(γ,η))Y−1 −Xβ = (YF

1 , . . . ,Y
F
T ), where YF

t = S1(λ)Yt −R(γ,η)Y−1,t −Xtβ. Since (B.3) is

in the form of (B.1), we can apply the same argument to show that

p(Y|Φ,Ψ) = (2π)−nT/2(σ2)−nT/2 · |S1(λ)|T · |S2(ρ)|T · |VF |−1/2 · |KF |−1/2

× exp

(
−1

2

(
T∑
t=1

YF ′
t Ω(Υ)YF

t + Tµ
′
fV
−1
f µf −

T∑
t=1

(B
′
nΩ(Υ)YF

t + V−1f µf )
′

(B
′
nΩ(Υ)Bn + V−1f )−1(B

′
nΩ(Υ)YF

t + V−1f µf )
))

.

C Details of the Posterior Analysis

In this section, we provide estimation algorithms for our main specifications.

Algorithm 2 (Estimation Algorithm for (2.1)).

1. Sampling step for cn: Let Yc = (Yc′
1 , . . . ,Y

c′
T )
′
, where Yc

t = S1(λ)Yt − Xtβ − αtln for

t = 1, 2, . . . , T . Then,

cn|Y,Φ,Ψ,α ∼ N(µ̂c, V̂c), (C.1)

where V̂c =
(
V−1c + TΩ(Υ)

)−1
, µ̂c = V̂c

(
V−1c µc + Ω(Υ)

∑T
t=1 Yc

t

)
, and Ω(Υ) =

S
′
2(ρ)S2(ρ)/σ2.
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2. Sampling step for α: Let Yα = (Yα′
1 , . . . ,Y

α′
T )
′
, where Yα

t = S1(λ)Yt − Xtβ − cn for

t = 1, 2, . . . , T . Then,

αt|Y,Φ,Ψ, cn,α−t ∼ N(µ̂αt
, V̂ αt), t = 2, . . . , T,

where V̂ αt =
(
V −1α + l

′
nΩ(Υ)ln

)−1
, µ̂αt

= V̂ αt

(
V −1α µα + l

′
nΩ(Υ)Yα

t

)
, and Ω(Υ) =

S
′
2(ρ)S2(ρ)/σ2.

3. Sampling step for β: Let Yβ
t = S1(λ)Yt − cn − αtln. Then,

β|Y, %, σ2,Ψ, cn,α ∼ N(µ̂β, V̂β),

where V̂β =
(
V−1β +

∑T
t=1 X

′
tΩ(Υ)Xt

)−1
, µ̂β = V̂β

(
V−1β µβ +

∑T
t=1 X

′
tΩ(Υ)Yβ

t

)
, and

Ω(Υ) = S
′
2(ρ)S2(ρ)/σ2.

4. Sampling step for σ2:

σ2|Y,β, %,Ψ, cn,α ∼ IG (a, b) , (C.2)

where a = a0 + nT/2, b = b0 + 1
2

∑T
t=1

(
Yβ
t −Xtβ

)′ (
σ2Ω(Υ)

) (
Yβ
t −Xtβ

)
, and Ω(Υ) =

S
′
2(ρ)S2(ρ)/σ2.

5. Sampling step for Ψ: Use Algorithm 1 to sample Ψ.

Algorithm 3 (Estimation Algorithm for (2.2)).

1. Sampling step for cn: Let Yc
t = Yf

t −Xtβ − αtln for t = 1, 2, . . . , T . Then,

cn|Y,Φ,Ψ,α ∼ N(µ̂c, V̂c), (C.3)

where V̂c =
(
V−1c + TΩ(Υ)

)−1
, µ̂c = V̂c

(
V−1c µc + Ω(Υ)

∑T
t=1 Yc

t

)
, and Ω(Υ) =

S
′
2(ρ)S2(ρ)/σ2.

2. Sampling step for α: Let Yα
t = Yf

t −Xtβ − cn for t = 1, 2, . . . , T . Then,

αt|Y,Φ,Ψ, cn ∼ N(µ̂α, V̂ α), t = 2, . . . , T,

where V̂ α =
(
V −1α + l

′
nΩ(Υ)ln

)−1
, µ̂α = V̂ α

(
V −1α µα + l

′
nΩ(Υ)Yα

t

)
, and Ω(Υ) =

S
′
2(ρ)S2(ρ)/σ2.

3. Sampling step for β: Let Yβ = Yf
t − cn − αtln. Then,

β|Y, σ2,Ψ, cn,α ∼ N(µ̂β, V̂β),
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where V̂β =
(
V−1β +

∑T
t=1 X

′
tΩ(Υ)Xt

)−1
, µ̂β = V̂β

(
V−1β µβ +

∑T
t=1 X

′
tΩ(Υ)Yβ

t

)
, and

Ω(Υ) = S
′
2(ρ)S2(ρ)/σ2.

4. Sampling step for σ2:

σ2|Y,β,Ψ, cn,α ∼ IG (a, b) , (C.4)

where a = a0 + nT/2, b = b0 + 1
2

∑T
t=1

(
Yβ
t −Xtβ

)′ (
σ2Ω(Υ)

) (
Yβ
t −Xtβ

)
, and Ω(Υ) =

S
′
2(ρ)S2(ρ)/σ2.

5. Sampling step for Ψ: Use Algorithm 1 to sample Ψ.

D Some Additional Simulation Results

In this section, we provide some additional simulation results by considering a wider set of spatial

weights matrices. The candidate weights matrices are generated based on the (i) the 5-nearest

neighbors scheme (K5), (ii) the 10-nearest neighbors scheme (K10), (iii) the group interaction

scheme (Group), (iv) the rook scheme (Rook), and (v) the queen scheme (Queen). We consider a

data generating processes with the spatial weight matrix based on the 5-nearest neighbors scheme

(K5). We provide the histogram plots that show the difference between the observed-data DIC of

the misspecified model and that of the correct model. Figures E.1 and E.2 contain the results over

200 samples. All of differences are positive, indicating that the observed-data DIC measures select

the model with the correct weights matrix over 200 samples.

E Trace Plots

In this section, we provide some trace plots to assess the convergence properties of the our samplers.

To this end, we use the results for one of the sample out of 200 samples. Figure E.3 contains the

trace plots for M1, Figure E.4 for M3, Figure E.5 for M2 and Figure E.6 for M4. These plots

demonstrate the convergence of our samplers. In the context of empirical illustration, we also

provide the trace plots to assess the convergence properties of our samplers. Since the observed-

data DIC measures select W125, we only provide the trace plots for the static and the dynamic

specifications based on W125. The results are shown in Figure E.7 and Figure E.8, respectively.

These trace plots also indicate that the suggested sampler mixes properly and converges.
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Figure E.1: Top panel: Histogram plots for the DIC of model based on K10 minus the DIC of
model based on K5. Bottom panel: Histogram plots for the DIC of model based on Group minus
the DIC of model based on K5

Figure E.2: Top panel: Histogram plots for the DIC of model based on Rook minus the DIC of
model based on K5. Bottom panel: Histogram plots for the DIC of model based on Queen minus
the DIC of model based on K5.
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Figure E.3: Trace plots for M1

0 1000 2000 3000 4000 5000

0.9

0.95

1

1.05

1.1

  
1

0 1000 2000 3000 4000 5000

0.9

0.95

1

1.05

1.1

 
2

0 1000 2000 3000 4000 5000

0.55

0.6

0.65

 
1

0 1000 2000 3000 4000 5000

0.05

0.1

0.15

 

0 1000 2000 3000 4000 5000

-0.2

-0.15

-0.1

-0.05

0

  
1

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

  
1

0 1000 2000 3000 4000 5000

0.8

0.9

1

1.1

1.2

 
2

Figure E.4: Trace plots for M3
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Figure E.5: Trace plots for M2
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Figure E.6: Trace plots for M4
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Figure E.7: Trace plots for the static model in the empirical illustration
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Figure E.8: Trace plots for the dynamic model in the empirical illustration
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